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Abstract

Background: Connective tissue diseases characterized by aortic aneurysm, such as Marfan syndrome, Loeys-Dietz
syndrome and Ehlers Danlos syndrome type IV are heterogeneous and despite overlapping phenotypes, the
natural history, clinical manifestations and interventional course for each diagnosis can be quite unique. The
majority of mutations involved in the etiology of these disorders are missense and nonsense mutations. However,
large deletions and duplications undetected by sequencing may be implicated in their pathogenesis, and may
explain the apparent lack of genotype-phenotype correlation in a subset of patients. The objective of this study
was to search for large pathogenic deletions and/or duplications in the FBN1, TGFbR1, and TGFbR2 genes using
multiplex-ligation dependent probe amplification (MLPA) in patients with aortopathy, in whom no mutations in the
FBN1, TGFbR1, and TGFbR2 genes were identified by sequencing.

Methods: The study included 14 patients from 11 unrelated families with aortic aneurysm. Of those, six patients
(including 3 first-degree relatives), fulfilled the revised Ghent criteria for Marfan syndrome, and eight had
predominantly aortic aneurysm/dilatation with variable skeletal and craniofacial involvement. MLPA for FBN1,
TGFbR1, and TGFbR2 was carried out in all patients. A 385 K chromosome 15 specific array was used in two
patients with a deletion of the entire FBN1 in order to define its size and boundaries.

Results: We identified two novel large deletions in the FBN1 gene in four patients of two unrelated families who
met clinical diagnostic criteria for Marfan syndrome. One patient was found to have a FBN1 deletion encompassing
exons 1-5. The other three patients had a 542 Kb deletion spanning the whole FBN1 gene and five additional
genes (SLC24A5, MYEF2, CTXN2, SLC12A1, DUT) in the chromosome 15.

Conclusions: Our findings expand the number of large FBN1 deletions, and emphasize the importance of
screening for large genomic deletions in connective tissue disorders featuring aortopathies, especially for those
with classic Marfan phenotype.

Background
Thoracic aortic aneurysm with dissection is the most com-
mon fatal condition involving the aorta [1], and can be
syndromic, familial nonsyndromic or sporadic. Mutations
in genes related to the structure and function of the aortic
wall, such as MYH11 on chromosome 16p12.2-13.3 [2,3],
ACTA2 on chromosome 10q23-24 [4], SLC2A10 on

chromosome 20q13.1 [5], NOTCH1 on chromosome
9q34-35 [6], TGFbR1 on chromosome 9q33-34 [7], and
TGFbR2 genes on chromosome 3p24-25 [8] have been
linked to non-syndromic familial forms of thoracic aortic
aneurysm [reviewed in 9]. Syndromic connective tissue
diseases featuring aortic aneurysm and dissection com-
prise a heterogeneous group of genetic diseases, including
Marfan syndrome (MFS; OMIM # 154700), Loeys-Dietz
syndrome (LDS; OMIM # 609192), Ehlers Danlos syn-
drome type IV (EDS IV; OMIM # 130050), and familial
thoracic aneurysm syndrome (TAAD; OMIM# 132900).
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Recently, a new syndrome presenting with aneurysms,
dissections and tortuosity throughout the arterial tree and
mild craniofacial features, early-onset osteoarthritis and
skeletal and cutaneous anomalies was described to be
associated with mutations in the SMAD3 [10]. These con-
ditions have broad spectrum of phenotypic expression and
overlapping phenotype, although their natural history and
interventional course can be quite unique. Making the
timely and correct diagnosis in individuals with connective
tissue disorders with aortopathy is crucial to obtaining
appropriate surveillance and interventions aimed at pre-
venting the significant morbidity and mortality associated
with these diseases. In this setting, molecular testing is a
valuable adjunct to clinical assessment, especially in cases
with non-classical phenotypes. The majority of syndromic
connective tissue featuring aortopathy are caused by mis-
sense, nonsense or splice site mutations [11]. A few
reports of large genomic deletions involving single and
multiple exons of the FBN1 gene [12-17] as well as whole-
FBN1 deletions [18-22] are available, although no large
FBN1 duplications have been reported to date. Because of
that, full gene sequencing is commonly the initial
approach for the diagnosis of these patients. However,
sequencing does not detect large exonic deletions or dupli-
cations unless quantitative methods are applied, which
allegedly could explain the lack of genotype-phenotype
correlation in some patients.
This study was undertaken to search for large patho-

genic deletions and/or duplications in the FBN1, TGFbR1,
and TGFbR2 genes using multiplex-ligation probe amplifi-
cation (MLPA) in 14 patients with clinical diagnosis of
aortopathy in whom no mutations in the FBN1, TGFbR1,
and TGFbR2 genes were identified by sequencing.

Methods
Subjects
Informed consent was obtained from patients and relatives
using University of Utah and Primary Children’s Medical
Center Institutional Review Board-approved protocols.
The study included 14 patients [10 males, 4 females; mean
age: 21 years (age range: 2- 43 years)] from 11 unrelated
families, who had clinical diagnosis of aortic dilatation,
aneurysm or aortic dissection and negative molecular ana-
lysis of the FBN1, TGFbR1, and TGFbR2 genes by sequen-
cing. In families with more than one affected individual,
the result from mutational analysis was extrapolated to
untested relatives. Of those, 6 patients (including 3 first-
degree relatives), fulfilled the revised Ghent criteria for
diagnosis of Marfan syndrome [23], and 8 had predomi-
nantly aortic aneurysm or dilatation with variable skeletal
and craniofacial involvement (Table 1). Data on the clini-
cal phenotypes of patients were collected from medical
records and during physical examinations during their

visit to the Medical Genetics and Cardiology clinics at Pri-
mary Children’s Medical Center.

Multiplex Ligation-dependent Probe Amplification (MLPA)
Genomic DNA was extracted from peripheral blood using
standard procedures (Gentra Puregene Blood Kit, Qiagen,
Valencia, CA). MLPA assays were performed in duplicate
according to the manufacturer’s instructions [24]. The
P065 and P066 Marfan Syndrome MLPA kits (MRC-
Holland, Amsterdam, The Netherlands) [25,26] that con-
tain probes for 54 of the 66 FBN1 exons and 7 TGFbR2
exons, were used to detect deletions or duplications in
FBN1. The P065 and P066 probemixes do not contain
probes for FBN1 exons: 1, 11, 12, 21, 23, 28, 33, 38, 40, 49,
52, 60, and for TGFbR2 exon 2. P148 Loeys-Dietz MLPA
kit (MRC-Holland, Amsterdam, The Netherlands) [27]
was used to detect deletions or duplications in TGFbR1
and TGFbR2 genes. The P148 probemix contains probes
for all exons of the TGFbR1and TGFbR2 genes with the
exception of TGFbR2 exon 2. Amplification products from
each MLPA assay were separated by capillary electrophor-
esis on an ABI 3100 Genetic Analyzer (Life Technologies,
Carlsbad, CA, USA) and results were analyzed using
GeneMarker® software version 1.6 (SoftGenetics, State
College, PA, USA). Deletions and duplications of the tar-
geted regions were detected when the height ratios of the
fluorescent peaks were lower or higher than the normal
height ratio range of 0.7-1.4, respectively.

Sequencing
The coding exons and flanking intronic regions for
TGFbR1, TGFbR2 and FBN1 were PCR-amplified for all
patients. Primers sequences are available upon request.
Amplicon fragments were bi-directly sequenced with uni-
versal M13 primers using the Big Dye® Terminator v3.1
cycle sequencing kit and an ABI 3730 DNA Analyzer (Life
Technologies, Carlsbad, CA, USA). Sequences were com-
pared to the TGFbR1 and TGFbR2 reference sequences
(NM_004612.2 and NM_003242.5, respectively) and to the
FBN1 reference sequence (NM_000138.4) using Mutation
Surveyor software version 3.01 (SoftGenetics, State Col-
lege, PA, USA).
In our Institution, we sequenced the TGFbR1 and

TGFbR2 from seven patients, and the FBN1 gene from
two patients. The remaining cases were sequenced at the
Connective Tissue Gene Test (CTGT) Laboratory.

Array-CGH 385 K Chromosome 15 Specific Array
DNA from peripheral blood leukocytes from patients 2
and 3 was extracted using standard techniques (Gentra
Puregene Blood Kit, Qiagen, Valencia, CA). One μg of
patients’ DNA was labeled with 5’- Cy3 tagged nanomers
while the female control was labeled with Cy5 nonamers
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Table 1 Summary of clinical profile of patients

1 2* 3* 4* 5 6 7 8§ 9§ 10 11 12 13 14

Gender M F M M M F M M F M F M M M

Age (years) 27 42 15 12 42 19 12 30 2 15 25 18 14 27

Aortic

Root dilatation (Z ≥ 2) + + + + + + + + +/- + - + + +

Ao root surgery - + - - + - - - - - - - - -

Aneurysm - + - - - - - - - + + - - -

Dissection - - - - + - - -

Tortuosity + - - - - - - -

Cardiac

Mitral valve prolapse + - - - - + - - - - - + - +

Valve (other) + + + + - + - + - - - + - -

Cardiac (other) - - - - - - - - + - + - - -

Ophthalmologic

Ectopia lentis - - + - - - - - - - - - - -

Skeletal

Pectus carinatum + + - - + + - - - + - - - -

Pectus excavatum + + + + - - + - - - - - - +

Reduced US/LS + + + + + + - - - - - - - +

Increased arm/height - - - - + + + - - - - - - -

Scoliosis - - - - + - - - - + - - - -

Thoracolumbar kyphosis - - - + - - - - - - - - + +

Protrusio acetabuli - - - - - - + - - + - - - -

Pes planus - - - - - - - - - - - - - -

Hindfoot deformity + - + + - + - - - - - - + +

↓ elbow extension + - - - - -

Wrist/thumb signs

Dural ectasia

Craniofacial

Hypertelorism - - - + - - - + - - - - - -

Bifid/broad uvula - - - - - - - + - - - - - -

Palate anomaly - + - + - - - + - - - - - -

Microretrognathia + - - - - - - + - - - + - -

Dolicocephalia - - - - - - - - - - - - - -

Craniosynostosis - - - - - - - - - - - - - -

Other - - - - - - - - - - - -

Skin

Striae + - + - + + - - - - - - - +

Thin and velvety skin - - - - - - - - - - - - -

Easy bruising - - - - - - - - - + -

Family History + + + + + - + + + + + + - -

Ghent + + + + + - - - - - - - - +

FBN1 sequencing Neg Neg Neg Neg Neg Neg Neg Neg Neg Neg Neg Neg Neg Neg

TGFbR1/2 sequencing Neg Neg Neg Neg Neg Neg Neg Neg Neg Neg Neg Neg Neg Neg

Abbreviations:

* Related patients: patient 2 = mother; patients 3 and 4 = sons.

§ Related patients: patient 8 = father; patient 9 = daughter.

+: present; -: absent; blank spaces: information not available

Neg: Negative
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(Roche NimbleGen, Madison, WI). After purification by
isopropanol precipitation, 6 μg each of labeled patients
and reference DNA were combined. The mixture
was hybridized to a NimbleGen 385 K Chromosome
15 Specific Array for 16 hours at 42 degrees in a MAUI
Hybridization System (BioMicro Systems). The array was
then washed according to the manufacturer’s recommen-
dation (Roche NimbleGen, Madison, WI) and immedi-
ately scanned at 5 micron resolution. After scanning,
fluorescence intensity raw data was extracted from the
scanned images of the array using NimbleScan v2.5 soft-
ware. For each of the spots on the array, normalized log2
ratios of the Cy3-labeled patient sample vs the Cy5-refer-
ence sample were generated using the SegMNT program.
The data was visualized with Nexus v5.1 software (Bio-
discovery, El Segundo, CA).

Results
In our study, we identified two novel large deletions in
the FBN1 gene in four patients of two unrelated families
who met clinical diagnostic criteria for Marfan syndrome.
Of those, a novel FBN1 deletion encompassing exons 1-5
(Figure 1, Panel A) was identified in a 27-year-old male
(patient 1; Tables 1 and 2) with dilated aortic root (3.99
cm, z-score of 3.76), mild tricuspid and mitral valve pro-
lapse, tricuspid valve insufficiency, height 201 cm (6’ 8”)
arm span 205.5 cm (6’10”), arachnodactyly, joint hyper-
mobility, positive thumb and wrist signs, combined pec-
tus carinatum/excavatum deformity of the anterior chest
wall, and marked diffuse striae over the lower back and
hips. Family history was remarkable for a diagnosis of
Marfan syndrome in the mother, who died secondary to
complications from surgery for aortic root dissection
years prior, and one 30-year-old affected brother, who
was unavailable for molecular testing.
The other large deletion was found in a family of a

mother and two sons (patients 2, 3, and 4, respectively;
Tables 1 and 2), who harboured a deletion of the entire
FBN1 gene. In those cases, all FBN1 probes and one con-
trol probe, located on the DUT (deoxyuridine triphospha-
tase) gene which is 301 Kb upstream from FBN1 exon 1
on chromosome 15q15-q21.1, were deleted (Figure 1,
Panel B). A NimbleGen 385 K chromosome 15 specific
array performed on patient 2 and 3 to refine the deletion
size and boundaries revealed a 542 Kb deletion spanning
bases chr15:46,208,030-46,750,218/Hg 18 Genome Build.
This deleted region included 5 additional genes: SLC24A5,
MYEF2, CTXN2, SLC12A1, and DUT (Figure 2). Clinically,
patient 2 (mother), had a history of aortic valve replace-
ment, and was status post Bentall procedure with a por-
cine valve in the setting of aortic dissection in 2005. She
also had an abdominal aortic aneurysm. Skeletal involve-
ment was characterized by a height of 190 cm (6’4”), arm
span 197 cm (6’6”), pectus carinatum, arachnodactyly, and

joint hypermobility. Patient 3 had aortic root (3.72 cm,
z-score 3.22) as well as ascending aortic (2.69 cm) dilation,
height 193.5 cm (6’5”), arm span 198.2 cm (6’7”), pectus
excavatum deformity, positive thumb sign, positive wrist
sign, joint hypermobility, and striae over both legs. Ocular
examination showed bilateral ocular lens subluxation. His
younger brother (patient 4) had a dilated aortic root (3.7
cm of diameter, z-score of 5.7), bicuspid aortic valve, pec-
tus excavatum deformity, arachnodactyly, significant joint
laxity with positive thumb sign and positive wrist sign,
marked pes planus with downward deviation of the medial
malleolus, height greater than the 99th percentile for age,
an arm span at 105% of height, hypertelorism, and high
narrow palate.
In all other patients, including a 27-year-old male with

classical Marfan syndrome phenotype (patient 14), no
large deletions or duplications of the FBN1, TGFbR1, and
TGFbR2 genes were identified.

Discussion
Only a few large FBN1 deletions involving single and mul-
tiple exons have been reported and have related to the
most severe MFS phenotypes. Among those, deletions of
exons 13-49 in mosaic [12]; deletion of whole exon 33
[12]; inframe deletions of exon 2 [17], exons 42-43 [13],
exon 52 [17] and exons 60-62 [16]; deletions spanning
exon 1 [14], in-frame deletion of exons 44-46 [13] and an
out-of-frame deletion of exons 58-63 [15] were previously
described. Increased phenotypic severity does not particu-
larly apply to patients with complete FBN1 deletions
[18-22]. Recently, Hilhorst-Hofstee et al. (2010) [18] pub-
lished a series of 10 patients with whole-FBN1 gene dele-
tion presenting with phenotypes ranging from mild
features of MFS to the classical MFS phenotype. In five of
their patients, deletions extended beyond the FBN1 gene,
spanning 1-9.4 Mb, including 9-46 genes. All of those
deletions encompassed the same genes located upstream
to the FBN1 as the ones involved in patient 2 and 3 of our
cohort, although the breakpoints, size and position of the
deletions differed between the two studies. Despite the
additional deletion of five contiguous genes (SLC24A5,
MYEF2, CTXN2, SLC12A1, DUT), our patients: 2, 3 and 4
had no other features than those that can be attributed to
the deletion of FBN1. The same was observed in two
patients from Hilhorst-Hofstee et al. [18] found to have
deletion of 9 genes including FBN1. These findings not
only support the role of haploinsufficiency of FBN1 in the
pathogenesis of MFS, but also suggest that the function of
SLC24A5, MYEF2, CTXN2, SLC12A1, DUT may not be
impaired by complete loss of an entire allele.
Three additional patients with 15 q deletions that

included and extended beyond FBN1 were previously
reported [19,21,22]. Their phenotype was characterized by
marfanoid features predominantly affecting the skeletal
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system, with absent or mild aortic involvement. Psycho-
motor retardation and microcephaly was also described in
two of those patients for whom the sizes and breakpoints
of their 15 q deletions were unavailable [21,22]. The 16-
year-old female described by Faivre et al. [19] harboured a
15q21.1q21.2 micro deletion of 2.97 Mb that encompassed
the entire FBN1 and 12 additional genes, including the
same genes as the ones involved in patient 2 and 3 of our
cohort, although the breakpoints, size and position of the
deletions differed between the two studies. As for our
patients: 2, 3 and 4, no other features than those that can
be attributed to the deletion of FBN1 were observed in
their patient.
An important consideration is that all patients in our

study, who harboured a FBN1 deletion, fulfilled the
Ghent criteria for MFS with major manifestations in the
skeletal and cardiovascular systems. This is especially
remarkable given the relatively young ages of patient 3

A

B

Figure 1 FBN1 deletions observed in cohort. In panel A, MLPA results for patient 1 show the deletion of exons 1-5 of the FBN1 gene. In panel
B, MLPA results for patient 2 with the deletion encompassing the whole FBN1 gene and an additional control probe (black arrow), located on
the DUT (deoxyuridine triphosphatase) gene, 301 Kb upstream from FBN1 exon 1, on chromosome 15q15-q21.1. The same deletion was also
found in patients 3 and 4 (data not shown).

Table 2 MLPA Assay Results for FBN1, TGFbR1, TGFbR2
and COL3A1

Subjects Deletion/Duplication Results

Patient 1 FBN1 exons 1-5 deletion

Patient 2 FBN1 full gene deletion

Patient 3 FBN1 full gene deletion

Patient 4 FBN1 full gene deletion

Patient 5 Normal

Patient 6 Normal

Patient 7 Normal

Patient 8 Normal

Patient 9 Normal

Patient 10 Normal

Patient 11 Normal

Patient 12 Normal

Patient 13 Normal

Patient 14 Normal
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and 4, and suggests that the increased severity of MFS
due to large FBN1 deletions may overcome the incom-
plete expression of MFS phenotype known to occur in
children. In addition, the degree of severity and the dis-
tribution of the major manifestations differed among
affected individuals, in keeping with the clinical variabil-
ity seen in MFS, which in our patients, could be due to
variable FBN1 expression from the normal allele.
In our cohort, cases with non-classical phenotypes

showed no large deletions and duplications in the genes
targeted by MLPA. Technical limitations of available test-
ing techniques, genetic heterogeneity and varied pathoge-
netic mechanisms involved in each of the connective
tissue diseases with aortopathy may account for the lack
of genotype-phenotype correlation in our subset of
patients. For instance, commercially available kits for
analysis of the FBN1 gene (P065 and P066) contain
probes for 54 of the 66 FBN1 exons; and the probemix
for TGFbR2 (P148) does not contain probes for exon 2.
Therefore, a deletion or duplication of non-tested exons
cannot be excluded leading to probable underreported
deletions or duplications in this gene. Mosaicism and
copy-number neutral rearrangements may also not be
detected by MLPA. In addition, current molecular
genetic testing of FBN1, TGFbR1, and TGFbR2 genes,
although powerful, may miss mutations in the promoter
region or in other noncoding sequences. Another consid-
eration is that genes, such as TGFbR1and TGFbR2 may
not harbour large deletions related to aortopathy with
most of the reported TGFbR1 and TGFbR2 pathogenic
mutations have been missense or splice site mutations

[11], with all but one lying in the kinase domain of those
genes [28]. Recently, a de novo 14.6 Mb duplication on
chromosome 9q22.32q31.2, comprising TGFbR1 was
found in a 17-year-old male with dysmorphic features,
suggestive of LDS [29]. In contrast, no large deletions of
TGFbR1and TGFbR2 have ever been reported in patients
with aortopathy, which concurs with the findings from
our dataset. Finally, the lack of genotype-phenotype cor-
relation in some patients could be due to uncharacterized
genetic elements in other loci, and as such, better evalu-
ated by technologies targeting the whole genome or
selected high-yield genes involved on aortopathies and
Marfan-like phenotypes, such as MYH11, ACTA2,
SLC2A10, NOTCH1 and FBN2 genes [9].

Conclusions
Our data expand the number of large FBN1 deletions, and
emphasize the importance of screening for large genomic
deletions in comprehensive genetic testing for connective
tissue disorders featuring aortopathies, especially for those
with classic phenotype of Marfan syndrome.
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