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Abstract

Background: Mutations in the LDLR gene are the most frequent cause of Familial hypercholesterolemia, an
autosomal dominant disease characterised by elevated concentrations of LDL in blood plasma. In many
populations, large genomic rearrangements account for approximately 10% of mutations in the LDLR gene.

Methods: DNA diagnostics of large genomic rearrangements was based on Multiple Ligation dependent Probe
Amplification (MLPA). Subsequent analyses of deletion and duplication breakpoints were performed using long-
range PCR, PCR, and DNA sequencing.

Results: In set of 1441 unrelated FH patients, large genomic rearrangements were found in 37 probands. Eight
different types of rearrangements were detected, from them 6 types were novel, not described so far. In all
rearrangements, we characterized their exact extent and breakpoint sequences.

Conclusions: Sequence analysis of deletion and duplication breakpoints indicates that intrachromatid non-allelic
homologous recombination (NAHR) between Alu elements is involved in 6 events, while a non-homologous end
joining (NHEJ) is implicated in 2 rearrangements. Our study thus describes for the first time NHEJ as a mechanism
involved in genomic rearrangements in the LDLR gene.

Background
Familial hypercholesterolemia (FH) is an autosomal
dominant disease, caused predominantly by variants in
the low density lipoprotein receptor (LDLR) gene.
Pathogenic alternations in the LDLR protein cause a
lack of functional receptors for LDL particles on the
liver cell surface and give rise to increased serum LDL-
cholesterol levels. The high LDL-cholesterol level fre-
quently gives rise to tendon xanthomas, xanthelasmas,
arcus lipoides corneae, and accelerated atherosclerosis
resulting from cholesterol deposition in the arterial wall,
thereby increasing the risk of premature coronary heart
disease. The frequency of heterozygous FH in most
populations is about 1/500, homozygous FH is rare (≤
1/1000,000) [1]. The identification and treatment of FH

patients and their affected relatives with effective lipid-
lowering agents is important and as this has been
shown to significantly reduce both coronary morbidity
and mortality [2,3]. Genetic testing is the preferred diag-
nostic method in FH families because it provides an
unequivocal diagnosis [1,4,5]. The LDLR gene is loca-
lized at 19p13.2, is composed of 18 exons spanning 45
kb, the transcript is 5.3 kb long and encodes a peptide
containing 860 amino acids [6]. LDLR mutations have
been reported along the whole length of the gene in FH
patients from around the world. At present, the number
of identified unique LDLR allelic variants is over 1000:
65% of the variants are DNA substitutions, 24% small
DNA rearrangements (< 100 bp) and 11% large DNA
rearrangements (> 100 bp) http://www.ucl.ac.uk/ldlr/
Current/index.php?select_db=LDLR and [7].
Genesis of large DNA rearrangements in the LDLR

gene is frequently associated with Alu elements, which
are highly abundant in this particular locus [6,8,9].
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Publication of the human genome DNA sequence has
revealed that there are 98 Alu repeats within the LDLR
gene (95 in intronic sequences and 3 in the 3’untrans-
lated region) and Alu repeats accounted for 65% of
LDLR intronic sequences [10].
Alu is the most abundant short interspersed nuclear

element (SINE) of the human genome, occupying 10%
of the genome content with a copy number estimated to
be at least 1.3 million [11]. Consensus Alu sequence is
approximately 300 bp in length, and consists of two
similar, but distinct monomers. The longer right Alu
monomer contains a 31 bp insert absent from the left
Alu monomer. A functional RNA polymerase III promo-
ter is present in the left monomer, but is absent from
the right monomer [12,13]. Alu sequences are regarded
as retrotransposons that have inserted into the human
genome via a single-stranded RNA intermediate gener-
ated by RNA pol III transcription [14]. The Alu dimer is
usually followed by a 3’A-rich region, a typical feature of
SINEs, and the two monomers are separated by a mid-
dle A-rich region, an obvious remnant of an ancestral
monomeric Alu’s 3’A-rich tail [15].
Throughout Alu evolution, the source gene(s) accu-

mulated mutations that were incorporated into the new
copies made, creating new Alu subfamilies. Therefore,
the Alu family is composed of a number of distinct sub-
families characterized by a hierarchical series of muta-
tions that result in a series of subfamilies of different
ages [16-20].
Alu repeat dispersion throughout the genome offers

many opportunities for homologous recombinations.
Nonallelic homologous recombination (NAHR) is the
most common mechanism underlying disease associated
genome rearrangements. NAHR can use either region-
specific low-copy repeats or repetitive sequences (e.g.,
Alu) as homologous recombination substrates [21,22].
Another recombination mechanism causing genomic
disorders is nonhomologous end joining (NHEJ). This
process involves the double strand breakage of DNA fol-
lowed by end joining in the absence of extensive
sequence homology [23-25]. NHEJ is associated with
very short stretches of sequence identity (a few bp)
between the two ends of the breakpoint junctions
[22,26,27].
In this study, we present results of analyses of large

genomic rearrangements in Czech FH patients detected
using Multiple Ligation dependent Probe Amplification
(MLPA). In set of 1441 unrelated FH patients, large
genomic rearrangements were detected in 37 probands.
We found 8 different types of rearrangements, from
them 6 types were novel, not described so far. In all
rearrangements, we characterized their exact extent and
breakpoint sequences. The results showed that 6 events
were products of NAHR between Alu repeat sequences.

The remaining 2 events apparently originated from
NHEJ.

Methods
Patients
One thousand nine hundred and forty five probands
with probable or definite diagnosis of FH, submitted to
the database of the MedPed (Make Early Diagnoses to
Prevent Early Deaths) project in the Czech Republic,
were included into the study. MedPed is an interna-
tional project joining together experts from more than
30 countries of the world. In the Czech Republic, the
project is coordinated by the Czech Society for Athero-
sclerosis. Experimental research reported in this study
has been performed with the approval of the Ethical
Committee of the General University Hospital in Prague,
the Czech Republic, and is in compliance with the Hel-
sinki Declaration. All patients gave their informed con-
sent with their participation in the study, which is a part
of each patient’s personal documentation. The text of
the informed consent is available at: http://www.athero.
cz/user_data/zpravodajstvi/obrazky/File/medped/infor-
movany_souhlas.pdf The patient file in our study
include a) patients with untreated total and/or LDL cho-
lesterol serum levels above the 95th percentile of age, sex
and population specific values; b) patients with elevated
total and LDL cholesterol in serum but untreated levels
unavailable or not exceeding the 95th percentile of age,
sex and population specific values, and, in addition, with
high clinical suspicion of FH based on personal history
and/or family history of premature coronary heart dis-
ease and/or elevated total and LDL cholesterol serum
levels in the first degree relatives.
DNA analysis of FH patients is divided into several

consecutive steps: 1) PCR-RFLP detection of the most
common mutation in the APOB gene (p.Arg3527Gln)
[28,29]; 2) PCR-RFLP detection of the most common
mutations in the LDLR gene (p.Gly592Glu, p.
Asp266Glu, and p.Arg416Trp); 3) PCR-sequencing of
LDLR exon 4 (the exon with the greatest occurrence of
mutations in Czech FH patients); 4) MLPA analysis of
all LDLR exons; 5) PCR-sequencing of the promoter and
LDLR exons 1, 5, 6, 9, 10, 12, 14; and 6) PCR-denatur-
ing high performance liquid chromatography of LDLR
exons 2, 3, 7, 8, 11, 13, 15, 16, 17, and 18, followed by
sequencing of positively tested regions.
The break of DNA analysis in case of a mutation find-

ing depends on personal and family history of hypercho-
lesterolemia, the presence of tendon xanthomas,
xanthelasmas, early coronary artery disease and prema-
ture coronary heart disease. The DNA analysis con-
tinues in cases when i) a phenotype manifestation could
be associated with the presence of two LDLR mutations
or ii) a detected missense mutation is new with hardly
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predicted effect on the protein structure and function.
This diagnostic process is common in FH diagnostics
[30,31]. Only data obtained by MLPA analysis are pre-
sent in this study.

Analysis of deletion and duplication breakpoints in the
LDLR gene
DNA was isolated according to the standard salting-out
method. MLPA was performed using SALSA MLPA
KIT P062-C1 LDLR (MRC-Holland), according to the
manufacturer’s instruction, and analysed on CEQ 8000
Genetic Analysis System (Beckman Coulter). To charac-
terize the precise locations of genomic breakpoints, a
number of amplifications and PCR product analyses
were performed. Primers for initial long-range amplifica-
tions are given in Table 1 together with approximate
sizes of PCR fragments of mutated alleles and nested
primers for precise determination breakpoints using
DNA sequencing. Long-range PCR were performed
using Expand Long Template PCR System Kit (Roche)
and PCR amplifying fragments around breakpoints using
AmpliTaq Gold polymerase (Applied Biosystems). PCR
products were purified and sequenced on ABI PRISM
310 DNA-sequencer (Applied Biosystems). Repetitive
sequences were identified using RepeatMasker version-
3.1.5 available at http://www.repeatmasker.org/cgi-bin/
WEBRepeatMasker.

Results
For DNA analysis, 1945 FH probands were selected: 252
probands (13,0%) had the APOB mutation; 186 pro-
bands (9,6%) had the mutation p.Gly592Glu or p.
Asp266Glu or p.Arg416Trp; 66 probands (3,4%) had a

mutation in exon 4. 1441 patients were analyzed by
MLPA and in 37 probands (1,9%) a deletion/duplication
was detected. At present time, the DNA analysis con-
tinues in 1404 patients.
Using MLPA, we found 8 types of large genomic rear-

rangements - 5 deletions and 3 duplications (Table 2).
Six types of rearrangements were novel, so far not
described: exon2_6dup, exon3_12del, exon4_8dup,
exon5_10del, exon9_15del, and exon16_18dup (The ter-
minology used should be read e.g., in exon2_6dup as
duplication of exon 2 to exon 6). Using long-range PCR,
PCR, and DNA sequencing, we analysed breakpoints of
deletions and duplications identified in our FH patients.
In Table 2, we show correct sizes of deletions and dupli-
cations together with terms of repetitive elements sur-
rounding breakpoints. Schematic illustration of
recombination events are given in Figure 1 and 2. As
new rearrangements, we denote deletions/duplications
which have not been described in literature so far in
terms of exons involved. In this denotation, we do not
take into account the exact sequence position of break-
points determined in this work.
NAHR was detected in six DNA rearrangements (pro-

moter_exon2del, exon2_6dup, exon3_12del, exon9_14-
del, and exon9_15del, exon16_18dup). In four NAHRs
(promoter_exon2del, exon2_6dup, exon9_14del, and
exon16_18dup), extensive sequence identity was
detected between the breakpoints. In all four cases, the
rearrangements were caused by recombination between
consensus Alu repeats and novel complete recombinant
Alu sequence was formed in the mutation breakpoint.
In contrast, sequence identity around breakpoints of
rearrangements exon3_12del and exon9_15del was not

Table 1 Primers for LDLR breakpoint analysis

Mutation at cDNA
level

Primers for long-range PCR
(5’® 3’direction)

Size*
(kb)

Primers for precise breakpoint
determination
(5’® 3’direction)

promoter_ex2del F: TGTCGCAAATGGCATAAGGAA
R: CGGATTTGCAGGTGACAGACA

2.0 F: AAGGCTGCAGTGAAGTATGATGG
R: GAGACGGAGTCTCACTCTGTCG

exon2_6dup F: AGTTCAAGTGTCACAGCGGC
R: GTCTTGGCACTGGAACTCGT

8.0 F: AGTTCAAGTGTCACAGCGGC
R: CAAGGTTGGCGTTTTTCATATT

exon3_12del F: CCAGAAGATTCCAGAAATTTCCAG
R: CCTTTCTCCTTTTCCTCTCTCTCA

3.5 F: TGGCTCACTGCAAGCTCCG
R: AGGCTGGAGTCCAGTGGTACC

exon4_8dup F: CAAGTGCCAGTGTGAGGAAGG
R: CCCTTGGAACACGTAAAGACCC

2.5 F: CACGTGACTTCAAGGGGTTAAAG
R: TTCTCTAAAATGCTTGGGACCA

exon5_10del F: CACCTGCATCCCCCAGCTGTGGGC R:
TGGCTGGGACGGCTGTCCTGCGAAC

3.0 F: TTTGTACAGACACAGGCTGGTC
R: CAGATGTCACCTGACAGGTACAG

exon9_14del F: GGAGTGACTTCAAGGGGTTAAAG
R: AGGTGGCTCAGGCTGGGC

0.5 F: GGAGTGACTTCAAGGGGTTAAAG
R: AGGTGGCTCAGGCTGGGC

exon9_15del F: CACGTGATCGTCCCGCCTA
R: AAATTCTTGTCAACCTACTTGTGC

0.8 F: AAATTCTTGTCAACCTACTTGTGC
R: CACGTGATCGTCCCGCCTA

exon16_18dup F: CGTGAACATCTGCCTGGAGTC
R: TCTTCTCATTTCCTCTGCCAGC

3.0 F: TCGTGTGTGTTGGGATGGGA
R: ACCCCAGCCCCCAAACTAAA

F - forward primer; R - reverse primer; * size of PCR fragment of mutated allele. The genomic sequence of the LDLR gene was obtained from http://www.ucl.ac.
uk/ldlr/LOVDv.1.1.0/refseq/LDLR_codingDNA.html.
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Table 2 Genomic characteristics of deletion and duplication breakpoints in the LDLR gene in Czech FH patients

Mutation at cDNA
level

Mutation at DNA
level

Deletion/
duplication size

Recombination
mechanism

Repetitive element 5’/
class/family

Repetitive element 3’/
class/family

No. of
probands

promoter_2exondel c. -1823_190
+566del

13186bp NAHR AluY/SINE/Alu AluY/SINE/Alu 1

exon2_6dup c. 67+3968_940
+296dup

14228bp NAHR AluSx1/SINE/Alu AluSx3/SINE/Alu 9

exon3_12del c.190+984_1846-
1160del

17604bp NAHR FLAM_A/SINE/Alu AluY/SINE/Alu 1

exon4_8dup c.314-446_1187-
386dup

8119bp NHEJ AluSx1/SINE/Alu MER83/LTR/ERV1 1

exon5_10del c. 695-67_1586
+371del

7636bp NHEJ AluJo/SINE/Alu AluSx1/SINE/Alu 4

exon9_14del c.1186+700_2141-
545del

10291bp NAHR AluYa5/SINE/Alu AluY/SINE/Alu 10

exon9_15del) c.1187-
169_2312-790del

14110bp NAHR AluJb/SINE/Alu AluSx1/SINE/Alu 8

exon16_18dup) c.2311
+1941_*1216dup

7248bp NAHR AluYb8/SINE/Alu AluSq2/SINE/Alu 3

Newly described rearrangements are in bold letters; NAHR: nonallelic homologous recombination; NHEJ: nonhomologous end joining.

Figure 1 Schematic illustration of rearrangements in the LDLR gene including DNA sequence of breakpoints. A: promoter_exon2del, B:
exon2_6dup, C: exon3_12del and D: exon4_8dup. Consensus Alu sequences are depicted as red and blue boxes, their monomer subunits are
given in dark and light tones. Sense orientation is marked by a darker tone of the first monomer of the Alu consensus sequence, the opposite
order marks antisense orientation. MER83 repeat is depicted as a green box. Grey boxes represent sequence overlaps between 5’end and 3’ end
of the reference sequence.
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so extensive like in previous cases. These mutations
were caused by recombination between an Alu repeat in
monomer status and a consensus Alu repeat (dimer sta-
tus). The recombination between FLAM_A (free left Alu
monomer, size: 133 bp) and AluY (size: 315 bp) was
detected in exon3_12del. The recombination between
AluJb (size: 137 bp) and AluSx1 (size: 311 bp) was iden-
tified in exon9_15del. The deletion breakpoints of both
consensus Alu repeats were localised in right monomer
and so novel complete monomer recombinant Alu
sequence was formed in the mutation breakpoint. Pro-
moter_exon2del, exon2_6dup, exon9_14del and
exon9_15del were formed between Alu repeats in the
antisense orientation, exon3_12del and exon16_18dup
between Alu repeats in the sense orientation.
NHEJ was detected in two DNA rearrangements

(exon5_10del and exon4_8dup). In exon5_10del, the
breakpoint localized in intron 4 was present at the end
of the AluJo repeat in antisense orientation, and the
breakpoint localized in intron 10 was at the end of the
AluSx1 repeat in the sense orientation. In exon4_8dup,

the breakpoint in intron 3 was localized in the MER83
repeat (ERV1 family repeat) and the breakpoint in
intron 8 in the AluSx1 sequence. There is no sequence
homology between these repeats.

Discussion
The 117 large DNA rearrangements are listed on http://
www.ucl.ac.uk/ldlr/Current/index.php?select_db=LDLR
[7]: 100 deletions and 17 duplications. In the view of 98
Alu repeats within the LDLR gene [10], it is probable that
DNA rearrangement breakpoints are located inside of
Alu repetitive sequences. In the set of our FH patients,
we detected 37 large DNA rearrangements in the LDLR
gene and performed the precise characterization of
breakpoints in all types of deletions and duplications.
Results define most of breakpoints inside of Alu repeats
(except one localised in ERV1 repeat) and NAHR and
NHEJ as responsible for these rearrangements. Our
results thus demonstrate that Alu mediated recombina-
tion leads to massive disturbances in the structural and
functional integrity of the LDLR gene region.

Figure 2 Schematic illustration of rearrangements in the LDLR gene including DNA sequence of breakpoints. A: exon5_10del, B:
exon9_14del, C: exon9_15del and D: exon16_18dup. Consensus Alu sequences are depicted as red and blue boxes, their monomer subunits are
given in dark and light tones. Sense orientation is marked by a darker tone of the first monomer of the Alu consensus sequence, the opposite
order marks antisense orientation. Grey boxes represent sequence overlaps between 5’ end and 3’ end of the reference sequence.
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Promoter_exon2del is 13186 bp long and was detected
in one Czech FH proband. Approximately 20 kb and 18
kb deletions of promoter, exon 1 and 2 were described
previously [32,33]. Exon3_12del detected in one Czech
FH proband was not described previously but deletions
involving exon 3 were identified (exon3del [34],
exon3_5del [35], exon3_6del [34], exon3_8del [36], and
exon3_10del [37]). Exon5_10del was found in 4 Czech
FH probands and was not described previously. Dele-
tions encompassing exon 5 (exon5del and exon5_6del)
were detected in studies [34,38], respectively. Exon9_14-
del was detected in 10 Czech FH probands. Niessen et
al. found exon9_14del in Danish FH patients and per-
formed also analysis of breakpoints. The correct size of
the deletion described by Niessen was 9713 bp and both
deletion breakpoints were localised in repetitive ele-
ments AluSq [39]. Exon9_14del determined in our FH
probands sized 10291 bp and breakpoints were localised
in repetitive elements AluYa5 and AluY. Exon9_10del
and exon9_12del were also detected in literature [40].
Exon9_15del was present in 8 Czech FH probands and
was not described previously.
All duplications detected in our FH patients were new,

not described so far. Exon2_6dup was detected in 9
Czech FH probands, exon4_8dup was found in one
Czech FH proband, and exon16_18dup was determined
in 3 Czech FH probands. The duplications exon2_8dup,
exon4_5dup, and exon16_17dup were described [41-43].
It is interesting that exon2_6dup and exon9_15del

were not described in literature and on http://www.ucl.
ac.uk/ldlr/Current/index.php?select_db=LDLR, but in
Czech FH patients these are relatively frequent (9 and 8
probands, respectively).
In the above mentioned work, Nissen et al. [39]

described 5 genomic deletions in the LDLR gene and
defined the breakpoints of each deletion. The five dele-
tions were flanked by Alu elements, supporting a muta-
tion mechanism involving unequal homologous
recombination between highly similar Alu elements. The
deletion exon13_15del described by Nissen et al. was
flanked by two AluSg elements and 15 bp had been
inserted at the site of the deleted DNA. This short
insertion did not show similarity to any interspersed
repeats or any other DNA sequence in the LDLR gene.
However, the sequence shows partial homology to sev-
eral sites in human genome. It is possible to speculate,
that in this particular case, the final sequence arrange-
ment has been generated by a more complex mechan-
ism of double strand break repair, involving several
recombination steps (e.g., resection and invasion of one
DNA strand to a site of a partial homology and its elon-
gation, which was not followed by the single-strand
annealing step of homologous recombination, but
instead by synthesis-dependent NHEJ). Alternatively,

this kind of deletion could have been produced by
NHEJ alone, without previous steps of homologous
recombination). However, this cannot be clearly distin-
guished from the final sequence.
In this respect it should be mentioned that deletion

and duplication spectra as the outcomes of recombina-
tion events in a given genomic locus are influenced not
only by the DNA sequence context in the region itself
(e.g., abundance and orientation of repeats and their
variability) [44,45], but also by epigenetic factors. It cor-
responds to the fact that it is chromatin template, not a
naked DNA, which is a subject of recombination. In the
particular case of Alu repeats, the role of heterochro-
matic marks such as DNA methylation, or histone
H3K9 methylation in suppression of recombination by
these elements has been suggested in recent studies
[46-48].

Conclusions
Eight different types of large genomic rearrangements
were detected in the LDLR gene, from them 6 types
were novel, not described so far. Sequence analysis of
deletion and duplication breakpoints indicates that both
intrachromatid non-allelic homologous recombination
(NAHR), and non-homologous end joining (NHEJ) are
involved in LDLR genomic rearrangements. While
NAHR has been described in relation to the LDLR gene,
this study as the first describes NHEJ in LDLR genomic
rearrangements.
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