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C1-C2-C4 genes are associated with multiple
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Abstract

Background: Genome-wide association studies (GWAS) have become a major strategy for genetic dissection of
human complex diseases. Analysing multiple phenotypes jointly may improve both our ability to detect genetic
variants with multiple effects and our understanding of their common features. Allelic associations for multiple
biochemical traits (serum alanine aminotransferase, aspartate aminotransferase, butrylycholinesterase (BCHE), C-
reactive protein (CRP), ferritin, gamma glutamyltransferase (GGT), glucose, high-density lipoprotein cholesterol
(HDL), insulin, low-density lipoprotein cholesterol (LDL), triglycerides and uric acid), and body-mass index, were
examined.

Methods: We aimed to identify common genetic variants affecting more than one of these traits using genome-
wide association analysis in 2548 adolescents and 9145 adults from 4986 Australian twin families. Multivariate and
univariate associations were performed.

Results: Multivariate analyses identified eight loci, and univariate association analyses confirmed two loci
influencing more than one trait at p < 5 × 10-8. These are located on chromosome 8 (LPL gene affecting HDL and
triglycerides) and chromosome 19 (TOMM40/APOE-C1-C2-C4 gene cluster affecting LDL and CRP). A locus on
chromosome 12 (OASL gene) showed effects on GGT, LDL and CRP. The loci on chromosomes 12 and 19
unexpectedly affected LDL cholesterol and CRP in opposite directions.

Conclusions: We identified three possible loci that may affect multiple traits and validated 17 previously-reported
loci. Our study demonstrated the usefulness of examining multiple phenotypes jointly and highlights an
anomalous effect on CRP, which is increasingly recognised as a marker of cardiovascular risk as well as of
inflammation.

Background
Genome-wide association studies (GWAS) have become
a major strategy for genetic dissection of human com-
plex diseases. There is substantial overlap, both pheno-
typically and in allelic associations, between biomarkers
and/or risk factors and between related diseases, and it
is becoming important to understand the ways in which
polymorphisms affect multiple phenotypes. Many phe-
notypes may be available from a single study population

but current GWAS approaches usually examine them
separately within a univariate framework. This strategy
ignores potential genetic correlation between different
traits.
From the perspective of maximising power for a given

size of dataset, it has been shown that joint analyses of
correlated traits in linkage analysis have substantially
improved power in localizing genes [1-4]. Similarly, mul-
tivariate approaches in association studies can theoreti-
cally improve the ability to detect genetic variants
whose effects are too small to be detected in univariate
tests [4]. Multivariate association tests have been pro-
posed for unrelated samples [5] and for family data [6].
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Most of these tend to be inefficient and/or computa-
tionally intensive, especially at the genome-wide level.
The approach proposed by Ferreira and Purcell has
been shown to be powerful when traits have moderate
to high correlation and efficient when applied to sam-
ples of unrelated individuals [7].
Genetically complex (multifactorial) diseases such as

cardiovascular disease and type 2 diabetes often have com-
mon risk factors. A number of biochemical markers are
known to be associated with obesity, pre-diabetic states, or
risk of cardiovascular disease. Lipid traits such as triglycer-
ides, and the low-density lipoprotein (LDL) and high-den-
sity lipoprotein (HDL) components of cholesterol, are
well-known risk factors for cardiovascular disease. Other
biochemical markers such as C-reactive protein (CRP) [8],
the enzymes used as liver function tests (gammaglutamyl
transferase, GGT [9-11], alanine aminotransferase, ALT;
and aspartate aminotransferase, AST), butyrylycholinester-
ase (BCHE) [12,13]), serum ferritin [14] and uric acid
[15,16] have also been shown to be associated with the
risk of cardiovascular disease, hypertension, obesity, insu-
lin resistance or metabolic syndrome. These biochemical
markers are correlated so we may gain power, insight or
both from a multivariate approach. For example, serum
GGT is significantly correlated with total or LDL choles-
terol, HDL (inversely) and particularly with triglycerides
[17,18]. Also, GGT is significantly correlated with other
liver enzymes AST and ALT [17,19]. Serum triglyceride is
correlated with the liver enzymes [17] and uric acid and
also associated with cardiovascular risk.
The importance of genetic variation has been shown

previously through univariate analyses of serum lipids
[20], uric acid [21-23], GGT [24], ALT [24] and AST
[17,24], BCHE [25], ferritin [26] and for CRP [27,28].
Nevertheless, little is known about common genetic
influences on these variables and joint analysis may
reveal whether the same gene influences multiple traits.
The aim of our study is to identify genes and regions

associated with multiple biochemical traits related to car-
diovascular risk, type 2 diabetes or metabolic syndrome.
We used a recently described multivariate association
test [7] to perform genome-wide association analysis.
This approach was used initially to screen for multivari-
ate trait-SNP association using a subset of unrelated indi-
viduals. To confirm findings from the multivariate test,
univariate association tests were conducted making use
of the full dataset by including all family members.

Methods
Subjects
Biochemical traits were measured in serum samples
from twins and their families, and genome-wide SNP
markers were genotyped. The study participants
comprise:

(1) Adolescent twins and their non-twin siblings living
in south-east Queensland (Australia) who had partici-
pated in the Brisbane Longitudinal Twin study [29-32].
Full details are described in Middelberg et al. [33]. A
total of 2548 participants (1317 females and 1231 males;
mean age of 14.8 years) were genotyped.
(2) Adult twins consisting of twins and their family

members who participated in studies of: (i) alcohol and
nicotine dependence and metabolic risk for alcoholic
liver disease [34]; (ii) anxiety and depression [35]; and
(iii) endometriosis [36]. A total of 9145 individuals
(5703 females and 3442 males; mean age of 46.2 years)
were genotyped.
Combining these studies, 20,230 individuals had bio-

chemical measurements and 11,683 (from 4986 families)
had both genotype and phenotype data. Out of the
11,683, there are only 1483 (from 1015 families) who
had data for all the 13 traits. Where multiple measure-
ments of the same trait in an individual were available,
the average of the values was used.
For each of these studies, participants (and, for sub-

jects aged < 18 years, their parents) gave informed con-
sent to the questionnaire, interview, and blood
collection, and all studies were approved by the QIMR
Human Research Ethics Committee.

Laboratory measurements
Serum was separated from the blood samples and stored
at -70°C until analyzed. Serum cholesterol, HDL choles-
terol, triglycerides, BCHE, glucose, uric acid, ferritin,
CRP, AST, ALT and GGT were measured using Roche
methods on a Roche 917 or Modular P analyzer (Roche
Diagnostics, Basel, Switzerland). LDL cholesterol was
calculated using the Friedewald equation. Insulin was
measured on an Abbott Architect. BMI was calculated
from measured or self-reported weight and height for
the adults and from measured weight and height for the
adolescents.

Genotyping
DNA was extracted from blood samples using standard
methods and genotyped with Illumina 610K, 317K or
370K chips at CIDR or deCODE Genetics. Data cleaning
for SNP genotypes included checking the expected rela-
tionships between individual family members and resol-
ving Mendelian errors [37]. Imputed genotypes for non-
typed HapMap SNPs were generated using MACH1.0
(http://www.sph.umich.edu/csg/abecasis/mach/index.
html) [38-40] program. Any imputed SNP which had r2

≥ 0.3 was included in the genotype data.

Statistical Analysis
Distributions of all biochemical variables were examined.
Serum AST, ALT and GGT, CRP, triglycerides and BMI
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were log-transformed. For each trait, individuals who
were more than five standard deviations from the mean
of that trait were excluded. Results for glucose and insu-
lin in adults were adjusted for fasting time based on the
reported time of last meal and time of blood collection.
Prior to genetic association analysis, the variables were
also adjusted for the effects of age, squared age (age2),
sex, sex × age and sex × age2. Standardized residuals
were obtained and used in the association analysis. All
data pre-processing and descriptive analyses were done
using STATA version 7.0 [41] and SPSS version 17.0.2
(Mar 11, 2009). Multivariate association analysis was
performed using the PLINK (v1.07) implementation of
the multivariate test described by Ferreira and Purcell
[7]. This test is computationally too intensive when
applied to family data to be efficient for genome-wide
analysis. Therefore the analysis was performed in two
stages. First, we selected one individual per family (using
the person with data for the greatest number of pheno-
types) from each of the 4986 families and applied the
multivariate test as a screening tool. Next, for each
locus with a multivariate p-value of less than 5 × 10-8,
we identified the traits that showed evidence for associa-
tion with that locus (that is, with a canonical correlation
weight > |0.2|) and confirmed that specific trait-SNP
association with a univariate association test using all
relatives for each family. The univariate association test
was performed using “fastassoc“ in MERLIN 1.1.2 [42]
which takes the average of two results in MZ twin pairs.

Results
General Characteristics
Means and standard deviations of all the traits for males
and females in adolescent and adult genotyped cohorts
are listed in Additional file 1, Table S1. Generally, the
means of the biochemical traits are lower in the adoles-
cents than the adults, as expected. Phenotypic correla-
tions between each pair of age-corrected traits
separately for males and females in the combined sam-
ple are shown in Additional file 1, Table S2. The stron-
gest correlations (r > 0.5) observed in males were
between glucose and insulin (0.53), between AST and
ALT (0.66) and between GGT and ALT (0.57). In the
females, the strongest correlations observed were
between glucose and insulin (0.59), between BCHE and
glucose (-0.59), between BCHE and CRP (-0.53) and
between AST and ALT (0.63). Given that most of the
other pair-wise correlations (Additional file 1, Table S2)
are low to moderate (r < 0.3), the multivariate approach
is expected to provide comparable or slightly improved
power to detect pleiotropic loci when compared to uni-
variate analysis followed by correction for the number
of traits tested [7].

Genome-wide association analyses
The multivariate analysis identified a total of 766 SNPs
in 11 independent (r2 < 0.1) loci associated with bio-
chemical traits with a p-value of less than 5 × 10-8

(Table 1 and Figure 1). Of these, there are eight loci
potentially associated with more than one trait (Table
1). Three loci (on chromosomes 8, 12 and 19) showed
strong or close to genome-wide significant evidence of
associations with more than one trait in the all-subject
univariate analyses.
The most strongly associated SNP at the chromosome

8p21.3 locus was rs17091905 (multivariate p = 2.8 × 10-
13). HDL, CRP, triglycerides and BCHE had trait load-
ings of greater than |0.2|. To confirm the multivariate
result, we individually tested each of these traits using a
univariate test in the full sample of 11,683 individuals.
The univariate tests confirmed the association with
HDL (p = 5.7 × 10-12) and triglycerides (p = 5.1 × 10-15)
but not at genome-wide significance for CRP (p =
0.008) and non-significant (p = 0.069) for BCHE. This
variant is in strong or partial LD with previously-
reported variants for HDL or triglycerides [43-45]
(Additional file 1, Table S3).
The second variant rs3213545 (multivariate p-value =

3.9 × 10-14) which is located on chromosome 12q24.2
(OASL) was confirmed to be significantly associated
with GGT (p = 3.6 × 10-15) [46] and also showed mod-
erately strong significance for LDL (p = 2.9 × 10-5) and
CRP (p = 8.8 × 10-5) (Table 1).
The third variant was rs2075650 (multivariate p-value

= 5.7 × 10-10) located on chromosome 19q13.32
(TOMM40/APOE-C1-C2-C4 gene cluster) where HDL,
LDL, CRP and triglycerides had trait loadings of greater
than |0.2|. Significant univariate associations were
observed for LDL (p = 1.6 × 10-14) and CRP (p = 4.2 ×
10-8) and close to genome-wide significant univariate
associations were seen for HDL (p = 8.1 × 10-8) and tri-
glycerides (p = 9.6 × 10-7) (Table 1 and Figure 2). This
SNP has previously been reported to be associated with
LDL [43], LDL buoyancy [47] and CRP [48], and there
is an association between LDL (or TG or HDL) and
rs4420638 which is in partial LD (r2 = 0.4) with this
SNP (Additional file 1, Table S3).
To determine whether there are any further unre-

ported genes/regions to be detected by multivariate ana-
lysis, a lower p-value threshold of multivariate p < 9 ×
10-5 was used. No new loci were found but a further six
previously reported loci were replicated as listed in
Additional file 1, Table S4.
The Q-Q plot from multivariate analysis was also

examined closely to determine whether there are any
excess association signals detected by multivariate analy-
sis which have not already been detected by univariate
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analysis. SNPs that were found in significant regions
(genes) in univariate analyses were removed (Figure 3)
from the plot. The Q-Q plot with excluded SNPs
showed that there is no excess of significant p-values

hence indicating there are additional loci that have not
already been detected by univariate analysis.
Examination of the directions of the allelic effects on

the different phenotypes showed unexpected results. At

Table 1 Summary of SNP associations (based on multivariate p-value of < 5 × 10-8)

Chr BP SNP Closest
Gene

Minor/Major
Allele

MAF N multivariate P-
value

Associated
Trait(s)

Univariate analysis

N b* SE univariate
p

1 109,619,361 rs660240 CELSR2 T/C 0.215 4883 7.0 × 10-9 LDL 11247 -0.170 0.017 2.1 × 10-22

HDL 11545 0.047 0.017 0.007

INS 2559 0.035 0.040 0.390

2 21,097,505 rs10199768 APOB T/G 0.470 4872 2.3 × 10-8 LDL 11205 0.110 0.014 7.7 × 10-15

CRP 8878 -0.015 0.015 0.330

FERR 11285 0.032 0.014 0.020

3 166,973,974 rs1803274 BCHE T/C 0.206 4883 2.4 × 10-42 BCHE 9171 -0.365 0.018 5.9 × 10-92

4 9,665,474 rs7671266 WDR1 T/C 0.208 4883 1.8 × 10-42 UA 11346 -0.305 0.017 9.3 × 10-71

4 9,940,392 rs4698036 Intergenic G/T 0.218 4884 8.5 × 10-31 UA 11354 -0.257 0.017 2.3 × 10-52

8 19,894,037 rs17091905 LPL A/G 0.124 4884 2.8 × 10-13 HDL 11546 0.150 0.022 5.7 × 10-12

TRIG 11576 -0.174 0.022 5.1 × 10-15

CRP 8918 0.062 0.024 0.008

BCHE 9168 -0.042 0.032 0.069

10 17,931,828 rs2437258 MRC1 T/C 0.226 4884 7.1 × 10-9 AST 11516 0.102 0.016 3.0 × 10-10

FERR 11332 0.015 0.016 0.350

TRIG 11579 0.027 0.017 0.116

ALT 11518 -0.012 0.017 0.460

12 119,955,720 rs3213545 OASL A/G 0.295 4876 3.9 × 10-14 GGT 11493 -0.121 0.015 3.6 × 10-15

LDL 11228 0.066 0.016 2.9 × 10-5

CRP 8903 -0.066 0.017 8.8 × 10-5

TRIG 11556 0.021 0.016 0.180

15 56,465,804 rs10468017 LIPC T/C 0.326 4864 2.8 × 10-11 HDL 11497 0.104 0.015 2.8 × 10-12

TRIG 11527 0.048 0.015 0.002

16 55,545,545 rs173539 CETP T/C 0.324 4884 1.7 × 10-40 HDL 11549 0.255 0.015 3.3 × 10-65

LDL 11251 -0.050 0.015 0.001

19 50,087,459 rs2075650 TOMM40 G/A 0.152 4884 5.7 × 10-10 LDL 11248 0.153 0.020 1.6 × 10-14

CRP 8918 -0.116 0.021 4.2 × 10-8

HDL 11546 -0.105 0.020 8.1 × 10-8

TRIG 11576 0.098 0.020 9.6 × 10-7

SNPs highlighted in bold indicate the polymorphisms that are significantly associated with more than one trait; traits highlighted in bold are those which
achieved significance in the univariate analysis.

* b represents 1 unit change in e.g. LDL (mmol/l) per copy increment in the minor allele; TRIG indicates triglycerides.

Figure 1 Manhattan plots for multivariate QTL analysis in unrelated-subject data (N = 4986) for the 13 traits. Genomic position is on
the x-axis and the -log10 of the association p-value is on the y-axis. Points with p-value of 5 × 10-8 are shown in red.
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LPL on chromosome 8, the minor allele A at
rs17091905 increased HDL-C and decreased triglycer-
ides, but the direction of the nominally significant effect
on CRP was to increase it. At the chromosome 12 locus
the minor allele A at rs3213545 tended to increase
LDL-C but it significantly decreased GGT and tended to
decrease CRP. Similarly at the chromosome 19 locus,
the effect of the minor allele (G for rs2075650) was to
increase LDL-C and triglycerides and to decrease HDL-
C, consistent with an increase in cardiovascular risk, but

to decrease CRP, again suggesting opposite allelic effects
on the markers of different aspects of cardiovascular
risk.

Discussion
We have applied a multivariate approach to identify var-
iants associated with more than one trait, initially using
4986 unrelated individuals across 13 biochemical traits.
Univariate testing of the significant or near-significant
loci, on the full sample of 11,683 individuals, was then

Figure 2 Radar chart of polymorphisms on chromosome8 (a), chromosome 12 (b) and chromosome 19 (c). Each dot on the plot
represents the standardized beta (1-unit change per copy increment of the minor allele) of each trait from univariate testing.
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used to confirm these findings. We are interested firstly
in the usefulness of multivariate analysis as a substitute
for the more laborious and potentially less powerful
approach of conducting multiple univariate analyses and
comparing the results, and secondly in the details of the
loci which are found to have effects on multiple vari-
ables in our data.
Testing one individual per family identified three

known loci that were significantly or near-significantly
associated with more than one trait, and replicated 11
loci in previously published genes that that passed a
genome-wide threshold of 5 × 10-8 for single variables
(Table 1). When a lower genome-wide threshold (p < 9
× 10-5) was used, a further six published loci were also
identified (Additional file 1, Table S4). The three loci in
previous publications using univariate association analy-
sis (highlighted in Table 1) had evidence of significant
or close to significant associations with more than one
trait in our data, hence indicating benefits of detecting
pleiotropic loci in multivariate analysis.
We have identified polymorphisms showing strong

evidence of allelic associations with HDL and triglycer-
ides on chromosome 8 (LPL gene MIM 609708); with
GGT and possibly LDL and CRP on chromosome 12
(OASL gene MIM 603281); and with HDL and LDL and
possibly CRP and triglycerides on chromosome 19
(TOMM40 (MIM 608061) /APOE (MIM 107741)-C1
(MIM 107710)-C2 (MIM 608083)-C4 (MIM 600745)
gene cluster). Each gene has been previously recognised
in genome-wide association studies concentrating on a
few of these variables [49]. The function of these genes
is reasonably well-established. LPL plays a key role in
lipid metabolism and is responsible for hydrolysis of tri-
glyceride molecules present in circulating lipoprotein.

APOE and APOC genes also play a key role in lipid
metabolism and cholesterol transport by helping to sta-
bilise and solubilize lipoproteins as they circulate in the
blood [50,51]. Both LPL and APOE polymorphisms have
been found to be significantly associated with increases
in LDL and decreases in HDL [52]. The functional con-
nection between the OASL gene (2’,5’-oligoadenylate
synthetase-like, also known as “thyroid hormone recep-
tor interactor”) and these phenotypes is unclear. How-
ever, nearby genes in linkage disequilibrium with the
lead SNP in OASL include HNF1A and c12orf43.
HNF1A is expressed in liver, kidney and endocrine pan-
creas and regulates a number of genes involved in lipo-
protein metabolism including apolipoproteins,
cholesterol synthesis enzymes and bile acid transporters
[53]. HNF1A also has allelic associations with type 2 dia-
betes [54], CRP [55-57] and coronary heart disease [58].
The findings for the lipids, in particular, were similar to
those obtained in previous genetic association studies on
general population. However the relationships between
inflammation (as presumptively measured by CRP) and
the traits associated with obesity and cardiovascular risk
are of particular interest. CRP was significantly, though
not always strongly, correlated with each of the other
traits at the phenotypic level and it also showed up in
the multivariate association findings.
The multivariate approach helps us to understand the

connections between variables. For example, for
rs2075650 on chromosome 19, the multivariate
approach suggested LDL, CRP, HDL and triglycerides
might be associated with this particular SNP. Although
the effects on LDL, HDL and triglycerides are consistent
with what was expected (that is, the LDL effect is inver-
sely associated with the HDL effect, positively associated
with the triglycerides effect, and the HDL effect is inver-
sely associated with that on triglycerides), the effects on
CRP are contrary to expectation. The effect direction is
opposite to those for LDL and triglycerides, and the
same as that for HDL. This suggests that the alleles or
haplotype which have risk-increasing effects on lipids
have a potentially protective effect on CRP and (so far
as the effect on CRP is reflecting the degree of inflam-
mation) on the inflammatory process. The effect esti-
mates of LDL for rs2075650 obtained in our study were
similar to obtained by Aulchenko et al. [43]. The effect
of rs2075650 [G] on LDL was estimated as 0.160 ±
0.018 by Aulchenko et al. and 0.153 ± 0.020 in our ana-
lysis. The effect estimates of CRP for this SNP was not
available from previous study for comparison. In addi-
tion, it was interesting to observe that rs4429638 which
is in partial LD (r2 = 0.4) with rs2075650 has allelic
effects in the opposite direction on LDL [52,59-61] and
CRP [55]. Similarly on chromosome 12, rs3213545
affects LDL and CRP (and GGT) but not HDL or

Figure 3 Q-Q plot of multivariate analysis. Black points
correspond to SNPs included in the analyses. The 45° line refers to
no significant association. The dotted line corresponds to p-value of
5 × 10-8. “Excluded” line is where SNPs that were found in
significant regions (genes) in univariate analyses were removed.
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triglycerides. Again, the allelic effects on LDL and CRP
are in opposite directions. This shows the usefulness of
the multivariate approach to help understand the con-
nections between several trait-SNP associations, which
can then be modelled and evaluated in more detail.
Our study differs from previous investigations as it

examines a large number of correlated biochemical
traits, initially using unrelated individuals and following
up the findings in other members of the families. It con-
firms some published associations and identifies new
ones. As our cohort consisted of adolescents and adults,
results from adults, adolescents and combined (adults
and adolescents) cohorts were examined and compared.
Because of the larger number of adults studied, results
from adults were similar to the combined data. Results
from the adolescents were not notably different from
the combined data.
One main limitation of our approach is that only a

subset of the data (from unrelated subjects) can be used
for the initial multivariate analysis. Although it would
add power, it is too computationally intensive to use all
the available data (that is, taking account of the family
structure) in genome-wide multivariate analysis.
Although a subset of data was used, the method applied
in our study was very efficient and easy to perform. A
more specific limitation in our data is that the glucose
and insulin measurements were not made on fasting
blood samples. In adults, we made adjustments for the
time since the last meal but in adolescents we had to
rely on the fact they were seen at the same time of day
and blood was taken around three hours after the
expected time of breakfast.
Another set of limitations is related to the use of bio-

markers of risk or, for CRP, of systemic inflammation. It
seems that some loci may affect HDL-C or triglycerides
without affecting cardiovascular risk [49], and it is possi-
ble that some loci might affect serum CRP without
affecting inflammation. Nevertheless the divergence
between allelic effects on risk factors deserves further
examination.

Conclusion
Our study demonstrated that it is useful to examine
multiple phenotypes jointly in order to better under-
stand the connections between them and to make the
distinction between common and unique genetic effects.
Our efficient approach (a combination of multivariate
and univariate analysis) was able to identify three possi-
ble loci that might affect multiple traits, and validated
17 loci that have previously been reported. It highlighted
anomalous effects on CRP, which is increasingly recog-
nised as a marker of cardiovascular risk as well as of
inflammation. Confirmation and extension of our find-
ings will require studies which measure multiple

phenotypes in each genotyped subject, and will benefit
from combination of data from multiple studies to
achieve sufficient power.

Additional material

Additional file 1: Additional tables and references. Additional Tables
S1-S4 and references cited in these tables. Table S1 gives a descriptive
statistics for males and females in the two genotyped cohorts. Table S2
gives the phenotypic correlations between each pair of age-corrected
traits separately for males and females in combined sample. Table S3
compares the multivariate and univariates results from our study with
published results. Table S4 gives a summary of borderline significant
associations from multivariate analysis.

Acknowlegements
We are grateful to the twins and their families for their generous
participation in these studies. We would like to thank Ann Eldridge and
Marlene Grace for the collection of data; Leanne Wallace for sample
handling and preparation for the serum biochemistry and genotyping; Lisa
Bowdler, Steven Crooks, Melinda Richter and Sara Smith for sample
processing and preparation for the GWAS genotyping; Harry Beeby for IT
support; and the following people in the QIMR GWAS group: Scott Gordon,
Dale Nyholt, Stuart Macgregor and Naomi Wray for generating and checking
of integrated genome-wide typing data and Sarah Medland for imputing
the data. Financial support was provided from the National Health and
Medical Research Council (241944, 389875), NIH (AA07535, AA13320,
AA13321, AA14041, AA11998, AA17688, DA012854, DA019951) and
Wellcome Trust for funding (WT084766/Z/08/Z). GWM is supported by an
NHMRC Fellowship (619667) and RPSM is supported by NHMRC Training
Fellowship (611512).

Author details
1Genetic Epidemiology Unit, Queensland Institute of Medical Research,
Brisbane, Australia. 2Department of Medicine, Prince Charles Hospital,
Queensland, Australia. 3Department of Psychiatry, Washington University
School of Medicine, St Louis MO, USA. 4Molecular Epidemiology Unit,
Queensland Institute of Medical Research, Brisbane, Australia.

Authors’ contributions
RPSM analysed data, interpreted and prepared the manuscript. MARF and
JBW contributed to data interpretation and manuscript preparation. AKH
and GWM coordinated genotyping studies. ACH, PAFM and NGM
coordinated the phenotype studies. All authors read and approved this
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 10 May 2011 Accepted: 24 September 2011
Published: 24 September 2011

References
1. Amos CI, Elston RC, Bonney GE, Keats BJ, Berenson GS: A multivariate

method for detecting genetic linkage, with application to a pedigree
with an adverse lipoprotein phenotype. Am J Hum Genet 1990,
47(2):247-254.

2. Almasy L, Dyer TD, Blangero J: Bivariate quantitative trait linkage analysis:
pleiotropy versus co-incident linkages. Genet Epidemiol 1997,
14(6):953-958.

3. Williams JT, Van Eerdewegh P, Almasy L, Blangero J: Joint multipoint
linkage analysis of multivariate qualitative and quantitative traits. I.
Likelihood formulation and simulation results. Am J Hum Genet 1999,
65(4):1134-1147.

4. Jiang C, Zeng ZB: Multiple trait analysis of genetic mapping for
quantitative trait loci. Genetics 1995, 140(3):1111-1127.

Middelberg et al. BMC Medical Genetics 2011, 12:123
http://www.biomedcentral.com/1471-2350/12/123

Page 7 of 9

http://www.biomedcentral.com/content/supplementary/1471-2350-12-123-S1.PDF
http://www.ncbi.nlm.nih.gov/pubmed/2378349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2378349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2378349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9433606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9433606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10486333?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10486333?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10486333?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7672582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7672582?dopt=Abstract


5. Liu J, Pei Y, Papasian CJ, Deng HW: Bivariate association analyses for the
mixture of continuous and binary traits with the use of extended
generalized estimating equations. Genet Epidemiol 2009, 33(3):217-227.

6. Lange C, Silverman EK, Xu X, Weiss ST, Laird NM: A multivariate family-
based association test using generalized estimating equations: FBAT-
GEE. Biostatistics 2003, 4(2):195-206.

7. Ferreira MA, Purcell SM: A multivariate test of association. Bioinformatics
2009, 25(1):132-133.

8. Ridker PM, Hennekens CH, Buring JE, Rifai N: C-reactive protein and other
markers of inflammation in the prediction of cardiovascular disease in
women. N Engl J Med 2000, 342(12):836-843.

9. Nakanishi N, Nishina K, Li W, Sato M, Suzuki K, Tatara K: Serum gamma-
glutamyltransferase and development of impaired fasting glucose or
type 2 diabetes in middle-aged Japanese men. J Intern Med 2003,
254(3):287-295.

10. Cutrin JC, Zingaro B, Camandola S, Boveris A, Pompella A, Poli G:
Contribution of gamma glutamyl transpeptidase to oxidative damage of
ischemic rat kidney. Kidney Int 2000, 57(2):526-533.

11. Lee DH, Silventoinen K, Hu G, Jacobs DR Jr, Jousilahti P, Sundvall J,
Tuomilehto J: Serum gamma-glutamyltransferase predicts non-fatal
myocardial infarction and fatal coronary heart disease among 28,838
middle-aged men and women. Eur Heart J 2006, 27(18):2170-2176.

12. Calderon-Margalit R, Adler B, Abramson JH, Gofin J, Kark JD:
Butyrylcholinesterase activity, cardiovascular risk factors, and mortality in
middle-aged and elderly men and women in Jerusalem. Clin Chem 2006,
52(5):845-852.

13. Iwasaki T, Yoneda M, Nakajima A, Terauchi Y: Serum butyrylcholinesterase
is strongly associated with adiposity, the serum lipid profile and insulin
resistance. Intern Med 2007, 46(19):1633-1639.

14. Milman N, Kirchhoff M: Relationship between serum ferritin and risk
factors for ischaemic heart disease in 2235 Danes aged 30-60 years. J
Intern Med 1999, 245(5):423-433.

15. Tomita M, Mizuno S, Yamanaka H, Hosoda Y, Sakuma K, Matuoka Y,
Odaka M, Yamaguchi M, Yosida H, Morisawa H, et al: Does hyperuricemia
affect mortality? A prospective cohort study of Japanese male workers. J
Epidemiol 2000, 10(6):403-409.

16. Liese AD, Hense HW, Lowel H, Doring A, Tietze M, Keil U: Association of
serum uric acid with all-cause and cardiovascular disease mortality and
incident myocardial infarction in the MONICA Augsburg cohort. World
Health Organization Monitoring Trends and Determinants in
Cardiovascular Diseases. Epidemiology 1999, 10(4):391-397.

17. Whitfield JB, Zhu G, Nestler JE, Heath AC, Martin NG: Genetic covariation
between serum gamma-glutamyltransferase activity and cardiovascular
risk factors. Clin Chem 2002, 48(9):1426-1431.

18. Whitfield JB: Gamma glutamyl transferase. Crit Rev Clin Lab Sci 2001,
38(4):263-355.

19. Arndt V, Brenner H, Rothenbacher D, Zschenderlein B, Fraisse E,
Fliedner TM: Elevated liver enzyme activity in construction workers:
prevalence and impact on early retirement and all-cause mortality. Int
Arch Occup Environ Health 1998, 71(6):405-412.

20. Beekman M, Heijmans BT, Martin NG, Pedersen NL, Whitfield JB, DeFaire U,
van Baal GC, Snieder H, Vogler GP, Slagboom PE, et al: Heritabilities of
apolipoprotein and lipid levels in three countries. Twin Res 2002,
5(2):87-97.

21. Friedlander Y, Kark JD, Stein Y: Family resemblance for serum uric acid in
a Jerusalem sample of families. Hum Genet 1988, 79(1):58-63.

22. Whitfield JB, Martin NG: Plasma lipids in twins. Environmental and
genetic influences. Atherosclerosis 1983, 48(3):265-277.

23. Kalousdian S, Fabsitz R, Havlik R, Christian J, Rosenman R: Heritability of
clinical chemistries in an older twin cohort: the NHLBI Twin Study. Genet
Epidemiol 1987, 4(1):1-11.

24. Bathum L, Petersen HC, Rosholm JU, Hyltoft Petersen P, Vaupel J,
Christensen K: Evidence for a substantial genetic influence on
biochemical liver function tests: results from a population-based Danish
twin study. Clin Chem 2001, 47(1):81-87.

25. Valle A, O’Connor DT, Taylor P, Zhu G, Montgomery GW, Slagboom PE,
Martin NG, Whitfield JB: Butyrylcholinesterase: association with the
metabolic syndrome and identification of 2 gene loci affecting activity.
Clin Chem 2006, 52(6):1014-1020.

26. Njajou OT, Alizadeh BZ, Aulchenko Y, Zillikens MC, Pols HA, Oostra BA,
Swinkels DW, van Duijn CM: Heritability of serum iron, ferritin and

transferrin saturation in a genetically isolated population, the Erasmus
Rucphen Family (ERF) Study. Hum Hered 2006, 61(4):222-228.

27. Su S, Snieder H, Miller AH, Ritchie J, Bremner JD, Goldberg J, Dai J, Jones L,
Murrah NV, Zhao J, et al: Genetic and environmental influences on
systemic markers of inflammation in middle-aged male twins.
Atherosclerosis 2008, 200(1):213-220.

28. Lange LA, Burdon K, Langefeld CD, Liu Y, Beck SR, Rich SS, Freedman BI,
Brosnihan KB, Herrington DM, Wagenknecht LE, et al: Heritability and
expression of C-reactive protein in type 2 diabetes in the Diabetes Heart
Study. Ann Hum Genet 2006, 70(Pt 6):717-725.

29. Zhu G, Duffy DL, Eldridge A, Grace M, Mayne C, O’Gorman L, Aitken JF,
Neale MC, Hayward NK, Green AC, et al: A major quantitative-trait locus
for mole density is linked to the familial melanoma gene CDKN2A: a
maximum-likelihood combined linkage and association analysis in twins
and their sibs. Am J Hum Genet 1999, 65(2):483-492.

30. Wright M, De Geus E, Ando J, Luciano M, Posthuma D, Ono Y, Hansell N,
Van Baal C, Hiraishi K, Hasegawa T, et al: Genetics of cognition: outline of
a collaborative twin study. Twin Res 2001, 4(1):48-56.

31. McGregor B, Pfitzner J, Zhu G, Grace M, Eldridge A, Pearson J, Mayne C,
Aitken JF, Green AC, Martin NG: Genetic and environmental contributions
to size, color, shape, and other characteristics of melanocytic naevi in a
sample of adolescent twins. Genet Epidemiol 1999, 16(1):40-53.

32. Wright MJ, Martin NG: Brisbane Adolescent Twin Study: Outline of study
methods and research projects. Australian Journal of Psychology 2004,
56(2):65-78.

33. Middelberg RP, Martin NG, Whitfield JB: A longitudinal genetic study of
plasma lipids in adolescent twins. Twin Res Hum Genet 2007,
10(1):127-135.

34. Heath AC, Whitfield JB, Martin NG, Pergadia ML, Goate AM, Lind PA,
McEvoy BP, Schrage AJ, Grant JD, Chou YL, et al: A Quantitative-Trait
Genome-Wide Association Study of Alcoholism Risk in the Community:
Findings and Implications. Biol Psychiatry 2011, Epub April 27.

35. Sullivan PF, de Geus EJ, Willemsen G, James MR, Smit JH, Zandbelt T,
Arolt V, Baune BT, Blackwood D, Cichon S, et al: Genome-wide association
for major depressive disorder: a possible role for the presynaptic protein
piccolo. Mol Psychiatry 2009, 14(4):359-375.

36. Painter JN, Anderson CA, Nyholt DR, Macgregor S, Lin J, Lee SH, Lambert A,
Zhao ZZ, Roseman F, Guo Q, et al: Genome-wide association study
identifies a locus at 7p15.2 associated with endometriosis. Nat Genet
2011, 43(1):51-54.

37. Medland SE, Nyholt DR, Painter JN, McEvoy BP, McRae AF, Zhu G,
Gordon SD, Ferreira MA, Wright MJ, Henders AK, et al: Common variants in
the trichohyalin gene are associated with straight hair in Europeans. Am
J Hum Genet 2009, 85(5):750-755.

38. Ellinghaus D, Schreiber S, Franke A, Nothnagel M: Current software for
genotype imputation. Hum Genomics 2009, 3(4):371-380.

39. Marchini J, Howie B: Genotype imputation for genome-wide association
studies. Nat Rev Genet 2010, 11(7):499-511.

40. Nothnagel M, Ellinghaus D, Schreiber S, Krawczak M, Franke A: A
comprehensive evaluation of SNP genotype imputation. Hum Genet
2009, 125(2):163-171.

41. StataCorp: Stata Statistical Software: Release 7.0. College Station, Tex:
StataCorp; 1997.

42. Abecasis GR, Cherny SS, Cookson WO, Cardon LR: Merlin–rapid analysis of
dense genetic maps using sparse gene flow trees. Nat Genet 2002,
30(1):97-101.

43. Aulchenko YS, Ripatti S, Lindqvist I, Boomsma D, Heid IM, Pramstaller PP,
Penninx BW, Janssens AC, Wilson JF, Spector T, et al: Loci influencing lipid
levels and coronary heart disease risk in 16 European population
cohorts. Nat Genet 2009, 41(1):47-55.

44. Talmud PJ, Drenos F, Shah S, Shah T, Palmen J, Verzilli C, Gaunt TR, Pallas J,
Lovering R, Li K, et al: Gene-centric association signals for lipids and
apolipoproteins identified via the HumanCVD BeadChip. Am J Hum Genet
2009, 85(5):628-642.

45. Ma L, Yang J, Runesha HB, Tanaka T, Ferrucci L, Bandinelli S, Da Y: Genome-
wide association analysis of total cholesterol and high-density
lipoprotein cholesterol levels using the Framingham heart study data.
BMC Med Genet 2010, 11:55.

46. Yuan X, Waterworth D, Perry JR, Lim N, Song K, Chambers JC, Zhang W,
Vollenweider P, Stirnadel H, Johnson T, et al: Population-based genome-

Middelberg et al. BMC Medical Genetics 2011, 12:123
http://www.biomedcentral.com/1471-2350/12/123

Page 8 of 9

http://www.ncbi.nlm.nih.gov/pubmed/18924135?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18924135?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18924135?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12925516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12925516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12925516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19019849?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10733371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10733371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10733371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12930239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12930239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12930239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10652029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10652029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16772340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16772340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16772340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16527886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16527886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17917325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17917325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17917325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10363742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10363742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11210110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11210110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10401873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10401873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10401873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10401873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10401873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12194918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12194918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12194918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11563810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9766914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9766914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11931686?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11931686?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3366463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3366463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6685521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6685521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3569874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3569874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11148181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11148181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11148181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16574762?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16574762?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16877869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16877869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16877869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18243214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18243214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17044846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17044846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17044846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10417291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10417291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10417291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10417291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11665325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11665325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9915566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9915566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9915566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17539372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17539372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19065144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19065144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19065144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21151130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21151130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19896111?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19896111?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19706367?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19706367?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20517342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20517342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19089453?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19089453?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11731797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11731797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19060911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19060911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19060911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19913121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19913121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20370913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20370913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20370913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940312?dopt=Abstract


wide association studies reveal six loci influencing plasma levels of liver
enzymes. Am J Hum Genet 2008, 83(4):520-528.

47. Ronald J, Rajagopalan R, Ranchalis JE, Marshall JK, Hatsukami TS,
Heagerty PJ, Jarvik GP: Analysis of recently identified dyslipidemia alleles
reveals two loci that contribute to risk for carotid artery disease. Lipids
Health Dis 2009, 8:52.

48. Reiner AP, Barber MJ, Guan Y, Ridker PM, Lange LA, Chasman DI,
Walston JD, Cooper GM, Jenny NS, Rieder MJ, et al: Polymorphisms of the
HNF1A gene encoding hepatocyte nuclear factor-1 alpha are associated
with C-reactive protein. Am J Hum Genet 2008, 82(5):1193-1201.

49. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM,
Koseki M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ, et al: Biological,
clinical and population relevance of 95 loci for blood lipids. Nature 2010,
466(7307):707-713.

50. Mahley RW: Apolipoprotein E: cholesterol transport protein with
expanding role in cell biology. Science 1988, 240(4852):622-630.

51. Eichner JE, Dunn ST, Perveen G, Thompson DM, Stewart KE, Stroehla BC:
Apolipoprotein E polymorphism and cardiovascular disease: a HuGE
review. Am J Epidemiol 2002, 155(6):487-495.

52. Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ,
Cooper GM, Roos C, Voight BF, Havulinna AS, et al: Six new loci associated
with blood low-density lipoprotein cholesterol, high-density lipoprotein
cholesterol or triglycerides in humans. Nat Genet 2008, 40(2):189-197.

53. Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL,
Volkert TL, Schreiber J, Rolfe PA, Gifford DK, et al: Control of pancreas and
liver gene expression by HNF transcription factors. Science 2004,
303(5662):1378-1381.

54. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP,
Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, et al: Twelve type 2
diabetes susceptibility loci identified through large-scale association
analysis. Nat Genet 2010, 42(7):579-589.

55. Okada Y, Takahashi A, Ohmiya H, Kumasaka N, Kamatani Y, Hosono N,
Tsunoda T, Matsuda K, Tanaka T, Kubo M, et al: Genome-wide association
study for C-reactive protein levels identified pleiotropic associations in
the IL6 locus. Hum Mol Genet 2011, 20(6):1224-1231.

56. Elliott P, Chambers JC, Zhang W, Clarke R, Hopewell JC, Peden JF,
Erdmann J, Braund P, Engert JC, Bennett D, et al: Genetic Loci associated
with C-reactive protein levels and risk of coronary heart disease. Jama
2009, 302(1):37-48.

57. Dehghan A, Dupuis J, Barbalic M, Bis JC, Eiriksdottir G, Lu C, Pellikka N,
Wallaschofski H, Kettunen J, Henneman P, et al: Meta-Analysis of Genome-
Wide Association Studies in > 80 000 Subjects Identifies Multiple Loci
for C-Reactive Protein Levels. Circulation 2011, 731-738.

58. Erdmann J, Grosshennig A, Braund PS, Konig IR, Hengstenberg C, Hall AS,
Linsel-Nitschke P, Kathiresan S, Wright B, Tregouet DA, et al: New
susceptibility locus for coronary artery disease on chromosome 3q22.3.
Nat Genet 2009, 41(3):280-282.

59. Sandhu MS, Waterworth DM, Debenham SL, Wheeler E, Papadakis K,
Zhao JH, Song K, Yuan X, Johnson T, Ashford S, et al: LDL-cholesterol
concentrations: a genome-wide association study. Lancet 2008,
371(9611):483-491.

60. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R,
Heath SC, Timpson NJ, Najjar SS, Stringham HM, et al: Newly identified loci
that influence lipid concentrations and risk of coronary artery disease.
Nat Genet 2008, 40(2):161-169.

61. Waterworth DM, Ricketts SL, Song K, Chen L, Zhao JH, Ripatti S,
Aulchenko YS, Zhang W, Yuan X, Lim N, et al: Genetic Variants Influencing
Circulating Lipid Levels and Risk of Coronary Artery Disease. Arterioscler
Thromb Vasc Biol 2010, 30(11):2264-2276.

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1471-2350/12/123/prepub

doi:10.1186/1471-2350-12-123
Cite this article as: Middelberg et al.: Genetic variants in LPL, OASL and
TOMM40/APOE-C1-C2-C4 genes are associated with multiple
cardiovascular-related traits. BMC Medical Genetics 2011 12:123.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Middelberg et al. BMC Medical Genetics 2011, 12:123
http://www.biomedcentral.com/1471-2350/12/123

Page 9 of 9

http://www.ncbi.nlm.nih.gov/pubmed/18940312?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940312?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19951432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19951432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18439552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18439552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18439552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20686565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20686565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3283935?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3283935?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11882522?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11882522?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18193044?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18193044?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18193044?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14988562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14988562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20581827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20581827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20581827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21196492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21196492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21196492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19567438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19567438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19198612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19198612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18193043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18193043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20864672?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20864672?dopt=Abstract
http://www.biomedcentral.com/1471-2350/12/123/prepub

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Subjects
	Laboratory measurements
	Genotyping
	Statistical Analysis

	Results
	General Characteristics
	Genome-wide association analyses

	Discussion
	Conclusion
	Acknowlegements
	Author details
	Authors' contributions
	Competing interests
	References
	Pre-publication history

