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Abstract

in human lung.

Background: Asthma is a chronic respiratory disease whose genetic basis has been explored for over two decades,
most recently via genome-wide association studies. We sought to find asthma-susceptibility variants by using
probands from a single population in both family-based and case-control association designs.

Methods: We used probands from the Childhood Asthma Management Program (CAMP) in two primary genome-
wide association study designs: (1) probands were combined with publicly available population controls in a case-
control design, and (2) probands and their parents were used in a family-based design. We followed a two-stage
replication process utilizing three independent populations to validate our primary findings.

Results: We found that single nucleotide polymorphisms with similar case-control and family-based association
results were more likely to replicate in the independent populations, than those with the smallest p-values in
either the case-control or family-based design alone. The single nucleotide polymorphism that showed the
strongest evidence for association to asthma was rs17572584, which replicated in 2/3 independent populations
with an overall p-value among replication populations of 3.5E-05. This variant is near a gene that encodes an
enzyme that has been implicated to act coordinately with modulators of Th2 cell differentiation and is expressed

Conclusions: Our results suggest that using probands from family-based studies in case-control designs, and
combining results of both family-based and case-control approaches, may be a way to augment our ability to find
SNPs associated with asthma and other complex diseases.

Background

Asthma [MIM 600807] is a chronic respiratory disease
that affects over 20 million Americans and 300 million
people worldwide [1,2]. The genetic basis of asthma has
been explored for over two decades in candidate gene
association, where more than 40 genes have been asso-
ciated with asthma and replicated in at least one indepen-
dent population [3,4]. Recently, genome-wide association
(GWA) studies of asthma have found that variants in or
near several genes, including ORMDL3 [MIM 610075]
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[5-12], CHI3LI [MIM 601525] [13], TLE4 [MIM 605132]
[14], PDE4D [MIM 600129] [15], DENNDIB [MIM
613292] [16], RAD50-IL13 [MIM 604040, 147683] [17],
and the HLA-DR/DQ region on chromosome 6p21.3 [17],
contribute to the risk of asthma.

The primary findings of the PDE4D GWA study were
obtained in a case-control design consisting of children
from an asthma clinical trial and publicly available
population controls. Although we used a case-control
design, genetic studies of these asthmatic children were
originally intended to be part of a family-based design,
as DNA was collected from children and their parents.
We chose the case-control design in an effort to
increase the power to detect genetic associations.
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Consistent with the approach taken in most GWA stu-
dies, we selected the variants with the lowest p-values in
our primary population for replication in independent
populations. Here, we extensively compare the GWA
results of the case-control and family-based designs
using probands from the same population, and we
attempt to replicate the initial association findings of
many SNPs with nominally significant p-values in a
two-stage process. Our results help to determine
whether the case-control design, the family-based
design, or a combination of results from both designs, is
more powerful to identify asthma-susceptibility variants.

Methods

Subjects

Our primary population is composed of 422 non-Hispanic
white subjects from the Childhood Asthma Management
Program (CAMP), a clinical trial that followed 1,041 asth-
matic children for four years and nearly 80% of the origi-
nal participants for 12 years [18]. CAMP participants and
their parents provided DNA for family-based genetic
studies. Additionally, CAMP probands were used in a
case-control design by matching them with 1,533 white
population controls that are publicly available through the
[llumina iControlDB resource (http://www.illumina.com/
science/icontroldb.ilmn) [15].

Genotyping and Quality Control

Genome-wide SNP genotyping for 422 Caucasian
CAMP subjects, their families, and iControlDB controls
was performed on Illumina’s HumanHap550 Genotyping
BeadChip (Illumina, Inc., San Diego, CA). Details of the
quality control (QC) criteria used to screen the genome-
wide SNP data have been provided previously [15].
Briefly, of the 422 CAMP subjects who were genotyped,
403 had genotyping completion rates greater than 95%
and were used in subsequent analyses. SNPs were
excluded for having low clustering scores (n = 6,257),
flanking sequences that did not map to a unique posi-
tion on the HG17 reference genome (n = 1,329), having
5 or more Mendel errors (n = 2,445), or being mono-
morphic (n = 3790). For the family-based analysis, here-
after referred to as CAMP Trio study, 534,290 SNPs in
403 probands and their parents passed QC filters. For
the case-control analysis, additional QC filters were
used. Subjects were excluded for being siblings of other
subjects (23 cases) or showing evidence of identity by
descent (IBD) (57 controls) or sex discordance (3 con-
trols). SNPs were excluded if they were missing in more
than 5% of subjects (n = 3,837), had minor allele fre-
quency (MAF) less than 1% (n = 17,088), had Hardy-
Weinberg equilibrium p-values among controls < 0.001
(n = 2,046), or had a significantly different (p-value <
1E-05) missing rate in cases and controls (n = 6,642).
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After these QC filters, 518,230 SNPs remained. Genetic
matching (GEM) [19] was used to control for population
stratification, and as a result of implementing this pro-
cedure, 21 cases and 687 controls were dropped. The
remaining 1,205 subjects (359 cases, 846 controls) had a
genomic inflation factor of 1.03, demonstrating minimal
population stratification. After re-enforcing a SNP MAF
threshold of greater than 1% in the remaining subjects,
516,617 SNPs remained for the analysis of CAMP cases
and Illumina controls, which will hereafter be referred
to as the CAMP/Illumina study.

Statistical Analysis

Figure 1 is an overview of our study design. First, we
performed CAMP/Illumina and CAMP Trio GWA ana-
lyses [Figure 1A]. SNPs for further consideration were
selected by choosing nominal p-value cutoffs in both the
case-control and family-based analyses. Case-control
associations were measured in PLINK [20] using
Cochran-Armitage trend tests. Family-based association
statistics for 403 CAMP trios, assuming an additive
model of inheritance, were calculated using PBAT ver-
sion 3.6 [21]. Those SNPs with CAMP/Illumina
Cochran-Armitage trend test p-values < 0.01 and FBAT
additive model p-values < 0.05 were selected for replica-
tion in an initial independent population [Figure 1B].
Further replication of association results was attempted
in two additional independent populations [Figure 1C].
This two-staged replication approach was taken so that
a larger number of SNPs could be genotyped in the
initial replication population, which was most similar to
CAMP as it was also composed of children who were
carefully ascertained for asthma studies. Subsequently, a
smaller number of SNPs that successfully replicated in
the initial replication population could be tested in two
additional populations. Joint evidence for association
across replication populations was measured by combin-
ing p-values using the Liptak method [22] [Figure 1D].
In combining p-values, all hypothesis tests in replication
populations had one-sided alternatives (based on the
direction of the association in the testing population) so
that SNPs with association tests in opposite directions
would not produce inappropriately small p-values. Effect
estimates were calculated using allelic odds ratios (ORs)
for case-control data. To evaluate directionality of effect
in trios, transmitted to untransmitted ratios (T:U) were
calculated in Haploview. Power calculations for “IDT
with discrete traits” and “case-control with discrete
traits” designs were performed using the Genetic Power
Calculator by Purcell S, et al [23] with high risk and
marker allele frequencies of 0.10/0.40, prevalence of
0.10, D-prime of 1, assuming use of unselected controls
for the case-control statistics, and with default error
rates (alpha = 0.05, power = 0.80).
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(A) Initial Study CAMP/Ilumina GWA

359 cases, 846 controls
518,230 SNPs

Trend test p-value <0.01

CAMP Trio GWA
403 trios
534,290 SNPs

FBAT additive model p-value <0.05

(B) Replication Stage 1

583 trios
1,378 SNPs

CR

1) FBAT additive model p-value <0.05
2) CAMP/Illumina or CAMP Trio p-value <1E-05
and CR FBAT additive model p-value <0.10

|

|

(C) Replication Stage 2 FHS
961 cases, 6516 controls
1) 78 SNPs

2) 7 SNPs

iCAP
220 cases, 853 controls
1) 78 SNPs
2) 7 SNPs

{

|

(D) Joint Analysis

Independent Populations
85 SNPs

was performed.

Figure 1 Study Design. (A) The initial study population consisted of CAMP probands used in (1) a case-control design composed of 359 CAMP
cases and 846 lllumina controls and (2) a family-based design composed of 403 trios. Genome-wide association of individual SNPs to asthma
status was assessed in each of these designs. SNPs with a case-control Cochran-Armitage trend test p-value < 0.01 and a family-based PBAT
additive model p-value < 0.05 were selected for replication analysis. (B) The first replication stage, carried out in CR, measured the association of
1378 SNPs with asthma. Those SNPs with either (1) a CR PBAT additive model p-value < 0.05 or (2) a CR PBAT additive model p-value < 0.10 and
a p-value < 1E-05 from the designs in (A) were selected for the next replication stage. (C) The second replication stage was carried out in two
additional independent populations, FHS and iCAP. (D) Joint association analysis for 85 SNPs with data in the three independent populations

Replication Studies

(1) CR. This cohort consists of 592 probands from the
Genetics of Asthma in Costa Rica Study (CR), which is
comprised of Costa Rican schoolchildren with asthma
and their parents [24,25]. Children had a high probabil-
ity of having at least six great-grandparents born in the
Central Valley of Costa Rica and were defined as having
asthma if they had a doctor’s diagnosis of asthma and at
least two respiratory symptoms or asthma attacks in the
year prior to enrollment in the study. Most genotype
data to replicate CAMP/Illumina findings was obtained
with an Illumina 1536 GoldenGate assay. Of the 1536
SNPs attempted, 1375 met the following quality thresh-
olds for analysis, after removal of 9 failed subjects: 1)
completion rate > 95%, 2) three or fewer Mendelian
inconsistencies, 3) zero discordance among replicate
samples, and 4) MAF > 0. Data for 2 SNPs (rs261119,
rs2777899) were obtained with the SEQUENOM Mas-
SARRAY system (Sequenom, Inc., San Diego, CA),
which utilizes iPlex chemistry. Data for one SNP
(rs11778371) was obtained with Tagman real-time PCR
with an ABI Prism 7900 machine (Applied Biosystems,
Foster City, CA). Standard PCR conditions, as recom-
mended by the manufacturer, were used. Overall, 583
trios had good genotype data available for 1378 SNPs.

Family-based association statistics for asthma affection
status under an additive model were calculated using
Golden Helix PBAT version 6.4.0 [21]. T:U of alleles
were calculated in Haploview [26].

(2) FHS. The Framingham Heart Study (FHS) is a
family-based study that conducted clinical examinations,
including spirometry and collection of smoking history
data, on three generations of white adults of European
descent, and research participants provided DNA sam-
ples that have recently been genotyped for genome-wide
association studies [27,28]. Asthma was classified based
on self-report of physician diagnosis, and according to
this definition, there were 961 cases and 6,516 controls.
In FHS subjects, genotyping was performed using the
Affymetrix GeneChip Human Mapping 500 K Array Set
and an additional Affymetrix 50 K Array (HuGeneFocu-
sed50K). Because data from these assays did not include
that of some associated SNPs that passed the replication
stage in CR, those genotypes were inferred using impu-
tation with the Markov Chain Haplotyping software
(MaCH) [29]. The ratio of the empirically observed
dosage variance to the expected (binomial) dosage var-
iance for these imputed SNPs was greater than 0.9, indi-
cating good quality of imputation. Association to
asthma was measured using logistic regression models
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with robust variance estimated via generalized estimat-
ing equations with each pedigree as a cluster, while
adjusting for age, former smoking, current smoking,
pack-years, sex, BMI, and membership in one of the
three recruited generations. The genomic inflation factor
for the imputed genome-wide results was 1.048, indicat-
ing minimal population stratification.

(3) iCAP. The i2b2 Crimson Asthma Project (iCAP)
consists of Partners Healthcare System, Inc. (Boston,
MA) patients who were selected based on extracted de-
identified electronic medical record (EMR) data and
whose DNA was obtained via discarded clinical samples.
Specifically, tools developed by the National Center for
Biomedical Computing entitled “Informatics for Inte-
grating Biology to the Bedside” (i2b2, http://www.i2b2.
org) have facilitated extraction of de-identified demo-
graphic and clinical information from EMRs of patients.
Using i2b2 resources, a large set of asthmatic and non-
asthmatic Partners Healthcare patients has been identi-
fied on the basis of International Classification of
Diseases, Ninth Revision (ICD-9) codes for asthma (i.e.
those beginning with 493) [30,31]. In order to conduct
genomic studies of these patients, clinical samples that
are routinely collected at healthcare visits were obtained
via the Crimson Project (http://www.crimsonproject.
org), which identifies discarded Partners Healthcare clin-
ical samples that are ordered for routine clinical tests,
and prospectively collects the samples that have been
requested by an approved study. For this study, to
further ensure that cases truly had asthma, medication
history extracted from EMR records was utilized. Cases
(n = 220) were defined as those patients whose EMRs
contained an asthma ICD-9 code and whose medication
history included usage of at least one beta-agonist or
inhaled corticosteroid. Controls (n = 853) were selected
as those patients who had been seen in the three years
prior to blood collection in at least one of over 850 out-
patient clinics but did not have any asthma ICD-9
codes. The gender composition of cases (19.5% male,
80.5% female) and controls (15.8% male, 84.2% female)
was not statistically different (Fisher’s exact p-value
0.19) although there is a high prevalence of female sub-
jects overall due to a large portion of patients being
recruited at Brigham and Women’s Hospital, which has
a high proportion of female patients. There was no sig-
nificant difference in age between cases (mean = 28.8
years [SD 6.0, range = 4 to 35]) and controls (mean =
30.0 years [SD 4.1, range = 18 to 35]) at the time of
DNA collection (Wilcoxon rank sum p-value = 0.082).
Genotyping of the SNPs of interest was carried out with
an Illumina GoldenGate assay. Markers were analyzed if
they met the same quality standards as described for
Costa Rica genotyping, with the exception of Mendelian
checks, which were not applicable. Genotyped SNPs
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included those for replication of association to asthma
as well as two panels of SNPs to measure population
stratification: (1) a set of intergenic SNPs selected ran-
domly throughout the genome [32], and (2) a set of
ancestry informative markers (AIMs) [33]. The random
panel of 187 SNPs had an association 3> 157 qf = 168.7,
corresponding to a p-value of 0.83. The set of 248 AIM
SNPs was used to compute principal components
describing variation in iCAP subject data using EIGEN-
STRAT [34]. The principal components were used to
obtain EIGENSTRAT-corrected association statistics for
replication SNPs. The r* between corrected and uncor-
rected association statistics was 0.95. Thus, no signifi-
cant evidence of population stratification was found by
two methods.

Results

Probands from CAMP were used to measure association
of SNPs to asthma using both a case-control and a
family-based GWA study design. The top SNPs accord-
ing to each design are shown in Table 1. In the case-
control design (i.e. CAMP/Illumina), which utilized
publicly available population controls, 516,617 SNPs in
1,205 subjects (359 cases, 846 controls) were evaluated
for association using the Cochran-Armitage trend test,
and 15 SNPs had p-values < 1E-05. In the family-based
GWA (i.e. CAMP Trio study), 534,290 SNPs in 403
trios were ranked according to PBAT additive model
p-values, and 13 SNPs had p-values less than a nomin-
ally significant level of 1E-05. There was no overlap
among the top (i.e. those with p-value < 1E-05) CAMP/
Illumina and CAMP Trio SNPs.

Under the assumption that consistency of results in
CAMP/Illumina and CAMP Trio increased the likelihood
of an association being true, we proceeded to replicate
those SNPs with CAMP/Illumina p-value < 0.01 and
CAMP Trio p-value < 0.05 [Figure 2A]. Such thresholds
were selected to have enough SNPs to fill a genotyping
assay for 1536 SNPs, and the lower p-value threshold for
CAMP/Illumina was chosen because of the increased
power that CAMP/Illumina had to detect associations
relative to CAMP Trio. Of 5604 SNPs with CAMP/Illu-
mina p-values < 0.01, 1726 SNPs had CAMP Trio p-values
< 0.05. Among this set of 1726 SNPs were some of the top
SNPs according to the individual primary analyses: 9
CAMP Trio SNPs with p-values < 1E-05, and 9 CAMP/
Illumina SNPs with p-values < 1E-05 [Table 1]. One
(rs1588265) of the top 10 CAMP/Illumina SNPs that had
CAMP Trio p-value < 0.05 was not genotyped because it
was replicated previously in independent populations,
including CR and FHS, and is in very tight linkage disequi-
librium with three of the 9/10 other replicated SNPs [15].

For replication Stage 1, a subset of 1378 of the 1726
SNPs was successfully genotyped in CR, an independent
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Table 1 Top-ranked SNPs in each Initial Study (CAMP/Illumina or CAMP Trio p-value < 1E-05)

Rank Discovery P-values Stage Stage 2
1

SNP CHR BP CAMP/ CAMP CAMP/ CAMP Replication CR FHS CAP Liptak P-

lllumina Trio lllumina Trio Attempted? value*
Top CAMP/lllumina
rs2548659 5 59419643 1 3122 2.07E-07 5.9E-03 yes 0.064 NA 0.15 0.035
rs1588265 5 59405551 2 5000 5.11E-07 94E-03 reported in [15] - - - -
rs983280 5 59480894 3 10253 5.71E-07 0.019 yes 0094 57E- NA 3.3E-03

03

rs11778371 8 27375822 4 2947 7.92E-07 5.6E-03 yes 029 - - -
rs1544791 5 59474839 5 10852 1.16E-06 0.020  yes/reported in [15] 0.15 - - -
rs684909 11 35843495 6 7849 3.12E-06 0.015 yes 0.99 - - -
rs12725071 1 105022488 7 306415 4.52E-06 0.57 no - - - -
rs17219773 4 61926823 8 11376 4.56E-06 0.021 yes 0.83 - - -
rs12930287 16 64495907 9 228338 4.80E-06 042 no - - - -
rs11751990 6 130829469 10 19852 4.97E-06 0.037 yes 0.018 081 043 0.21
152761647 23 95159314 " NA 5.83E-06 NA no - - - -
rs12724129 1 11880226 12 43354 6.83E-06 0.082 no - - - -
rs7765374 6 87001318 13 8269 7.34E-06 0.015 yes 0.18 - - -
rs2910830 5 59502960 14 16890 7.79E-06 0.032 yes 0069 0061 NA 0016
rs9318942 13 82928515 15 34248 8.72E-06 0.065 no - - - -
Top CAMP Trio
rs1288548 4 186536979 4955 1 8.6E-03 8.7E-07 yes 0.24 - - -
s261137 5 4414120 1068 2 1.8E-03 1.2E-06 yes 0.053 026 027 0.049
rs12734338 1 200736346 NA 3 NA 1.7E-06 no - - - -
rs1048329 4 186536752 1637 4 2.8E-03 3.1E-06 yes 0.29 - - -
rs261159 5 4396987 212 5 33E-04 34E-06 yes 0086 029 027 0.072
rs12247820 10 5327219 558 6 9.0E-04 4.2E-06 yes 0.74 - - -
rs12743401 1200743271 NA 7 NA 4.2E-06 no - - - -
rs261119 5 4418468 4995 8 8.7E-03 4.2E-06 yes 044 - - -
rs1039603 5 4345616 309 9 4.8E-04 5.0E-06 yes 0.063 032 NA 0.079
rs2777899 17 55187173 828 10 14E-03 6.1E-06 yes 034 - - -
rs261125 5 4422887 3764 11 6.5E-03 6.6E-06 yes 062 - - -
rs13267437 8 4183474 20383 12 0.037 9.5E-06 no - - - -
rs9463425 6 48620994 79984 13 0.15 9.7E-06 no - - - -

*In all available independent populations

population of children with asthma [Figure 2A]. Because
of our selected genotyping platform, an Illumina 1536
GoldenGate assay, we had to constrain the initial set of
1726 SNPs to 1536. Most SNPs were excluded based on
LD: we attempted to capture all regions of association
by selecting at least one SNP within sets of SNPs that
were in strong (pairwise r> > 0.80) LD, but we excluded
remaining SNPs within such sets. However, some SNPs
were excluded because they had low GoldenGate assay
design scores while others were excluded because they
failed the GoldenGate assay. Three of the SNPs
(rs261119, rs2777899, rs11778371) that failed the Gold-
enGate assay were genotyped by other methods in Stage
1 because they were among the top-ranked SNPs in the
family-based and case-control designs, and we felt that

their results were essential to compare the replication of
SNPs selected based on the different study designs. Of
the 1378 SNPs that were successfully genotyped in Stage
1, 78 had 1-sided p-values < 0.05 with CR effects in the
same direction as CAMP [Figure 2B, Table 2, Additional
file 1, Table S1]. Only one (rs11751990) of these 78
SNPs was among the top-ranked SNPs from the indivi-
dual studies shown in Table 1.

For replication Stage 2, 85 SNPs were evaluated in two
additional independent populations, FHS and iCAP.
These SNPs included the 78 SNPs with CR p-values <
0.05 and an additional 7 SNPs with CR p-values < 0.10
that were part of the top CAMP/Illumina and CAMP
Trio SNPs. We found that 10 SNPs had a p-value <
0.05 in FHS or iCAP and had the same direction of
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Figure 2 Association Results. (A) Plot of CAMP Trio vs. CAMP/Illumina GWA results. SNPs selected for replication analysis have family-based
PBAT additive model p-values < 0.05 and case-control Cochran-Armitage trend test p-values < 0.01. The subset of these SNPs that was
genotyped in CR is shown in blue. Points with a pink background are SNPs whose association in several populations was reported previously
[15]. (B) Plot of CAMP Trio vs. CAMP/lllumina GWA results for the subset of SNPs that was successfully genotyped in CR. Shown in green are
those SNPs with CR p-values < 0.05. Shown in red are those SNPs that have CR p-values < 0.05 and either a FHS or iCAP p-value < 0.05.

Table 2 SNPs that replicated in 2 of 3 independent populations

Discovery P-values Rank Replication P-
values
Stage  Stage 2
1
SNP CHR BP CAMP/  CAMP CAMP/  CAMP CR FHS iCAP Liptak P- Nearest RefSeq Distance From
Illumina Trio lllumina Trio value Gene(s) Gene
rs17572584 3 144370733 43E-03 0.043 2539 22513 14E- 0011 0052 3.5E-05 CHST2 46233
03
rs10489341 1207998744 8.6E-03 0.047 4946 25122 19E- 0023 0.056 9.2E-05 TRAF3I In gene
03
rs4653637 1 223690639 29E-04 0.036 189 19134 0012 023 60E- 76E-04 LBR In gene
03
rs530914 11 95271804 7.8E-03 0.031 4525 16196  89E- 0.14 0.035 1.2E-03 MTMR2 In gene
03
rs10816789 9 111032330 3.5E-03 0.030 2082 16121 0012 69E- 029 1.2E-03 EPB41L In gene
03
rs247052 16 56524719 1.8E-04 0.023 128 12253 0036 33E- 027 1.5E-03 CNGB1 In gene
03
rs1534837 14 79452778 6.5E-04  8.8E-03 416 4617 0047 0059 0.037 1.9E-03 NRXN3 52265
rs714679 11 44610240 26E-03  7.7E-03 1542 4053 0032 015 0028 29E-03 D82 12351
rs11947034 4 35448626 8.6E-03 0.018 4963 9830 0013 043 0020 4.8E-03 CENTD!1 295390
rs1152490 14 55865987 34E-03 0.031 2029 16236 0045 0039 021 6.6E-03 PELI2 28204
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Table 3 Minor Allele Frequencies of SNPs that replicated in 2 of 3 independent populations

CAMP/lllumina CAMP Trio CR FHS iCAP
SNP Minor Allele Affected Unaffected Affected Unaffected Affected Unaffected Affected Unaffected Affected Unaffected
1517572584 T 0.078 0.12 0.085 0.10 0.057 0.074 0.083 0.10 0.073 0.10
rs10489341 T 0.036 0.018 0.036 0.027 0.058 0.046 0.028 0.022 0.050 0.033
rs4653637 G 040 032 0.39 037 0.34 032 0.32 0.31 0.39 032
rs530914 C 0.54 0.48 052 0.50 0.54 047 0.51 049 0.51 0.46
rs10816789 T 0.19 0.14 0.19 0.18 0.14 013 0.18 0.16 0.15 0.14
15247052 T 0.26 034 0.26 0.28 033 035 0.28 0.31 0.29 030
rs1534837 A 0.042 0.079 0.046 0.057 0.011 0.014 0.065 0.074 0.055 0.080
rs714679 G 0.39 046 041 043 0.33 0.34 042 043 040 045
rs11947034 C 0.033 0.060 0.041 0.052 0.054 0.063 0.061 0.062 0.050 0.079
rs1152490 C 0.18 0.24 0.18 0.21 0.20 021 0.21 023 0.21 023

effect across all populations [Tables 2, 3 and 4]. Overall
Liptak p-values in the three independent populations
revealed that one SNP passes a multiple comparisons
correction threshold of 3.6E-05 (= 0.05/1378), corre-
sponding to the number of SNPs genotyped in CR.

Three additional SNPs on chromosome 17q21 near
ORMDL3 were evaluated in all populations using pre-
viously published results for CAMP/Illumina [15] and
CAMP and CR trios [12], and novel results for CAMP
Trio, FHS and iCAP [Table 5].

Discussion
The CAMP population was designed for, and has often
been used in, family-based candidate gene association

Table 4 Association directions of SNPs that replicated in
2 of 3 independent populations

SNP CAMP/ CAMP CR FHS iCAP
lllumina Trio
rs17572584  0.63 (047- 0.71 061 082 (0.75- 0.72 (049-
0.87) 0.89) 1.07)
rs10489341 201 (1.19- 1.87 183 133 (1.15- 1.52 (0.92-
342) 1.53) 2.52)
154653637 140 (1.17- 1.25 124 1.04 (0.98- 1.32 (1.06-
1.67) 1.10) 1.64)
rs530914 1.26 (1.06- 124 123 1.06 (1.00- 1.21 (0.98-
1.51) 1.12) 1.50)
rs10816789 143 (1.13- 136 126 1.20 (1.12- 1.09 (0.81-
1.80) 1.30) 1.46)
rs247052 0.69 (0.57- 0.77 0.85 0.84 (0.79- 0.93 (0.74-
0.84) 0.90) 1.17)
rs1534837 0.51 (0.34- 0.57 0.53 085 (0.77- 067 (043-
0.76) 0.94) 1.04)
15714679 0.76 (0.63- 0.75 0.86 0.94 (0.88- 0.81 (0.66-
0.91) 1.00) 1.01)
511947034  0.54 (0.35- 0.55 067 0.98 (0.89- 062 (0.39-
0.86) 1.08) 0.98)
rs1152490 0.72 (0.57- 0.75 0.85 0.89 (0.83- 0.90 (0.70-
0.90) 0.95) 1.16)

CAMP/lllumina, FHS, and iCAP columns contain ORs (95% confidence
intervals). CAMP Trio and CR columns contain T:Us.

studies [35-37]. More recently, GWA data have been
acquired for a cohort of 403 Caucasian probands and
their parents. This cohort has low statistical power to
detect associations corresponding to the expected small
(i.e. 1.1-1.3) effect sizes that have been observed to
underlie many complex traits, including asthma [38].
We sought to increase statistical power by using the
CAMP probands as cases in a case-control design,
where controls were obtained from Illumina’s iCon-
trolDB resource. Although we increased statistical
power with the case-control design, which is composed
of 359 cases and 846 controls, this design also remains
underpowered to detect associations of small effect
sizes. For example, for a SNP such as rs17572584, which
has an MAF near 0.10 and an effect size of 1.6, the
power to detect its association to asthma via a TDT in
CAMP Trio is 0.37, while the power in CAMP/Illumina
is 0.45. For a SNP such as rs4653637, which has an
MAF near 0.40 and an effect size of 1.4, the power in
CAMP Trio is 0.39, while the power in CAMP/Illumina
is 0.47. Thus, despite a significant increase in power,
neither design individually has a large enough number
of subjects to make it adequate to detect most of the
small effect sizes that are expected for asthma. In this
work, we attempted to find out whether a combination
of the results of the two designs would be helpful to
find SNPs that replicated in independent populations,
and hence, were likely to be truly associated with
asthma.

The top SNPs according to the results for individual
designs did not overlap [Figure 2], and only 1/18 of the
top SNPs that were genotyped for replication Stage 1
had a p-value < 0.05 [Table 1]. Because of the low p-
values in either the CAMP/Illumina or CAMP Trio
designs, we were more lenient with the replication
threshold for these SNPs to be analyzed for Stage 2, and
proceeded to consider the SNPs with p-value < 0.10 in
CR. Based on the overall results in Table 1, only the
three CAMP/Illumina SNPs on Chromosome 5 (Table
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Table 5 Replication of 3 Chromosome 17 SNPs near ORMDL3 initially reported by Moffat et al. [5]

SNP BP CAMP/lllumina CAMP Trio CAMP trios Reported in [12] CR Reported in [12] FHS iCAP
rs9303277 35229995 0.011 0.041 4.0E-03 1.5E-05 8.6E-03 3.3E-03
rs8067378 35304874 7.0E-03 0.10 7.0E-03 8.1E-06 0.019 84E-03
rs7216389 35323475 1.7E-03 0.15 0.13 9.3E-06 0.023 0.040

Associations were in the same direction (data not shown). “CAMP Trio” refers to GWA results corresponding to the 403 trios reported in the current study. “CAMP
trios Reported in [12]" refers to results from a previous candidate gene study corresponding to 444 trios.

1, CAMP/Illumina Rank 1, 3, 14) show evidence of asso-
ciation to asthma. These three SNPs and the two others
near them on Chromosome 5 (Table 1, CAMP/Illumina
Rank 1-3, 5, 14) are near and within sequences of the
PDE4D gene as we reported previously [15]. In this pre-
vious work, we attempted to replicate the top CAMP/
lumina findings in independent populations. We found
that in 2/7 independent populations our results repli-
cated with p < 0.05 and that in 5/7 the results did not
replicate but had consistent effect directions with
CAMP/1llumina, providing overall p-values in the inde-
pendent populations that supported the association of
PDE4D variants with asthma. These previous findings
would have been more difficult to identify based on our
current replication strategy because the CR population
did not convincingly replicate the PDE4D associations.
Thus, having the first stage be a filtering stage limits
our ability to identify some of the SNPs that may be
truly associated with asthma because they may not repli-
cate in an initial independent population but would in
other independent populations. This limitation may be
overcome in future studies that pool GWA results
across multiple populations.

Most of the SNPs that passed replication Stage 1 were
distributed closer to the nominal p-value thresholds
than to the low p-value extremes of either CAMP/Illu-
mina or CAMP Trio [Figure 2B in green]. The SNPs
that passed replication Stage 2 were even closer to the
nominal p-value thresholds than those of replication
Stage 1 [Figure 2B in red]. Thus, SNPs with consistent
results in the two initial study designs were more likely
to replicate in independent populations than those with
extreme p-values in either individual design. Tables 2, 3
and 4 detail the characteristics of the SNPs that passed
replication Stage 2 (i.e. had p-value < 0.05 in CR and
either FHS or iCAP, with consistent effect direction
across all populations), and hence, are most likely to be
truly associated with asthma. Most of these SNPs are in
or near genes [Table 2], making them more likely to
have biological relevance than SNPs that are often
found to be associated with asthma and are in gene
deserts. The top SNP (rs17572584) in Table 2 has an
overall p-value across the independent populations that
is significant after multiple comparisons corrections for
the number of SNPs that were genotyped in Stage 1 (p-

value = 0.048). If the results for this SNP in the inde-
pendent populations are combined with those of the pri-
mary CAMP studies, then the overall p-value would be
9.7E-07 with CAMP/Illumina and 8.3E-06 with CAMP
Trio. The rs17572584 SNP is downstream of the carbo-
hydrate (N-acetylglucosamine-6-O) sulfotransferase 2
gene (CHST2 [MIM 603798]), which encodes a sulfo-
transferase for 6-sulfated glycan synthesis. Transcription
of this gene has been found to be coordinated with that
of NF-kappaB and GATA-3, both of which are involved
in Th2 cell differentiation [39]. Because Th2 cells are
prominent in asthma, especially allergic asthma, genes
such as CHST2 that modulate Th2 cell differentiation
are likely to play a role in asthma susceptibility. Further,
the CHST2 protein product has been shown to be
expressed in the human lung [40]. Even though CHST2
is a plausible candidate gene for asthma, rs17572584 is
located downstream of this gene, and hence, further
study is needed to find out whether the association we
measured is stronger in SNPs located nearer or within
the gene across multiple populations. However, identifi-
cation of this association using either CAMP/Illumina
or CAMP Trio alone would have been difficult since
this SNP ranked 2,539 and 22,513 in these primary stu-
dies, respectively. The fact that our strongest associa-
tions were located in regions that were not at the lowest
p-value extremes, but were at nominally significant
levels, reflects the potential of small populations to con-
tain useful genetic associations that can be found by
increases in power. As stated previously, this power lim-
itation may be overcome in future studies that pool
GWA results across multiple populations.

Currently, among regions reported to be associated
with asthma, the one on chromosome 17q21 near
ORMDL3 [MIM 610075] [5-12] has been the most con-
sistently replicated. We previously reported [15] that
nine CAMP/Illumina SNPs support the original associa-
tion findings by Moffatt et al. in this region [5], by hav-
ing p-values < 0.05. Of these nine SNPs, only one
(rs9303277) has a CAMP Trio p-value < 0.05. However,
this SNP was excluded from our Replication Stage 1
because its CAMP/Illumina p-value was equal to 0.011
(i.e. was greater than our 0.010 cutoff). In a separate
study of association in the 17q21 region, rs9303277 was
reported to have a p-value = 4.0E-03 in CAMP trios and



Himes et al. BMC Medical Genetics 2010, 11:122
http://www.biomedcentral.com/1471-2350/11/122

= 1.5E-05 in CR trios [12]. The lower CAMP p-value
reported in [12] was obtained using TagMan SNP Gen-
otyping Assays (Applied Biosystems) data corresponding
to 444 white trios, and not the GWA data correspond-
ing to 403 trios reported in the current study. The dif-
ference in CAMP p-values as a result of using a slightly
increased number of trios and different genotyping plat-
forms is another reflection of the low power of CAMP
Trio, and suggests that additional SNPs with more mod-
est p-values than those considered by our replication
strategy are truly associated with asthma. Because the
17921 region near ORMDL3 has been consistently repli-
cated in so many studies, including CAMP and CR, we
evaluated the association for three of the SNPs originally
reported by Moffat, et al. in iCAP and FHS. As Table 5
shows, these three SNPs replicated with nominal p-
values < 0.05 in these two populations, growing the total
number of independent populations replicating this
region’s results to over 12. Additionally, the replication
of the chromosome 17q21 results in FHS and iCAP
helps validate the use of these populations, which were
not ascertained to have asthma using as strict criteria as
CAMP and CR, in asthma association studies.

In previous work that developed a method to identify
reproducible associations in small affected trio-based
cohorts, two CAMP Trio SNPs were found to reach
genome-wide significance according to the developed
criteria [41]. These SNPs (rs10863712 and rs1294497)
ranked first and second according to an initial power
screen and had FBAT p-values that passed the corre-
sponding genome-wide significance thresholds (i.e. p-
value < 0.005). The CAMP/Illumina p-values (ranks) for
these two SNPs were 0.28 (149891) and 0.049 (27336)
for rs10863712 and rs1294497, respectively. The CAMP
Trio p-values (ranks) for these two SNPs were 0.0032
(1684) and 0.0048 (2547) for rs10863712 and rs1294497,
respectively. Thus, neither of these SNPs met the cri-
teria for replication Stage 1 and neither was tested for
replication in our independent cohorts. Future attempts
to replicate the top SNPs according to the power-based
screening methodology would be helpful to compare its
utility with that of the current approach of combining
case-control and family-based results.

Our study has limitations similar to those of many
other GWA studies. In addition to having low power to
detect associations and some missing genotypic data for
all of our populations, there were differences in the way
our populations were ascertained to have asthma.
CAMP and CR are the most similar populations, as they
are composed of children with asthma who were care-
fully ascertained for asthma studies. However, the two
populations are ethnically different and have markedly
different environmental exposures. The FHS population
was not initially gathered for asthma research, but
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asthma status has been assessed for its participants
based on self-reported doctor’s diagnosis. The iCAP
cohort was selected based on data, including ICD-9
codes for asthma and medication history, extracted from
de-identified EMRs. The diversity of our populations
increases the certitude that the SNPs that are in Table 2
are general asthma variants, rather than variants that are
associated to asthma sub-phenotypes that characterize
each of the populations. Any errors in the assignment of
cases and controls would decrease our ability to find
associations, and thus, does not increase the likelihood
that the SNPs in Table 2 are false positive associations.

Conclusions

Our results suggest that SNPs with similar case-control
and family-based association results in designs that
share probands are those that are most likely to repli-
cate in independent populations, rather than the SNPs
with the smallest p-values in either case-control or
family-based designs alone. Thus, using probands from
family-based studies in case-control designs, and com-
bining results of both approaches, may be a way to aug-
ment our ability to find SNPs associated with asthma
and other complex diseases.

Additional material

Additional file 1: Table S1. CAMP/Illumina and CAMP Trio SNPs that
replicated in CR with p-value < 0.05.
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