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Risk variants in BMP4 promoters for
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Abstract

Background: Bone morphogenetic protein 4 gene (BMP4) plays a key role during maxillofacial development, since
orofacial clefts are observed in animals when this gene is conditionally inactivated. We recently reported the
existence of association between nonsyndromic cleft lip/palate (NSCLP) and BMP4 polymorphisms by detecting
transmission deviations for haplotypes that include a region containing a BMP4 promoter in case-parent trios. The
aim of the present study was to search for possible causal mutations within BMP4 promoters (BMP4.1 and BMP4.2).

Methods: We analyzed the sequence of BMP4.1 and BMP4.2 in 167 Chilean NSCLP cases and 336 controls.

Results: We detected three novel variants in BMP4.1 (c.-5514G > A, c.-5365C > T and c.-5049C > T) which could be
considered as cleft risk factors due to their absence in controls. Additionally, rs2855530 G allele (BMP4.2) carriers
showed an increased risk for NSCLP restricted to males (OR = 1.52; 95% C.I. = 1.07-2.15; p = 0.019). For this same
SNP the dominant genotype model showed a higher frequency of G/G+G/C and a lower frequency of C/C in cases
than controls in the total sample (p = 0.03) and in the male sample (p = 0.003). Bioinformatic prediction analysis
showed that all the risk variants detected in this study could create new transcription factor binding motifs.

Conclusions: The sex-dependent association between rs2855530 and NSCLP could indirectly be related to the
differential gene expression observed between sexes in animal models. We concluded that risk variants detected
herein could potentially alter BMP4 promoter activity in NSCLP. Further functional and developmental studies are
necessary to support this hypothesis.

Background
Nonsyndromic cleft lip with or without cleft palate
(NSCLP [MIM 119530]) is one of the most common
human craniofacial birth defects, with both genetic and
environmental components involved in its etiology [1].
Its prevalence rate ranges from 1/300 to 1/2500 depend-
ing on the ethnic origin of the populations [2]. NSCLP
presents a wide variety of primary and secondary medi-
cal complications in its rehabilitation. This fact plus
medical costs and the emotional burden to patients and
their families makes NSCLP a public health problem [3].
The identification of genetic risk factors in NSCLP has

been the subject of intensive research in the last dec-
ades. In the past few years, the list of NSCLP candidate

genes has rapidly increased and their study has been
mainly focused in the search for coding mutations [4].
Some reports have estimated that the contribution of
certain genes to NSCLP such as MSX1 accounts for 2%,
IRF6 12-17% and 6% for the aggregate contribution of
FOXE1, GLI2, MSX2, SKI, SATB2 and SPRY2 [5-8]. The
increased knowledge that has emerged from all these
reports has permitted an improvement in the knowledge
of genetic factors involved in NSCLP, especially in
families showing a familial aggregation of this disorder
[9-11].
An attractive NSCLP candidate gene is bone morpho-

genetic protein 4 (BMP4, 14q22-23 in humans), a mem-
ber of the transforming growth factor-beta superfamily.
BMP signals regulate many aspects of skeletal develop-
ment, including cartilage and bone formation during
craniofacial and limb development [12]. Gong and Guo
have reported that the Bmp4 expression localizes at the
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site of fusion of the mice facial prominences [13]. The
conditional inactivation of Bmp4 in a transgenic mice
line results in an isolated cleft lip [14]. The findings of
these studies imply that the function of Bmp4 in the
ectoderm of the facial processes is to regulate lip fusion.
In humans, few studies on the role of BMP4 in

NSCLP have been reported. Lidral and Moreno per-
formed a genome wide scan meta-analysis that showed
evidence of linkage between NSCLP and the chromoso-
mal region 14q21-24 [15]. Lin et al. performed an asso-
ciation study in a Chinese population using the non-
synonymous single-nucleotide polymorphism (SNP) of
BMP4, rs17563 (p.Val152Ala) and described that the C
allele carriers showed an increased risk for NSCLP [16].
Recently, Jianyan et al. and Lin et al. have reported an
interaction between rs17563 and environmental factors
like maternal passive smoking in the expression of
NSCLP [17,18]. The BMP4 coding sequence was ana-
lyzed by Suzuki et al. in a sample of patients with sube-
pithelial, microform and overt cleft lip [19]. These
authors detected missense and nonsense mutations in
0.7% of these patients which were absent in controls. All
these findings support a role for genetic variation of
BMP4 in the pathogenesis of NSCLP.
Our group recently reported a mutation screening

analysis of BMP4 in a sample of 150 Chilean NSCLP
case-parent trios. This analysis considered the coding
regions (exons and exon-intron boundaries) and exclude
regulatory regions. Due to the absence of causal muta-
tions, we decided to genotype three SNPs (two intronic
and one located 5 kb upstream to BMP4) in this same
sample of triads. Significant deviations from expected
transmissions were observed for haplotypes conformed
by rs1957860 and rs762642 [20]. These polymorphisms

delimitate a genomic region where a promoter and an
enhancer of BMP4 are located [21]. Consequently, in
this new study we searched for NSCLP risk variants
within the two BMP4 promoters: BMP4.1 (located
upstream from exon 1) and BMP4.2 (located upstream
from exon 2) (Figure 1) [22] by direct sequencing in a
case-control Chilean sample.

Methods
Patients and controls
Our study group consisted of 167 unrelated NSCLP
cases and 336 controls. The distribution of cases by gen-
der was 64% males and 36% females. Among cases, 115
were sporadic (9 cleft lip and 106 cleft lip and palate)
and 52 had a positive family history (5 cleft lip and 47
cleft lip and palate). The patients were identified and
interviewed during the course of clinical examinations
between the years 2008 and 2011 in the following cen-
ters: Cleft Lip/Palate Clinic, School of Dentistry, Univer-
sity of Chile; Dental Service, Hospital Roberto del Rio;
Cleft Lip/Palate Center, Hospital Exequiel Gonzalez
Cortes; Maxillofacial Service, Hospital San Borja-
Arriaran; Maxillofacial Service, Hospital Sotero del Rio
(all of them located in the city of Santiago, Chile) and at
the Corporation for the Help of Cleft Children (located
in the city of La Serena, which is approximately 400
kilometers north from Santiago, Chile). In-depth inter-
views of at least three family members were conducted
to provide detailed familiar information. A careful ana-
mnesis was carried out to evaluate the use of teratogenic
substances, such as phenytoin, warfarin and ethanol dur-
ing pregnancy. The control group was recruited from
blood donors of the Blood Bank, Hospital San Jose.
After a careful interview those with a negative family

Figure 1 Basic structure of human BMP4 gene and their two promoters. Exons (boxes) are indicated by numbers 1 to 5. Upper panel
shows the position of promoter 1 (BMP4.1) and promoter 2 (BMP4.2) and the location of the SNPs associated with NSCLP in a previous study
(Suazo et al., 2010). Lower panel shows a more detailed view of the two promoters segment indicating the position of the novel and/or risk
variants detected in the present study.
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history of orofacial clefts were incorporated in the study.
The gender distribution of controls was 55% males and
45% females. The Institutional Review Boards of the
Faculty of Medicine of the University of Chile and of
the National Fund for Science and Technological Devel-
opment (FONDECYT) approved our study and all parti-
cipants gave their informed consent.
The contemporary urban Chilean population is mainly

the result of the admixture between Amerindians (of
Asian origin) and the Spanish settlers initiated in the
XVI and XVII centuries [23]. The relationship between
Amerindian admixture, socioeconomic strata, and preva-
lence of NSCLP has been extensively studied in Chile
[24,25]. All individuals included in our study belong to
the middle-low and low socioeconomic strata which
show the highest rates of Amerindian admixture and
NSCLP [25].

Molecular Analysis
Genomic DNA purification: Genomic DNA was
extracted from peripheral blood white cells according to
the method described by Chomczynsky and Sacchi [26].
BMP4 promoters sequencing: the genomic segments

corresponding to BMP4.1 and BMP4.2 were amplified
by the polymerase chain reaction (PCR). The primers
were designed using the on-line tool Primer3 http://
frodo.wi.mit.edu/primer3/ taking as reference BMP4.1
and BMP4.2 sequences described by Van den Wijngaard
et al. and deposited in GeneBank (accession numbers
AF035427.1 and AF035428.1, respectively) [24]. BMP4.1
was described as a 1097 bp segment (chromosome posi-
tion GRCh37:14:54424710-54423613) and BMP4.2 as a
1212 bp segment (chromosome position
GRCh37:14:54422436-54421219) (Figure 1). Given that
the maximum length for an appropriate sequence lec-
ture of a segment is 850 bp, these promoters were
amplified in two overlapping fragments. For this pur-
pose AmpliTaq Gold® 360 (Applied Biosystems) was
used as DNA polymerase applying 35 amplification
cycles according to the manufacturer recommendations.
Primers, length of amplified fragments and annealing
temperature are listed in Additional File 1. All PCR pro-
ducts were visualized by 1.5% agarose gel electrophoresis
and sent to Macrogen Inc. (Seoul, Korea) where they
were sequenced using the forward primer. Samples with
variants not previously described were also sequenced
with the reverse primer to confirm these findings.

Bioinformatic Analyses
The presence of SNPs previously described within
BMP4.1 and BMP4.2 was examined using the SNP
BLAST tool http://blast.ncbi.nlm.nih.gov/Blast.cgi?PRO-
GRAM=blastn&BLAST_SPEC=SNP&BLAST_PRO-

GRAMS=megaBlast&PAGE_TYPE=BlastSearch&-
SHOW_DEFAULTS=on&LINK_LOC=dbSNP_home-
page. Sequencing results were analyzed by multiple
alignments using the ClustalW2 program http://www.
ebi.ac.uk/Tools/msa/clustalw2/ comparing them with
the aforementioned reference sequences deposited in
GeneBank. For sequence variants detected in cases but
not in controls and for those associated with NSCLP,
their capability to disrupt or create mammalian tran-
scription factor binding motifs was predicted. For this
purpose the softwares Tfsitescan http://www.ifti.org/cgi-
bin/ifti/Tfsitescan.pl and MatInspector http://www.geno-
matix.de/en/index.html were used.

Statistical Analyses
Allele and genotype frequencies of the BMP4.1 and
BMP4.2 polymorphisms were estimated as simple pro-
portions in cases and controls. An exact test to assess
Hardy-Weinberg equilibrium implemented in the Arle-
quin statistical package was used in these polymorph-
isms [27]. To evaluate the association between NSCLP
and BMP4.1 and/or BMP4.2 polymorphisms, allele and
genotype Odds Ratio (OR) with 95% confidence inter-
vals (C.I.) were estimated for the total sample and subdi-
vided by gender. These analyses were performed using
the UNPHASED program that applies a global likeli-
hood-ratio significance test that does not require correc-
tions for multiple comparisons [28]. Additionally,
UNPHASED gives a likelihood-ratio test specific for
each allele and genotype [28]. Parallel association ana-
lyses were carried out with PLINK software [29].

Results
The analysis of both BMP4 promoters in cases detected
the presence of novel genetic variants. Four of them
were found in BMP4.1: c.-5514G > A, c.-5365C > T, c.-
5109A > C and c.-5049C > T located at nucleotide
54424454, 54424305, 54424109 and 54423989 respec-
tively (according to genome assembly GRCh37; Figures
1 and 2). The variants c.-5514G > A and c.-5109A > C
were present in a heterozygous state in two different
cases. The other two variants, c.-5365T and c.-5049T,
were found in one male case which inherited them from
his healthy mother possibly conforming a haplotype.
Among these variants only c.-5109A > C was detected
in one of the 336 controls (OR = 2.09; 95% C.I. = 0.13-
33.52; p = 0.543) (data not shown). In BMP4.2 only one
novel variant was detected corresponding to an eight
base pairs deletion (c.-3066_-3059delAACCCGGG; Fig-
ures 1 and 3) in 3.9% of cases and in 5.9% of controls.
No statistical differences between both group were
observed (OR = 0.65; 95% C.I. = 0.33-1.27; p = 0.202;
Table 1). Despite its frequency, this variant has not been
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previously described in genomic databases like Ensembl
or Human Mutation Database.
The polymorphic variants detected in BMP4.1 and

BMP4.2 in NSCLP cases and controls in the total

sample are shown in Table 2. Two SNPs were found in
BMP4.1: rs2855527 and rs77671695, and four SNPs in
BMP4.2: rs2855530, rs113141288, rs76953585 and
rs113562279. No significant differences in the allele

Figure 2 Novel variants detected within BMP4.1 promoter. A) c.-5514G > A. Left panel: sequence showing A/G change. Right panel:
sequence without change. B) c.-5365C > T. Left panel: sequence showing T/C change. Right panel: sequence without change. C) c.-5109A > C.
Left panel: sequence showing C/A change. Right panel: sequence without change. D) c.-5049C > T. Left panel: sequence showing T/C change.
Right panel: sequence without change.
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frequencies were observed between cases and controls
(Table 1). When the sample was subdivided by gender,
only the G allele of rs2855530 within BMP4.2 showed a
greater frequency in male cases than in controls (OR =
1.52; 95% C.I. = 1.07-2.15; p = 0.019). This difference
was not observed in female participants (OR = 0.78;
95% C.I. = 0.48-1.25; p = 0.297) (Table 2). (The just
mentioned ORs and p-values had exactly the same
values when were calculated by UNPHASED and
PLINK).
Genotypes for BMP4.1 and BMP4.2 SNPs showed no

significant deviations from Hardy-Weinberg expecta-
tions both in cases and controls (data not shown). The
results of the genotype association analysis for BMP4.1
SNPs showed that only rs2855530 in BMP4.2 showed a

positive association of C/G genotype (OR = 1.75; 95% C.
I. = 1.14-2.69; p = 0.012) while an inverse relation was
observed for the C/C genotype (OR = 0.79; 95% C.I. =
0.43-1.47; p = 0.020) (Table 3). PLINK software does
not show an individual p-value for each genotype case-
control comparison. However, the genotype association
displayed a significant difference when G/G+C/G fre-
quencies were compared with C/C frequencies. Thus,
G/G+C/G were more frequent in cases than controls
while C/C was more frequent in controls than cases (p
= 0.032) (data not shown).
In male participants, the C/G genotype of rs2855530

showed an OR = 2.34 (95% C.I. = 1.33-4.09; p = 0.011)
and the C/C genotype presented an OR = 0.51 (95% C.
I. = 0.23-1.09; p = 0.003) while the same comparisons

Figure 3 A Novel variant detected within BMP4.2 promoter. A) Sequence of a genomic region showing deletion AACCCGGG (c.-3066_c.-
3059) within BMP4.2 promoter in a heterozygous individual. B) Sequence of the same genomic segment from an individual without deletion.

Table 1 Polymorphic variants detected within BMP4.1 and BMP4.2 in NSCLP cases and controls

Promoter Polymorphism Genetic position Chromosome positiona Variation MAFb Odds Ratio (95% C.I.) p-value

Cases Controls

BMP4.1 rs2855527 c.-5729 54424669 T > G 0.0032 0.0030 1.04 (0.09-11.55) 0.972

rs77671695 c.-5098 54424038 T > G 0.040 0.055 0.72 (0.37-1.38) 0.322

delAACCCGGG c.-3066_c.-3059 54422006-54421999 ins > del 0.039 0.059 0.65 (0.33-1.27) 0.202

rs2855530 c.-2977 54421917 C > G 0.418 0.369 1.23 (0.93-1.62) 0.146

BMP4.2 rs113141288 c.-2932 54421872 G > T 0.041 0.052 0.78 (0.41-1.50) 0.455

rs76953585 c.-2679 54421619 C > T 0.044 0.054 0.79 (0.42-1.50) 0.484

rs113562279 c.-2608 54421548 G > T 0.038 0.052 0.70 (0.35-1.37) 0.295
a Chromosome position according to genome assembly GRCh37.
b MAF: Minor allele frequency.

Suazo et al. BMC Medical Genetics 2011, 12:163
http://www.biomedcentral.com/1471-2350/12/163

Page 5 of 9



were non-significant for female participants (Table 4).
Analysis performed by PLINK once again corroborate
these results. Thus, the G/G+C/G versus C/C compari-
son was more significant between male cases and male
controls than the total sample (p = 0.003).
According to Tfsitescan and MatInspector softwares,

the change observed in c.-5514 position generates a
new site for GATA-1. The variant c.-5365C > T pro-
duces a sequence that can be potentially recognized by
a RXR heterodimer transcription factor. The change T
for C in c.-5049 introduced a previously inexistent site
for TCF-1a. Finally, in the case of BMP4.2, this same
bioinformatic analyses showed that rs2855530 G allele
generated a Sp1 binding motif which is not detected
when the C allele is present. Therefore, the bioinfor-
matic analyses of the genetic variants c.-5514G > A, c.-
5365C > T and c.-5049C > T within BMP4.1 and the
SNP rs2855530 within BMP4.2 showed that they are
capable of creating mammalian transcription factor
binding motifs.

Discussion
Regulatory variants are important in the understanding
of the phenotypic diversity and the role they play in the
susceptibility of complex diseases. However, it is note-
worthy that these regulatory variants have not received
the same scientific interest in comparison to coding var-
iants [30]. According to the Human Gene Mutation
Database http://www.hgmd.cf.ac.uk/ac/index.php
approximately 1.6% of single base-pair substitutions
described are regulatory mutations. Furthermore, there
is abundant evidence indicating that regulatory SNPs
(rSNPs) have an impact in the phenotypic diversity and
can also affect disease susceptibility interacting with
other variants located in their vicinity [31]. All these
changes can potentially disrupt the DNA motifs recog-
nized by transcription factors and consequently alter the
normal processes of gene activation and/or transcrip-
tional regulation [32]. In this context and taking into
account the absent of NSCLP causal mutations in BMP4
coding regions plus the evidence of haplotype

Table 2 Allelic association between BMP4.1 and BMP4.2 polymorphisms and NSCLP subdivided by gender.

Promoter Polymorphism Males MAFa Odds Ratio (95% C.I.) p-value Females MAF# Odds Ratio (95% C.I.) p-value

Cases Controls Cases Controls

BMP4.1 rs2855527 0.0047 0.0027 1.74 (0.11-27.95) 0.692 0.000 0.0033 — —

rs77671695 0.042 0.057 0.73 (0.33-1.63) 0.444 0.035 0.052 0.65 (0.21-2.00) 0.454

delAACCCGGG 0.029 0.060 0.47 (0.19-1.17) 0.099 0.059 0.058 1.01 (0.39-2.64) 0.982

rs2855530 0.456 0.356 1.52 (1.07-2.15) 0.019 0.327 0.384 0.78 (0.48-1.25) 0.297

BMP4.2 rs113141288 0.043 0.051 0.84 (0.37-1.92) 0.685 0.036 0.054 0.66 (0.21-2.00) 0.456

rs76953585 0.042 0.058 0.71 (0.32-1.59) 0.405 0.045 0.050 0.91 (0.32-2.57) 0.860

rs113562279 0.037 0.058 0.63 (0.27-1.45) 0.273 0.037 0.046 0.78 (0.25-2.41) 0.295
a MAF: Minor allele frequency.

Table 3 Genotype association between BMP4.1 and BMP4.2 polymorphisms and NSCLP.

Promoter Polymorphism Genotypes Frequency Odds Ratio (95% C.I.) p-value

Cases Controls

rs2855527 T/T 0.9938 0.9941 Ref.

BMP4.1 T/G 0.0062 0.0059 1.04 (0.09-11.6) 0.972

rs77671695 T/T 0.92 0.89 Ref.

T/G 0.08 0.11 0.71 (0.36-1.37) 0.308

delAACCCGGG Ins/Ins 0.92 0.88 Ref.

Ins/Del 0.08 0.12 0.63 (0.32-1.25) 0.189

G/G 0.14 0.15 Ref.

rs2855530 C/G 0.56 0.44 1.75 (1.14-2.69) 0.012

C/C 0.30 0.41 0.79 (0.43-1.47) 0.020

BMP4.2 rs113141288 G/G 0.92 0.90 Ref.

G/T 0.08 0.10 0.77 (0.39-1.50) 0.443

rs76953585 C/C 0.92 0.89 Ref.

C/T 0.08 0.11 0.78 (0.41-1.51) 0.472

rs113562279 G/G 0.92 0.89 Ref.

G/T 0.08 0.11 0.69 (0.34-1.36) 0.282
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association reported by Suazo et al [20], the present
report was focused in detecting NSCLP risk variants
within both BMP4 promoters. In accordance with our
previous report we found NSCLP risk variants within
BMP4 promoters. Due to their frequencies it was impos-
sible to establish if these novel variants are in linkage
disequilibrium with those SNPs associated with NSCLP
described by Suazo et al.
For BMP4.1 three novel substitutions were detected in

cases (c.-5514G > A, c.-5365C > T and c.-5049C > T)
which can be considered as potential susceptibility var-
iants due to their absence in controls. Moreover, c.-
5365T and c.-5049T were found in the same NSCLP
case and they were inherited from his healthy mother.
Therefore, although that this haplotype can be consid-
ered a risk factor it cannot produce the expression of
NSCLP by itself and it would need other genetic var-
iants and/or environmental factors absent in this case’s
mother. In tune with our findings, several mutations
have been identified in NSCLP candidate genes mainly
in sporadic cases [11]. For this reason these variants can
be considered as private mutations from private families.
The novel variants described in our study present the
same characteristic shared by private mutations from
private families.
In BMP4.2 we did not detect novel allelic variants.

Regarding polymorphisms, SNP rs2855530 showed an
association with NSCLP which presented a sexual
dimorphism. Combining the results of association ana-
lyses using UNPHASED and PLINK softwares we can
conclude that rs2855530 G allele and the G/G+C/G
genotype (dominant model) should be considered risk

factors but restricted to males due to their higher fre-
quency in male cases than in male controls. On the
other hand, the C/C genotype seems to represent a pro-
tective factor for male individuals given that its fre-
quency is higher in male controls. Our group has
previously reported a sexual or gender dimorphism for
NSCLP where an STR allele of MSX1 gene showed sig-
nificant differences between male cases and male con-
trols [33]. Using animal models, sex-biased gene
expression has been reported for gonadal and extrago-
nadal tissues during embryogenesis where the major
determinants of these differences are sex hormones
[34,35]. The human adult face displays a sexual
dimorphism which seems to be established in the first
years of life but could depend on factors expressed in
the prenatal life [36]. These evidences and our findings
in the present study are closely linked with epidemiolo-
gical findings showing a higher frequency of NSCLP in
males than females.
The bioinformatic analysis of the risk variants predicts

that they could create new transcription factor binding
motifs which could be involved in NSCLP. The c.-
5514A allele of BMP4.1 could introduce a new site for
the hematopoietic transcription factor GATA-1 [37]. A
different site for this factor has been reported within the
human BMP4.1 promoter and it has been demonstrated
that it produces a negative effect on BMP4 expression
[22]. The c.-5365T allele also generates a consensus
sequence for RXR transcription factor which is related
with gene expression regulated by retinoic acid (RA).
This situation may explain why teratogenic doses of RA
induce cleft palate in Rxr-a knockout mice in a lower

Table 4 Genotype association between BMP4.1 and BMP4.2 polymorphisms and NSCLP subdivided by gender

Males Females

Promoter Polymorphism Genotypes Frequency Odds Ratio (95% C.I.) p-value Frequency Odds Ratio (95% C.I.) p-value

Cases Controls Cases Controls

rs2855527 T/T 0.9906 0.9946 Ref. 1.0000 0.9934 Ref.

BMP4.1 T/G 0.0094 0.0054 1.74 (0.10-28.16) 0.692 0.0000 0.0065

rs77671695 T/T 0.92 0.89 Ref. 0.93 0.89 Ref.

T/G 0.08 0.11 0.72 (0.32-1.63) 0.431 0.07 0.11 0.64 (0.21-2.01) 0.443

delAACCCGGG Ins/Ins 0.94 0.88 Ref. 0.88 0.88 Ref.

Ins/Del 0.06 0.12 0.45 (0.17-1.15) 0.090 0.12 0.12 1.01 (0.38-2.73) 0.982

G/G 0.17 0.14 Ref. 0.08 0.16 Ref.

rs2855530 C/G 0.58 0.43 2.34 (1.33-4.09) 0.011 0.50 0.45 2.23 (0.71-7.08) 0.583

BMP4.2 C/C 0.25 0.43 0.51 (0.23-1.09) 0.003 0.42 0.39 2.21 (0.69-7.15) 0.655

rs113141288 G/G 0.91 0.90 Ref. 0.93 0.89 Ref.

G/T 0.09 0.10 0.83 (0.36-1.93) 0.677 0.07 0.11 0.64 (0.20-2.01) 0.444

rs76953585 C/C 0.92 0.88 Ref. 0.91 0.90 Ref.

C/T 0.08 0.12 0.69 (0.31-1.59) 0.392 0.09 0.10 0.91 (0.31-2.62) 0.857

rs113562279 G/G 0.93 0.88 Ref. 0.93 0.91 Ref.

G/T 0.07 0.12 0.62 (0.26-1.44) 0.261 0.07 0.09 0.77 (0.24-2.44) 0.653
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frequency than in wild-type animals [38]. The BMP4.1
c.-5049T allele introduces a novel site for TCF-1a, a
canonical Wnt pathway effector which is expressed in
the processes that originate the mice midface [39,40].
For BMP4.2, the bioinformatic analysis predicted that
the rs2855530G allele generates a novel binding site for
Sp1, an ubiquitous transcription factor. Sp1 can modu-
late the gene expression in cellular processes like differ-
entiation, growth and apoptosis, among others [41].
Nevertheless, there is no information about Sp1 inacti-
vation or overexpression related to craniofacial
anomalies.
To our knowledge, the present study constitutes the

first report detecting novel risk regulatory variants for a
NSCLP candidate gene. In this context, three previous
studies have associated rSNPs with this birth defect: this
is the case of rs642961 located in an IRF6 enhancer,
rs28999109 within the PDGF-C promoter, and rs16260
located in the CDH1 promoter [42-44]. The bioinfor-
matic analysis for IRF6 and PDGF-C variants showed
that the risk alleles disrupt potential transcription factor
motifs. Nevertheless, reporter gene assays demonstrated
that significant alterations in gene expression were
detected only for the PDGF-C promoter variant [43].
Following the tendency set by these latter articles, func-
tional studies are necessary to confirm our findings.

Conclusions
In summary, we have detected three novel NSCLP
potential causal variants in BMP4 promoters which
could contribute to approximately 1.2% of this birth
defect, as well as a risk SNP allele with a clear sex
dependent association (rs2855530). These results are in
concordance with our previous report showing the
absence of potential causal mutations in the coding
sequence of BMP4. The bioinformatic analyses have pre-
dicted that all these variants can potentially generate
novel transcription factor recognition sites. In future
reports will be necessary to confirm the in vivo capabil-
ity of these variants to alter BMP4 expression using
functional and developmental approaches.

Additional material

Additional file 1: Primer sequence and fragment sizes used for
BMP4.1 and BMP4.2 PCR amplification and sequencing. a table
showing primers used for BMP4.1 and BMP4.2 PCR amplification and
sequencing, fragment sizes and other PCR conditions.
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