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Abstract

Background: A genome-wide association study (GWAS) using metabolite concentrations as proxies for enzymatic
activity, suggested that two variants: rs2014355 in the gene encoding short-chain acyl-coenzyme A dehydrogenase
(ACADS) and rs11161510 in the gene encoding medium-chain acyl-coenzyme A dehydrogenase (ACADM) impair
fatty acid B-oxidation. Chronic exposure to fatty acids due to an impaired B-oxidation may down-regulate the
glucose-stimulated insulin release and result in an increased risk of type 2 diabetes (T2D). We aimed to investigate
whether the two variants associate with altered insulin release following an oral glucose load or with T2D.

Methods: The variants were genotyped using KASPar® PCR SNP genotyping system and investigated for
associations with estimates of insulin release and insulin sensitivity following an oral glucose tolerance test (OGTT)
in a random sample of middle-aged Danish individuals (nacaps = 4.324; Nacapm = 4,337). The T2D-case-control
study involved a total of ~8,300 Danish individuals (nacaps = 8313; Nacaom = 8,344).

Results: In glucose-tolerant individuals the minor C-allele of rs2014355 of ACADS associated with reduced
measures of serum insulin at 30 min following an oral glucose load (per allele effect (B) = -3.8% (-6.3%;-1.3%), P =
0.003), reduced incremental area under the insulin curve (3 = -3.6% (-6.3%;-0.9%), P = 0.009), reduced acute insulin
response (B = -2.2% (-4.2%,0.2%), P = 0.03), and with increased insulin sensitivity IShyatsuga B = 2.9% (0.5%;5.2%), P
= 0.02). The C-allele did not associate with two other measures of insulin sensitivity or with a derived disposition
index. The C-allele was not associated with T2D in the case-control analysis (OR 1.07, 95% Cl 0.96-1.18, P = 0.21).
rs11161510 of ACADM did not associate with any indices of glucose-stimulated insulin release or with T2D.

Conclusions: In glucose-tolerant individuals the minor C-allele of rs2014355 of ACADS was associated with reduced
measures of glucose-stimulated insulin release during an OGTT, a finding which in part may be mediated through
an impaired B-oxidation of fatty acids.

Background

Acute exposure of free fatty acids (FFA) to the pancrea-
tic B-cells is known to both stimulate insulin secretion
and modulate the glucose-stimulated insulin secretion
(GSIS) whereas chronic exposure leads to desensitiza-
tion of the insulin receptors and decreased function of
the pancreatic B-cells. Also, chronic exposure to FFA is
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associated with insulin resistance and increased risk of
developing diabetes mellitus [1-9].

Recently, Gieger et al. (2008) conducted a genome-
wide association study (GWAS) in 284 healthy men
characterized by quantitative measurements of 363
metabolites obtained from fasting serum samples, and
used concentration ratios for the metabolites as proxies
for enzymatic activity [10]. They identified with gen-
ome-wide significance variants in two genes, one encod-
ing short-chain acyl-coenzyme A dehydrogenase
(ACADS) which is expressed in mitochondria and target
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short chain fatty acid (SCFA), and one encoding med-
ium-chain acyl-coenzyme A dehydrogenase (ACADM)
that target medium chain C4-C12 fatty acids (MCFA),
where the corresponding metabolic phenotype matched
the biochemical pathway of the enzymes. A strong asso-
ciation (P = 9.3 x 107*”) was found between rs2014355
in ACADS and the ratio between the short-chain acyl-
carnitines C3 and C4. Similarly, they found a strong
association (P = 7.6 x 10™'7) between rs11161510 in
ACADM and the ratio between medium-chain acylcarni-
tines C8 and C12 [10]. These findings indicate that indi-
viduals homozygous for the minor alleles of the variants
in ACADS and ACADM have reduced dehydrogenase
activity and therefore are likely to show impaired -
oxidation. For instance, in situations of prolonged star-
vation, these individuals may become hypoglycemic and
show hypoglycemia-related symptoms [10].

In pancreatic B-cells, glucose is the primary source of
fuel to stimulate insulin secretion [1,2,9]. However,
when the glucose concentration in plasma is low, fatty
acids (FA) are produced by de novo lipolysis of endogen-
ous triglycerides (TG) increasing the level of cytoplasmic
long-chain Coenzyme A molecules. Subsequently, these
molecules are transported into the mitochondria (via
carnitine-palmitoyl-transferase I (CPT-I)) for B-oxida-
tion leading to increased cellular ATP levels. Thus, the
cell can use FAs as fuels to produce both energy and sti-
mulate the insulin secretion [8]. Conversely, when
plasma glucose concentration is elevated, f-oxidation of
FAs is inhibited due to allosteric inhibition of CPT-I
from malonyl-CoA with a subsequent increase in FFA
esterification and synthesis of complex lipid molecules
such as diacylglycerol, triacylglycerol and fatty acids
[1,7,8,11,12]. Accordingly, during chronically elevated
circulating FFA levels it is hypothesized that the syner-
gism of both glucose- and lipid-stimulated insulin-
secretion elevates the basal insulin secretion causing
hyperinsulinemia which may eventually exhaust the
B-cell and desensitize the insulin receptors [5]. Chronic
FA exposure may thus down-regulate the GSIS with
overt diabetes as a consequence [5].

ACADS and ACADM encode Acyl-CoA dehydro-
genases, which are enzymes that catalyze the initial step
in the B-oxidation of FAs in the mitochondria, each tar-
geting FAs of varying length. In humans, deficiency of
these enzymes leads to low tissue levels of dehydrogen-
ase activity and improper break-down of SCFA and
MCFA. Consequently, the FAs cannot be converted into
energy in situations where the glucose-concentration is
low resulting in hypoglycemia, lethargy, hypotonia, and
seizures [13-15]. ACADS is very abundant in the pan-
creatic B-cell, indicating that it plays an important regu-
latory function, and decreased activity of short-chain
dehydrogenases in the pancreatic B-cell is hypothesized
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to impair insulin secretion [15]. Studies in mice deficient
for ACADS and ACADM showed that the mice devel-
oped fatty liver, changes in hepatic carbohydrate meta-
bolism, and hypoglycemia when fasted, and studies by
Herrema et al. indicated that peripheral rather than
hepatic consequences might underlie the hypoglycemia
associated with disorders of mitochondrial fatty acid oxi-
dation [16-19].

The aim of the present study was to investigate
rs2014355 of ACADS and rs11161510 of ACADM in
relation to indices of insulin release, insulin sensitivity,
and fasting serum lipid levels in a large random sample
of middle-aged individuals (#n = 6,162); also we exam-
ined the putative relation to T2D prevalence in a case-
control study involving ~8,300 Danish individuals
(nacaps = 8,313; nacapm = 8,344).

Methods
Study population
The study population included 10,276 Danes from four
different study groups: 1) The Inter99 cohort which is a
randomized, non-pharmacological intervention study for
the prevention of ischemic heart disease in people
recruited as a random sample and conducted at the
research Centre for Prevention and Health in Glostrup,
Copenhagen (n = 6,162) (ClinicalTrials.gov ID-no:
NCT00289237); 2) T2D patients sampled through the
out-patient clinic at Steno Diabetes Center (SDC) (n =
1,695); 3) a randomly recruited sample of middle-aged
glucose-tolerant participants examined at SDC (n =
810); and 4) T2D patients from the Addition Denmark
screening study cohort (Anglo-Danish-Dutch Study of
Intensive Treatment in People with Screen-Detected
Diabetes in Primary Care) (ClinicalTrials.gov ID-no:
NCT00237548), which is a population-based, high-risk
screening and intervention study for T2D in general
practice (n = 1,609) [20,21]. Characteristics for indivi-
duals included in the study are shown in Additional file
1. All participants in study group 1 and 3 underwent a
standard 75 g oral glucose tolerance test (OGTT). T2D
and glucose tolerance status were diagnosed according
to the World Health Organization 1999 criteria [22].
Analyses of quantitative diabetes-related traits were
performed in glucose-tolerant individuals from the
Inter99 cohort (nacaps = 4,324; nacapm = 4,337). Ana-
lyses of fasting serum lipid levels were performed in glu-
cose-tolerant and treatment-naive individuals from the
Inter99 cohort (nacaps = 5,702; nacapa = 5,731). Study
group 3 was excluded from the quantitative trait ana-
lyses due to missing phenotypes. All T2D patients and
glucose-tolerant individuals were included in the case-
control study of T2D (nacaps = 8,313; nacapar = 8,344).
Participants were of Danish nationality and informed
written consent was obtained from all individuals before
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participation. The studies were conducted in accordance
with the Declaration of Helsinki II and were approved
by the local Ethical Committees of Copenhagen and
Aarhus.

Biochemical and anthropometric measures

Height (without shoes) and weight were measured in
light indoor clothing, and BMI was calculated as weight
(kg)/height2 (m?). Waist circumference was measured in
the upright position midway between the iliac crest and
the lower costal margin, and hip circumference was
measured at its maximum [21]. Blood samples were
drawn after a 12 h overnight fast. Plasma glucose was
analyzed by a glucose oxidase method (Granutest;
Merck, Darmstadt, Germany) and serum insulin
(excluding des-31,32 and intact proinsulin) was mea-
sured using the Autodelfia insulin kit (Perkin-Elmer/
Wallac, Turku, Finland). Serum triacylglycerol was ana-
lyzed using enzymatic colorimetric methods (GPO-PAP
and CHOD-PAP; Roche Molecular Biochemicals, Man-
nheim, Germany). Serum C-peptide concentrations were
measured by a time-resolved fluoroimmunoassay (Auto-
DELFIA C-peptide kit; Perkin-Elmer/Wallac, Turku,
Finland). Homeostasis model assessment of insulin resis-
tance (HOMA-IR) was calculated as: (fasting plasma
glucose (mmol/l) x fasting serum insulin (pmol/1))/22.5
[23]. BIGTT-insulin sensitivity index (BIGTT-S;) and
BIGTT-acute insulin response (BIGTT-AIR) use infor-
mation on sex and BMI combined with analysis of
plasma glucose and serum insulin levels at time points
0, 30, and 120 min to provide indices for S; and AIR
that highly correlate with indices obtained during an
intravenous glucose tolerance test. These indices were
calculated as described elsewhere [24]. B-cell function
was further estimated as the insulinogenic index, calcu-
lated as: (serum insulin at 30 min (pmol/l) - fasting
serum insulin (pmol/l))/(plasma glucose at 30 min
(mmol/l) - fasting plasma glucose (mmol/l)). A disposi-
tion index was calculated as insulinogenic index/
HOMA-IR. Matsuda whole body insulin sensitivity
index (ISIyatsuda) Was calculated as (10,000/V (fasting
plasma glucose x fasting serum insulin) x (mean plasma
glucose x mean serum insulin during OGTT)) [25].
Area under the curve (AUC) for plasma glucose, serum
insulin and serum C-peptide were calculated using the
trapezoidal method. The AUC for insulin/AUC for glu-
cose ratio was calculated as AUC for insulin/AUC for
glucose.

Genotyping

Genotyping was performed using KASPar® PCR SNP
genotyping system (KBiosciences, Herts, UK) with a suc-
cess rate >97%. Discordance was <0.1% as judged from
re-genotyping of 1187 random duplicate samples. Allele
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frequencies were in accordance with HapMap (CEU
population) and the study by Gieger et al., and obeyed
Hardy-Weinberg equilibrium (P > 0.05) [10].

Statistical analysis

A general linear model was applied for testing quantita-
tive traits in relation to genotype. Non-normally distrib-
uted data (measures of serum insulin, serum
triglyceride, and serum C-peptide levels, HOMA-IR,
insulinogenic index, AUC for insulin/AUC for glucose
ratio, ISIyfatsudar @and BIGTT-AIR) were logarithmically
transformed before analyses. Logistic regression was
used to examine differences in genotype distribution in
the case-control studies. All studies were performed in
R 2.10.0 assuming an additive model and adjusted for age,
sex, and BML. In a subset of the analyses, estimates of
B-cell function were additionally adjusted for fasting
serum lipid levels (cholesterol or triglyceride). P < 0.05
were considered significant. The statistical power calcula-
tions were done using CaTS, power calculations for large
genetic association studies, available at http://www.sph.
umich.edu/csg/abecasis/cats/. The statistical power to
detect an OR of 1.10 was estimated to be 80% for
rs2014355 of ACADS and 86% for rs11161510 of ACADM,
respectively. (P < 0.05, MAF = 24%, T2D risk = 0.08).

Results

Association with T2D-related quantitative traits

The impact of ACADS rs2014355 and ACADM
rs11161510 on OGTT-derived diabetes-related quantita-
tive traits was evaluated in a random sample of glucose-
tolerant individuals from the Inter99 cohort (Table 1
and 2). Assuming an additive genetic model, carriers of
the minor C-allele of ACADS rs2014355 had decreased
measures of serum insulin (per allele effect () = -3.8%
(-6.3%;-1.3%), P = 0.003) at 30 min, and decreased incre-
mental AUC for serum insulin from 0-120 minutes dur-
ing an OGTT (B = -3.6% (-6.3%;-0.9%), P = 0.009)
(Table 1). Also, measures of serum C-peptide at 30 min
B =-1.8% (-3.4%;-0.1%), P = 0.03), and incremental
AUC for serum C-peptide from 0-120 minutes (f =
-1.8% (-3.4%;-0.1%), P = 0.03) during an OGTT were
decreased for carriers of the rs2014355 C-allele (Table
1). Additionally, the rs2014355 C-allele of ACADS asso-
ciated with reduced B-cell response measured as
BIGTT-AIR (B = -2.2% (-4.2%;0.2%), P = 0.03) and the
AUC for insulin/AUC for glucose ratio (f = -0.03%
(-0.05%;-0.01%), P = 0.01). The C-allele did not associate
with BIGTT-S; or HOMA-IR or with a HOMA-IR-
derived disposition index; however, the variant
associated with increased insulin sensitivity according to
ISIpiatsuda (B = 2.9% (0.5%;5.2%), P = 0.02) (Table 1).
When measures of insulin release were adjusted for
either fasting levels of serum cholesterol or triglyceride,
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Table 1 Anthropometric and metabolic characteristics of successfully genotyped glucose-tolerant Danes from the
Inter99 cohort stratified according to ACADS rs2014355 (T/C) and ACADM rs11161510 (C/T) genotype, respectively

WT HE HO B (95% CI) Padd
n (men/ ACADS 2,576 (1,208/1,368) 1,496 (694/802) 252 (105/147)
women)
ACADM 2,121(991/1,130) 1,821(825/996) 395(186/209)
Age (years) 45 + 8 45 + 8 45 + 8
45+ 8 45+ 8 46 £ 8
BMI (kg/m?) 255 + 4.1 254 + 39 258 + 40 0.03 (-0.16,0.23) 0.74
255+ 40 256 + 4.2 254 + 38 0.03 (-0.16,0.21) 0.79
Plasma glucose (mmol/l)
Fasting ACADS 53+04 53+04 53+04 0.005 (-0.013;0.024) 0.55
ACADM 53+04 53+04 53+04 0.016 (-0.001,0.033) 0.06
30-min 82+15 82+15 81+16 -0.05 (-0.12;0.02) 0.18
during
an OGTT 82+15 81+15 83+15 -0.02 (-0.08;0.05) 0.60
120-min 55+ 1.1 55+12 55+ 1.1 -0.03 (-0.08;0.03) 0.36
during
an OGTT 55+ 1.1 55+ 1.1 55+12 -0.004 (-0.05;0.05) 0.88
Incremental 183.7 £ 1003 1779 £ 1020 1755 + 100.7 -4.90 (-9.82,0.01) 0.05
AUC 183.7 +£ 993 1775 +£ 100.8 1833 + 103.7 -29 (-7.516) 0.21
Serum insulin (pmol/l)
Fasting ACADS 31 (22-46) 31 (22-46) 29 (23-41) -1,9% (-4.39%;0.6%) 0.14
ACADM 31 (22-46) 31 (22-45) 31 (23-46) 0.3% (-2.0%,2.6%) 0.83
30-min 246 (177-356) 239 (175-329) 234 (181-302) -3.8% (-6.39%;-1.3%) 0.003
during
an OGTT 239 (175-337) 244 (178-351) 245 (173-348) 0.5% (-1.8%,2.8%) 0.65
120-min 137 (88-212) 139 (86-209) 130 (87-189) -1.1% (-4.5%;2.4%) 051
during
an OGTT 140 (87-212) 136 (88-208) 129 (80-214) -2.8% (-5.9%;0.3%) 0.08
Incremental 18,220 (12,600-25,830) 17,260 (12,700-23,980) 16,200 (12,630- -3.6% (-6.39%;-0.9%) 0.009
22,720)
AUC 17,740 (12,720-24,780) 17,780 (12,600-25,380) 17,670 (12,490- 0.1% (-2.3%;2.6%) 091
25,790)
Serum C-peptide (pmol/l)
Fasting ACADS 495 (392-632) 499 (394-642) 484 (399-627) 0.2% (-1.3%;1.8%) 0.78
ACADM 498 (393-639) 494 (392-632) 496 (405-627) -04% (-1.8%;1.0%) 061
30-min 1,910 (1,490-2,390) 1,840 (1,470-2,310) 1,820 (1,450-2,268)  -1.8% (-3.4%;-0.1%) 0.03
during
an OGTT 1,880 (1,480-2,350) 1,870 (1,490-2,398) 1,870 (1,450-2,295) 0.3% (-1.2%;1.8%) 0.71
120-min 1,960 (1,500-2,490) 1,980 (1,490-2,490) 1,940 (1,450-2,410) -0.2% (-2.09%;1.7%) 0.84
during
an OGTT 1,980 (1,500-2,508) 1,960 (1,490-2,480) 1,960 (1,480-2,490) -1.3% (-3.09%,;0.4%) 013
Incremental 149,800 (117,600- 147,300 (117,700- 138,500 (117,400- -1.8% (-3.49%;-0.1%) 0.03
185,000) 181,600) 178,400)
AUC 148,800 (117,100- 148,000 (118,500- 147,900 (116,600- -0.1% (.1.7%;1.4%) 0.85
184,100) 183,200) 183,800)
Derived indices
HOMA-IR ACADS 75 (52-11.0) 74 (51-11.0) 6.8 (5.3-9.6) -1.8% (-4.496,0.7%) 0.16
(mmol/ ACADM 74 (5.1-11.0) 75 (52-109) 74 (53-11.0) 0.6% (-1.8%;3.0%) 063
[*pmol/l)
BIGTT-S; 103 + 3.7 104 + 3.8 106 £ 35 0.14 (-0.05;0.34) 0.14
104 + 37 103 £ 37 103 + 36 -0.01 (-0.19,0.17) 093
Insulinogenic 79.9 (48.9-130.7) 74.7 (49.2-1234) 77.1 (51.5-121.7) -0.8% (4.296;2.5%) 0.63
index 759 (48.2-123.9) 80.0 (51.1-136.8) 75.8 (46.5-126.4) 2.6% (0.5%;5.7%) 0.10
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Table 1 Anthropometric and metabolic characteristics of successfully genotyped glucose-tolerant Danes from the
Inter99 cohort stratified according to ACADS rs2014355 (T/C) and ACADM rs11161510 (C/T) genotype, respectively

(Continued)
Disposition 93 (5.1-17.7) 9.3 (5.1-18.1) 10.6 (5.7-18.7) 0.7% (-3.19%;4.5%) 0.73
index 94 (53-18.2) 94 (5.0-17.6) 9.2 (49-16.7) -3.5% (7.9%,0.8%) 0.11
ISl parsuca 252 (17.8-354) 26.1 (18.2-35.9) 27.9 (20.1-36.0) 2.9% (0.5%:5.2%) 0.02
26.0 (18.0-35.4) 253 (17.9-35.7) 256 (18.1-35.7) -0.2% (2.39%;2.0%) 0.87
BIGTT-AIR 1,690 (1,344-2,149) 1,655 (1,356-2,056) 1,625 (1,317-2,067) -2.2% (-4.2%;0.2%) 0.03
1,668 (1,356-2,099) 1,684 (1,351-2,140) 1,712 (1,303-2,048) 0.2% (-1.6%,2.0%) 0.83
AUCinsulin/ 27.8 (20.2-38.4) 27.0 (20.5-36.1) 24.9 (19.8-35.1) -0.039%(-0.05%;- 0.01
0.01%)
AUCglucose 27.1 (20.3-37.0) 27.6 (204-38.2) 27.7 (19.8-38.3) 0.0029(-0.019%; 0.87
0.023%)

Genotype distribution and allele frequency among patients with T2D and glucose-tolerant control individuals

n (men/women) WT (%) HE (%) HO (%) MAF OR (95% CI)  Paqq
(95% Cl)
ACADS NGT 4,824 (2,239/2,585) 2,872 (59.5) 1,673 (34.7) 279 (5.8) 23.1 (22.3- 1.07 (096- 021
24.0) 1.18)
rs2014355 12D 3,489 (2,063/1,426) 2,030 (58.2) 1,243 (35.6) 216 (6.2) 24.0 (23.0-
25.0)
ACADM NGT 4,841 (2,237/2,604) 2,353 (48.6) 2,053 (42.4) 435 (9.0) 30.2 (29.3- 1.01 (0.92- 0.80
31.1) 1.11)
rs11161510 72D 3,503 (2,083/1,420) 1,686 (48.1) 1,486 (42.4) 331 (94) 30.7 (29.6-
31.8)

Data are unadjusted means + SD or medians (interquartile range). Values of serum insulin/C-peptide and values derived from serum insulin variables were
logarithmically transformed before statistical analysis, and their effect sizes are presented as the increase/decrease in percent. All analyses were made using an
additive genetic model, adjusting for age, sex, and BMI. The bottom part of the table include number of individuals divided into genotype groups (% in each
group), and frequencies of the minor allele (MAF) in percentages. Logistic regression was used to compare allele frequencies (P,q4q). The odds ratios (OR) and the
95% confidence interval (Cl) are given for comparison of allele frequency. NGT: Glucose-tolerant individuals, T2D: type 2 diabetic patients. ACADS rs2014355
genotypes: WT, homozygous major T-allele carriers; HE, heterozygous; HO, homozygous minor C-allele carriers. ACADM rs11161510 genotypes: WT, homozygous

major C-allele carriers; HE, heterozygous; HO, homozygous minor T-allele carriers.

the effects were unchanged (data not shown). However,
adjusting ISIyjasuda for serum cholesterol or triglyceride
levels strengthened the association with whole body
insulin sensitivity (P = 0.01, data not shown). Further,
when investigating whether rs2014355 influences lipid
characteristics in normoglycemic and hyperglycemic
individuals, respectively, no effect was evident among
normoglycemic individuals (Table 2). However, hyper-
glycemic (IFG, IGT, and screen-detected T2D) indivi-
duals showed a significant genotype-dependent decrease
in fasting serum HDL-cholesterol levels (B = -0.036
(-0.067; -0.005), P = 0.02) and increased fasting serum
triglyceride levels (B = 5.2% (0.4%; 10.0%), P = 0.02)
among homozygous minor C-allele carriers (Table 2).
No significant associations were observed in relation to
levels of plasma glucose for this variant (Table 1).

When investigated in all 5,702 treatment-naive indivi-
duals (NGT, IFG, IGT, and screen-detected diabetics)
the C-allele of rs2014355 associated with reduced serum
insulin levels 30 minutes after an oral glucose load (B =
-2.8% (-5.0%;-0.5%), P = 0.02), and reduced AUC for
serum insulin of (B = -3.2% (-5.7%;-0.7%), P = 0.01).
The C-allele associated with increased whole body

insulin sensitivity estimated according to ISIyaisuda
(B = 2.4% (0.3%;4.6%), P = 0.03) but not with BIGTT-S;,
HOMA-IR, or disposition index (data not shown). We
observed no significant associations between rs11161510
of ACADM and any of the investigated quantitative dia-
betes-related traits (Table 1).

Case-control analysis of T2D

Case-control studies of rs2014355 of ACADS and
rs11161510 of ACADM were performed in relation to
T2D (Table 1); however, none of the variants were sig-
nificantly associated with the risk of T2D.

The variants were also tested for association with traits
related to obesity (BMI, waist, and waist-hip ratio) in both
glucose-tolerant (Additional file 2) and in all treatment-
naive individuals; however, no associations were found.

Discussion

In the present study, we investigated rs2014355 of
ACADS and rs11161510 of ACADM in relation to
indices of insulin release and insulin sensitivity as well
as their putative relation to the prevalence of T2D. In
glucose-tolerant individuals from the Inter99 cohort
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Table 2 Fasting serum lipid levels of successfully genotyped normoglycemic and hyperglycemic Danes from the
Inter99 cohort stratified according to ACADS rs2014355 genotype

wT HE HO B (95% CI) Poad
Normoglycemic
n (men/women) 2576(1208/1368) 1496(694/802) 252(105/147)
Age (years) 452 +78 454 +79 449+ 79
Lipid characteristics (mmol/I)

Total serum cholesterol 54+10 54+10 54+ 1.1 0.001 (-0.046; 0.048) 097
HDL-cholesterol 1.5+ 04 1.5+ 04 1.5+ 04 0.002 (-0.016; 0.019) 0.86
LDL-cholesterol 35+ 10 35+10 35+ 10 -0.001 (-0.065; 0.063) 097
VLDL-cholesterol 05+03 06+03 05+02 0.007 (-0.012; 0.026) 046

Serum triglyceride 1.0 (0.7-14) 1.0 (0.7-14) 1.0 (0.7-1.3) 0.5% (-1.8%; 2.7%) 0.69
Hyperglycemic
n (men/women) 804(473/331) 496(306/190) 78(49/29)
Age (years) 488 + 74 494 + 7 478 + 8.1
Lipid characteristics (mmol/I)

Total serum cholesterol 58+ 1.1 50+12 50+12 0.09 (-0.01;0.19) 0.08
HDL-cholesterol 14 £ 04 13+04 13+£05 -0.036 (-0.067; -0.005) 0.02
LDL-cholesterol 3710 3710 39+ 14 0.06 (-0.07; 0.19) 0.38
VLDL-cholesterol 0.7 £ 04 0.7 £04 08 £ 04 0.03 (-0.02; 0.08) 021

Serum triglyceride 14 (0.9-2.0) 14 (1.1-2.0) 1.5 (1.1-2.6) 5.2% (0.4%; 10.0%) 0.03

Data are unadjusted means + SD or medians (interquartile range). Values of serum triglycerides were logarithmically transformed before statistical analysis, and
their effect sizes are presented as the increase/decrease in percent. Normoglycemic: glucose-tolerant individuals from the Inter99 cohort. Hyperglycemic:
individuals with IFG, IGT or screen-detected T2D from the Inter99 cohort. All analyses were made using an additive genetic model, adjusting for age, sex, and
BMI. ACADS rs2014355 genotypes: WT, homozygous major T-allele carriers; HE, heterozygous; HO, homozygous minor C-allele carriers.

carrying the ACADS rs2014355 minor C-allele we found
significantly decreased glucose stimulated insulin release
during an OGTT measured as decreased serum insulin
levels at 30 min, decreased incremental AUC for serum
insulin, decreased BIGTT-AIR, decreased AUC for insu-
lin/AUC for glucose ratio, as well as significantly increased
insulin sensitivity in accordance to ISIyfaisuda- These find-
ings were reproduced, although to a lower significance
level when all treatment-naive individuals from the
Inter99 were examined. In contrast, rs11161510 of
ACADM did not associate with any of the examined
quantitative traits or with diabetes in case-control analysis.

We did not find any consistent associations of
rs2014355 of ACADS with estimates of insulin sensitiv-
ity; thus the C-allele did not associate with BIGTT-S; or
HOMA-IR but only with ISIyfasuda. We have no obvious
explanation for this inconsistency. Yet, the C-allele also
failed to associate with a HOMA-derived disposition
index, which is a measure of B-cell function and there-
fore we cannot exclude that individuals homozygous for
the minor C-allele show decreased insulin release as an
adaptive response to a primarily improved insulin sensi-
tivity within this genotype group. This interpretation of
data is in line with the other insulin sensitivity indices
(HOMA-IR and BIGTT-S;) that also show a tendency to
higher estimates of insulin sensitivity among C-allele
carriers, although not statistically significant.

Both T2D and disorders related to ACADS show large
heterogeneity in the clinical setting which challenges the
search for a clear relationship between the two. Addi-
tionally, the large variations in phenotypic traits asso-
ciated with multiple defects of ACADS may imply that
specific polymorphisms only have a mild regulatory
effect. As Gieger et al. report, these variants are not
associated with severe physiological abnormalities but
instead a moderate phenotypic expression may be com-
mon in the population. Furthermore, dehydrogenases of
other FA’s of varying chain-length may partially com-
pensate for the polymorphism and thereby hide the
effect or manifest an altered phenotype. Consequently,
other interrelating factors, either of environmental or
genetic origin, may be necessary to predispose ACADS
rs2014355 risk allele carriers to $-cell dysfunction.

Under fasting states or other stressing conditions such
as fever, defects of ACADS have been linked to hypogly-
cemia [14,26,27]. These findings may be explained by
decreased hepatic gluconeogenesis due to FA accumula-
tion and increased utilization of glucose as a fuel
because the defective dehydrogenase will prevent the
SCFA to be oxidized. However in non-fasting states
when there are abundant sources of carbohydrates and
fats available, it could be hypothesized, that polymorph-
isms in ACADS would lead to accumulation of SCFA
which instead will be converted to complex lipid signaling
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molecules and thereby synergize with the glucose to sti-
mulate insulin secretion leading to hyperinsulinemia. In
the chronic state this could potentially desensitize the
insulin receptors, down-regulate insulin release and finally
exhaust the B-cell leading to reduced B-cell function.

Together with the additional effect of the increased
circulating and tissue FAs, which due to lipotoxicity
may operate to diminish the relatively increased insulin
sensitivity, a reduced B-cell function could possibly pre-
dispose some individuals to T2D. However, the ACADS
variant did not associate with increased risk of develop-
ing T2D in the present case-control study, which is in
concordance with the DIAGRAM meta-analysis (stage 1:
4,549 T2D cases and 5,579 control individuals), where
rs2014355 shows no association with T2D (OR 1.02
(0.94-1.12), P,q4itive= 0.6, under the random effects
model) [28]. In our study, we are only able to exclude
with 80% likelihood that the OR is >1.10. This point to
the fact, that none of the two mentioned studies have
sufficient statistical power to detect smaller effects of
the variant on the risk of developing T2D. It is recog-
nized that many case-control studies of multifactorial
diseases with a complex mode of inheritance, e.g., T2D,
often are statistically underpowered in yielding conclu-
sive results, and random spurious positive associations
due to multiple testing often cannot be excluded. None
of the results presented in this paper can withstand cor-
rection for multiple testing. Therefore, whether the asso-
ciations between the ACADS variant and examined
phenotypes are chance findings, need further investiga-
tion in larger well-powered study samples.

Conclusion

We provide suggestive evidence that the C-allele of
rs2014355 of ACADS associates with reduced measures
of glucose-stimulated insulin release during an OGTT,
indicating that the link to T2D previously suggested for
this variant, may be mediated through an impaired
B-oxidation of fatty acids [10]. However, in the present
study we found no evidence of an increased risk of T2D
for the C-allele of rs2014355 of ACADS. rs11161510 of
ACADM did not associate with any of the examined
T2D related traits. Further investigation is needed before
conclusive remarks can be appointed to the variants in
ACADS and ACADM and their putative involvement in
the pathogenesis of diabetes.

Additional material

Additional file 1: Characteristics for individuals included in the
study stratified according to study group. A table showing the
number of individuals included from each study group and their
characteristics (as unadjusted means + SD)
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Additional file 2: Anthropometric characteristics of successfully
genotyped Danes from the Inter99 cohort. A table showing the
anthropometric characteristics (as unadjusted means + SD) of
successfully genotyped glucose-tolerant Danes from the Inter99 cohort
stratified according to ACADS and ACADM genotypes, including effect
sizes and corresponding p-values
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alcoholic fatty liver disease; NGT: normal glucose tolerance; OGTT: oral
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