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Abstract

Background: Otitis media (OM) is a common worldwide pediatric health care problem that is
known to be influenced by genetics. The objective of our study was to use linkage analysis to map
possible OM susceptibility genes.

Methods: Using a stringent diagnostic model in which only those who underwent tympanostomy
tube insertion at least once for recurrent/persistent OM are considered affected, we have carried
out a genome-wide linkage scan using the 10K Affymetrix SNP panel. We genotyped 403 Caucasian
families containing 1,431 genotyped individuals and 377 genotyped affected sib pairs, and 26 African
American families containing 75 genotyped individuals and 27 genotyped affected sib pairs. After
careful quality control, non-parametric linkage analysis was carried out using 8,802 SNPs.

Results: In the Caucasian-only data set, our most significant linkage peak is on chromosome 17q12
at rs226088 with a p-value of 0.00007. Other peaks of potential interest are on 10q22.3 (0.0018I
at rs1878001), 7q33 (0.00105 at rs958408), 6p25.1 (0.00261 at rs554653), and 4p15.2 (0.00301 at
rs2133507). In the combined Caucasian and African American dataset, the 10q22.3 peak becomes
more significant, with a minimal p-value of 0.00026 at rs719871. Family-based association testing
reveals signals near previously implicated genes: 513 kb from SFTPA2 (10q22.3), 48 kb from IFNG
(12q14), and 870 kb from TNF (6p21.3).

Conclusion: Our scan does not provide evidence for linkage in the previously reported regions
of 10q26.3 and 19q13.43. Our best-supported linkage regions may contain susceptibility genes that
influence the risk for recurrent/persistent OM. Plausible candidates in 17q12 include AP2BI, CCL5,
and a cluster of other CCL genes, and in 10q22.3, SFTPA2.
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Background

Otitis media (OM [MIM 166760]) is a worldwide pediat-
ric health care problem. Nearly all children experience at
least one episode of acute OM (AOM). Otitis media, par-
ticularly in children who experience recurrent/persistent
disease, in addition to the short- and long-term effect on
the child places considerable financial burden on the fam-
ilies (parental time, transportation, medications) and on
the health-care system (clinic visits, medical and surgical
therapies, complications). In 1996, Gates [1] estimated
the costs for AOM and chronic otitis media with effusion
(COME) in the U.S. at approximately 3 billion and 2 bil-
lion dollars, respectively. Today the annual cost can be
expected to be much higher [2]. In addition to the finan-
cial burden, the psychosocial impact of OM on the child
and the family is tremendous, but has not been well stud-
ied.

Epidemiologic studies using various methodologies have
demonstrated evidence that genetics plays an important
role in recurrent and persistent OM: population studies
[3-10]; adoption study [11]; familial aggregation studies
[12-16]; and twin and triplet studies. The estimated otitis
media heritability in the retrospective twin study by
Kvaerner et al [17] was 0.74 in females and 0.45 in males,
and in the prospective twin and triplet study of children
followed from birth to 2 years of age by Casselbrant et al
[18] the heritability of time with middle ear effusion was
0.79 in females and 0.64 in males. Similarly, a prospective
study of a community sample of twins estimated herita-
bility of total OM symptom scores as 0.49 to 0.71,
depending on age [19].

While there is substantial evidence that genetics plays a
role in OM, there has been only one genome-wide linkage
scan to date by Daly et al [20] that provided evidence of
linkage of COME and recurrent OM (ROM) to 10q26.3
and to 19q13.43. Subsequent multipoint linkage analysis
of both regions further strengthened the evidence of link-
age [21].

Otitis media is a complex disease with contributions from
immunocompetence, inflammatory regulation and
craniofacial abnormalities that could lead to Eustachian
tube dysfunction; therefore, the underlying genetic deter-
minants are likely to be complex and involve several loci.
Ilia et al [22] in a recent review describe how case-control
studies and animal studies have implicated genes
involved in non-specific immunity (epithelial barriers
and mucins), innate immunity (toll-like receptors, man-
nose-binding lectin, surfactant proteins, cytokines), and
adaptive immunity (Fc-y receptors, immunoglobins).

Our present study aims to localize genes that contribute to
susceptibility to recurrent/persistent middle ear disease by
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carrying out a genome-wide screen for linkage using fam-
ilies containing at least two affected siblings. The identifi-
cation of susceptibility genes may enable us to better
understand the pathogenesis of OM leading to develop-
ment of better and more innovative methods for preven-
tion and treatment, which is especially important in this
era of multi-drug resistant bacteria.

Methods

Population, Enroliment and Assessment

Full siblings, two or more, who had a history of tym-
panostomy tube insertion due to a significant history of
OM, their parent(s) and other full sibling(s) with no his-
tory of tympanostomy tube insertion were eligible for the
study. There was no exclusion of subjects based on gender
or race. The study was explained in detail to the parent(s)
and children, and informed consent was obtained prior to
enrollment. This study was approved by the Human
Rights Committee of the Children's Hospital of Pittsburgh
(CHP) and by the University of Pittsburgh Institutional
Review Board.

The study required only one visit to the Ear, Nose and
Throat (ENT) Research Center at CHP. A detailed history
regarding recurrent/persistent OM was obtained for each
enrolled family member, as well as history regarding risk
factors such as breast-feeding, day care attendance, sib-
lings, and exposure to smoking for the enrolled children.
Medical records of enrolled children were obtained for
review whenever possible. When feasible, children and
parent(s) had an ear examination using pneumatic otos-
copy by the study physicians (MC and EM) who are vali-
dated otoscopists [23]. Tympanograms were obtained
using a GSI-38 middle ear analyzer (Lucas-Grason-Sta-
dler, INC). Children were excluded for the following rea-
sons: major congenital malformations, medical
conditions with a predisposition for OM (e.g. cleft palate,
Down syndrome, or other craniofacial malformations),
cared for in the Intensive Care Unit as a neonate; been on
assisted ventilation, or known sensorineural hearing loss.
The subjects were selected from patients who presented to
the ENT Research Center from several sources: the ENT
Clinic at the CHP and satellite clinics, subjects who were
in other studies at the ENT Research Center, or from phy-
sician- or self-referral.

Phenotype definition

In order to assure a history of significant ear disease, two
or more full siblings who both or all had undergone tym-
panostomy tube insertion were enrolled. While still
recording each subject's medical history, the need for tym-
panostomy tube insertion established that the subject's
history of middle ear disease was truly significant, result-
ing in the need for a surgical procedure. A subject was only
considered "affected" if he/she had undergone tympanos-
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tomy tube insertion at least once for recurrent/persistent
OM, while a subject was considered "unaffected" if he/she
had never had tympanostomy tubes and had no known
history of recurrent/persistent OM. The remaining sub-
jects were considered as having "unknown" disease status.

DNA isolation and genotyping

EDTA anticoagulated whole blood (5 cc if less than 5 years
old; 5-10 ccif 5 years or older; 10-20 cc from parents) was
collected from an arm vein in the Pediatric General Clini-
cal Research Center or in the ENT Research Center or in
satellite clinics and transferred to the Human Genetics
Laboratory within 48 hours. High molecular weight DNA
was isolated by the method of Miller et al [24]. Following
re-suspension, the DNA was quantitated by fluorometry,
diluted to 50 ng/ul, arrayed in a standard 96 well format
and stored at -80°C.

Genotyping was carried out using Affymetrix's GeneChip®
Human Mapping 10K Array in two different versions: 1)
the original GeneChip® Human Mapping 10K Array Xba
131 with 11,560 SNPs with a mean intermarker distance
of 210 kb and an average heterozygosity of 0.37, and 2)
the newer GeneChip® Human Mapping 10K Array Xba
142 2.0 with 10,204 SNPs with a mean intermarker dis-
tance of 258 kb and an average heterozygosity of 0.38.
These two chips are very similar to each other: the newer
SNP chip was created by removing 1,400 SNPs from the
original SNP list and adding approximately 70 new SNPs.
Samples were processed according to the GeneChip Map-
ping Assay Manual (Affymetrix) hybridized at 48°C for 16
hours in an Affymetrix GeneChip Hybridization Oven.
After 16 hours the probe arrays were washed and stained
according to the GeneChip Mapping Assay Manual using
the DNAARRAY_WS2 protocol on the Affymetrix Fluidics
Station 400. Arrays were scanned once with the Agilent
GeneArray 2500 scanner and analyzed with Affymetrix
GeneChip DNA Analysis Software (GDAS) to generate
genotype calls for each of the SNP probes on the array. In
this study we used the older Xba 131 SNP chip to geno-
type 515 people, and the newer Xba 142 2.0 SNP chip to
genotype 1,216 people.

Genetic maps

Starting with the available annotation from Affymetrix,
we carefully updated it, as a fair number of SNPs are actu-
ally bad, hybridizing to multiple positions in the genome.
To detect these, we took the primer sequence for each SNP
and used BLAST to find its position(s) in the genome,
carefully identifying poor multi-hit SNPs, as well as veri-
fying the current best physical position for each good SNP
in the data set. After careful resolution of reference
sequence (rs) numbers, current physical map positions
were retrieved from Ensembl and used to linearly interpo-
late genetic map positions based on the Rutgers Com-
bined Linkage-Physical Map [25].
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Quality Control

To verify the stated pedigree structures, we carried out rela-
tionship testing using a subset of 1,534 well-typed
informative autosomal SNPs (with MAF > = 0.40 and > =
99% genotyping rate) and then made a number of
changes to the structures to minimize the number of rela-
tionship errors while keeping as many people as possible.

PREST identified 73 within-family pairs with p-values <
0.001 [26,27]. Similarly, RELPAIR examined 1,287,210
genotyped relative pairs, and identified 70 within-family
pairs whose inferred relationship was > 1,000 times more
likely than the putative relationship [28,29]. Checking for
relationships between putative families with RELPAIR
revealed two families that had entered the study twice.

Gender checking based on PLINK's algorithm led to the
removal of genotypes for 6 people because of unresolved
gender errors [30]. We replaced the stated gender with the
inferred gender in 4 cases where such a change was sym-
metric in terms of relationship and OM affection status,
and so would not alter the linkage results.

A number of conservative changes were made in response
to the relationship testing results, including the following:
To resolve the 10 putative monozygotic (MZ) twin pairs
identified, from the larger families, we removed the least
typed member of an MZ pair 6 times, and we completely
removed 2 families that each contained only a single
inferred MZ pair. To resolve putative half-sib (HS) fami-
lies, we removed 6 families containing only a single
inferred HS pair, and from larger families, we removed a
single person to eliminate the putative HS pair 4 times. To
resolve the two families that had participated twice in our
study, in both cases, only the more completely typed fam-
ily was kept.

After resolving the relationship errors, we then removed
all genotypes for the 250 individuals with a per person
genotyping success rate less than 90%.

Identity-by-state cluster analysis based on PLINK's hierar-
chical clustering algorithm was used to verify that the self-
reported ethnicities were consistent with the clusters gen-
erated from the SNP marker data.

Consistent with the ethnicity distribution in our sampling
area, the majority of our families, 403, were Caucasian,
while there were only 26 African American families. For
the purposes of analyses, the larger Caucasian data set was
first analyzed by itself. Here, 147 SNPs were excluded due
to a HWE p-value < = 0.001 (computed by PLINK using
only founder genotypes); 1,936 SNPs were excluded
because their genotyping success rate across all individu-
als was less than 90%; 999 SNPs were excluded due to an
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MAF < 0.05; leaving 8,802 SNPs that were used in the link-
age analyses.

Allele frequencies

For the initial analyses using Merlin [31], allele frequen-
cies were estimated from the data, ignoring family struc-
ture, by simple gene counting. On small nuclear families
such as we have here, this approach results in unbiased
estimates [32]. For the subsequent analyses using Mendel
[33], allele frequencies were estimated by maximizing the
pedigree likelihood while properly taking the family struc-
tures into account.

Linkage Analysis

We used PedCheck [34] to detect Mendelian inconsisten-
cies; all genotypes at each problematic SNP were zeroed
out within each family containing a Mendelian inconsist-
ency. We used Merlin [31] to carry out non-parametric
linkage analyses using the S, statistic using sex-averaged
genetic maps and allele-counting allele frequency esti-
mates; Minx was used to analyze the X-linked data. Sum-
mary statistics were computed using Pedstats [35]. File-
format conversions were done using Mega2 [36].

To assay the effects of SNP-SNP linkage disequilibrium,
we recomputed the LOD scores using Merlin's LD mode-
ling (--rsq 0.1) option [37]. To examine robustness to
other modeling assumptions, we also analyzed the data
using the Mendel v.9.0.0 package [33] in a series of three
steps: (a) We used Mendel's mistyping option to zero out
all genotypes at each problematic SNP within each family
containing a Mendelian inconsistency; (b) We used Men-
del's allele frequency option to estimate the allele fre-
quencies at each SNP while properly taking the family
structures into account; (c¢) We used Mendel's non-para-
metric linkage (NPL) option to compute an 'additive all'
linkage statistic, using the replicate pool method with 50
replicates and 100,000 samples to generate accurate
empirical P-values. These analyses used sex-specific
genetic maps for the autosomes, and the female map for
the X chromosome.

Combined linkage analyses

After the initial analyses using the Caucasian-only data
set, we carried out additional linkage analyses of the com-
bined Caucasian and African American data set. For these
analyses, we used Mendel's options for estimating and
using ethnic-group specific allele frequencies. We did not
analyze the African American families by themselves, as
the sample size was too small by itself to have adequate
power: only 26 African American families containing 27
genotyped affected sib pairs.

Candidate gene prediction
We used the GRAIL "Gene Relationships Across Impli-
cated Loci" software to search our linkage peaks for possi-
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ble candidate genes based on similarity to a set of
previously implicated OM candidate genes [38]. Similar-
ity is measured using automated statistical text mining of
250,000 PubMed abstracts. GRAIL can identify related-
ness between genes even when there are no published co-
citations or established pathways in common. GRAIL was
run using a seed list of previously implicated candidate
genes. While the GRAIL results do depend on the seed list,
the GRAIL approach does avoid circular reasoning when
assigning a score to each query region by not considering
any seed regions that share genes with the query region.

Association analyses

Using the Caucasian-only data set, we tested for associa-
tion of 8,585 autosomal SNPs (which met our quality
control criteria) using the gamete competition statistic
implemented in Mendel [33]. This statistic, which tests
the null hypothesis of no linkage and no association, uses
all the family information to test for over-transmission of
a specific SNP allele to affecteds with complementary
under-transmission to unaffecteds. These results were
annotated using the WGA Viewer program [39].

Results

Using a stringent diagnostic model in which only those
who underwent tympanostomy tube insertion at least
once for recurrent/persistent OM are considered affected,
we have carried out a genome-wide linkage scan using the
10K Affymetrix SNP panel. We genotyped a panel of 403
Caucasian families containing 1,431 genotyped individu-
als, and 26 African American families containing 75 gen-
otyped individuals. For the purposes of analyses, the
larger Caucasian data set was first analyzed by itself. After
careful quality control, non-parametric linkage analysis
was carried out using 8,802 SNPs; the cleaned Caucasian
data contained 377 genotyped affected sib pairs (ASPs)
(89 female-female ASPs, 110 male-male ASPs, and 178
male-female ASPs). Initial linkage analyses with Merlin
found two regions with linkage peaks with linear S ;; LOD
scores > 2.0 with a maximum LOD of (a) 2.83 on chromo-
some 17ql12 at 15226088 and (b) 2.25 on 6p25.1 at
1s554653 (Additional file 1). When marker-to-marker
linkage disequilibrium (LD) is modeled, we obtain a max-
imum LOD of 2.85 at rs226088, and of 2.16 at 1s554653.
Additionally, we observed a maximum LOD of 2.00 on
chromosome 7q33 at rs1343697 (increased from 1.96
previously). Sensitivity to marker-to-marker LD should be
modest, as 57.6% of the families have both founders gen-
otyped, and 38.5% have one founder genotyped.

Mendel-based linkage results, which use better allele-fre-
quency estimates, sex-specific maps, and empirical P-val-
ues, are summarized in Table 1 and Figure 1. For the
Caucasian-only data set, the most significant empirical p-
value on chromosome 17q12 is 0.00007 at rs226088.
There are four other peaks with suggestive p-values: chro-
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mosome 10q22.3 with a minimal p-value of 0.00181 at
rs1878001; chromosome 7g33 with a minimal p-value of
0.00105 at 1s958408; chromosome 6p25.1 with a mini-
mal empirical p-value of 0.00261 at 1s554653; and chro-
mosome 4p15.2 with a minimal p-value of 0.00301 at
1s2133507.

When we carried out analyses of the combined Caucasian
and African American sample, using group-specific allele
frequency estimates, three of the peaks (on chromosomes
17, 6, 4) became a bit less significant, while the chromo-
some 7 peak significance level stayed essentially the same
and the chromosome 10 peak became more significant,
with a minimal p-value of 0.00026 at rs719871 (Table 1
and Figure 1). As mentioned above, the combined sample
adds 26 African American families containing 75 geno-
typed individuals. This African American sample contains
27 genotyped affected sib pairs (ASPs) (5 female-female
ASPs, 8 male-male ASPs, and 14 male-female ASPs).

We used the GRAIL "Gene Relationships Across Impli-
cated Loci" software to search our linkage peaks for possi-
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ble candidate genes based on similarity to a 'seed' set of
previously implicated OM candidate genes [38]. To do
this, we used a seed list of 36 candidate genes
(ADAMTS13, BCL6, CD14, DNAH5, EVI1, EYA4,
FBXO11, FCGR2A, GJB2, GJB6, HLA-A, IFNG, IL10, IL13,
IL1A, ILIRN, IL4R, IL6, MAPK14, MAPKS8, MBL2, MMP2,
MMP9, MUC2, MUC4, MUC5AC, MUC5B, SERPINEI,
SERPING1, SFTPA1B, SFTPA2B, SFTPD, TGFB1, TLR2,
TLR4, TNF). For the chromosome 17 linkage peak, the
most significant candidate genes with p-values < 10-13 are
CCL5, CCL18, CCL3, and CCL4. For the chromosome 10
peak, the most significant candidate genes with p-values <
10-13 are SFTPA1B, SFTPA2, SFTPD, and PLAU. For the
chromosome 7 peak, the most significant candidate gene
EPHBG6 had a p-value of 2.6 x 10-¢. For the chromosome 6
peak, the most significant candidate genes with p-values <
10-11 are LY86, SERPINBY, and F13A1. For the chromo-
some 4 peak, the most significant candidate gene with p-
values < 10-11 was SOD3.

Using the Caucasian-only data set, we tested for associa-
tion of 8,585 autosomal SNPs (which met our quality

Table I: Additive ALL linkage statistics as computed by Mendel, grouped by peak, for the Caucasian-only data set and for the

combined Caucasian and African American data set.

Chromosome Locus Physical position

Caucasian P-value Combined P-value

17 rsl1439 30539277
17 rs938298 30711529
17 rs722374 30770914
17 rs226088 31041457
17 rs2680398 32663038
10 rs1878001 79048564
10 rs2244688 79076786
10 rs2812415 79076976
10 rs719871 79815441
10 rsl369752 79918761
7 rs1343697 132603523
7 rs718656 132771392
7 rs958408 132791458
7 rsl073158 133116548
7 rs958404 133247726
6 rsll12267 4873386
6 rs2326584 5234205
6 rs2326689 5966877
6 rs1902946 6313577
6 rs554653 6492486
4 rs2133507 24779140
4 rsl402031 25204628
4 rs939353 25204915
4 rs1378943 25382169
4 rsl378946 25382548

53.18 0.00028 0.00062
534l 0.00022 0.00047
53.48 0.00020 0.00042
53.75 0.00007 0.00023
55.69 0.00052 0.00127
99.31 0.00181 0.00039
99.34 0.00183 0.00039
99.35 0.00185 0.00039
100.11 0.00215 0.00026
100.23 0.00223 0.00027
139.97 0.00118 0.00115
140.06 0.00106 0.00110
140.08 0.00105 0.00111
140.27 0.00123 0.00128
140.33 0.00127 0.00132
15.03 0.00330 0.00921
16.06 0.00304 0.00962
17.94 0.00312 0.00786
18.81 0.00276 0.00649
19.23 0.00261 0.00569
40.67 0.00301 0.00521
41.72 0.00365 0.00469
41.73 0.00366 0.00467
42.20 0.00339 0.00461
42.21 0.00338 0.00463

For each peak, we list the 5 SNPs that are most significant in the Caucasian data set. Bold indicates a p-value less than 0.0005; the minimum p-value

in each region is in italics.
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control criteria) using the gamete competition statistic
implemented in Mendel [33]. The most significant associ-
ation signals are listed in Additional file 2. While none of
these are significant after Bonferroni or false discovery rate
correction for multiple testing, there are a few highly
ranked signals that are near previously implicated candi-
date genes. One SNP (rs1437803, P-value 0.0005, rank 5)
is 513 kb from SFTPA2 on chromosome 10. Two SNPs
(rs722749, P-value 0.0009, rank 11 and 1s722748, P-
value 0.0013, rank 15) are 48 kb from IFNG on chromo-
some 12. Two SNPs (rs2213584, P-value 0.0021, rank 22
and rs2227139, P-value 0.0021, rank 23) are 870 kb from
TNF on chromosome 6. Note that the gamete competition
test should detect association signals at much larger dis-
tances than a regular case/control association test in unre-
lateds because the gamete competition test relies on
measuring transmission distortion within families.

Discussion

While there is fairly strong evidence that otitis media has
a strong genetic component, to our knowledge there has
been only one prior family-based linkage study of otitis
media. This first study provided evidence of linkage of
COME/ROM to chromosome 10q26.3 at marker
D10S212 and to chromosome 19q13.43 at marker
D19S254 [20]. We report here on our genome-wide link-
age scan for risk genes for otitis media. In our study, we
chose to focus on severe disease, collecting affected sib
pair families where at least two full siblings had under-
gone tympanostomy tube insertion. By narrowing the dis-
ease definition, we hoped to identify a more severe form
of OM that is perhaps due to a small number of loci. This
approach has proven remarkably successful in several
complex diseases, such as breast cancer and Alzheimer's
disease, where subdivision according to age of onset con-
tributed to the mapping and cloning disease genes
[40,41]. Additionally, it has been shown that there are sta-
tistical advantages in using a "narrow-phenotype"
approach [42], because the power of an affected sib pair
approach increases as the population prevalence of the
trait decreases.

The rate of tympanostomy tube insertion in second sib-
lings may be increased due to the parents' wishes to have
the procedure performed earlier or for less significant dis-
ease than the first child because of prior positive experi-
ences in the first sibling. This could potentially make it
difficult to separate the genetic effect of OM from the par-
ents' influence on the treatment. However, we have reason
to believe such an effect, if it exists, will be small in our
sample. Firstly, the majority of our sample was treated at
the Children's Hospital of Pittsburgh, where our criteria
for insertion for tubes are consistent and very stringent.
Secondly, at entry we obtained, for each subject, a history

http://www.biomedcentral.com/1471-2350/10/85

of middle-ear disease prior to tube insertion to assess the
subject's eligibility.

Since the majority of our families were Caucasian, we
present two linkage analyses, one where we analyzed only
the 403 Caucasian families by themselves, and a com-
bined analysis where we jointly analyzed both the 403
Caucasian and 26 African American families (Table 1 and
Figure 1). The Caucasian-only analyses generate a strong
linkage signal on chromosome 17q12, as well as four
other potentially interesting peaks (10q22.3, 7q33,
6p25.1, 4p15.2). The combined analyses strengthen the
evidence for the 10q22.3 peak. Our scan does not provide
evidence for linkage in the previously reported regions of
10q26.3 and 19q13.43 [20,21].

The very tip of our 17q12 linkage peak occurs in AP2B1
(adaptor-related protein complex 2, beta 1 subunit),
which plays a role in Nef-mediated CD8 down-regulation
[43], and children with recurrent otitis media had low
numbers of CD8+-producing IFN g cells in adenoids [44].
However, the chromosome 17 peak also contains a cluster
of CCL (chemokine C-C motif ligand) genes, several of
which were highlighted as possible candidates by the
GRAIL analyses. CCL5, also known as RANTES, is 18 kb
from the linkage peak, and has been previously associated
with otitis media [45-52]. CCL5 is an eosinophil chem-
oattactrant that is thought to play a role in the accumula-
tion of eosinophils often observed in middle ear effusions
of OM with allergy.

The combined 10q22.3 linkage peak is 1.2 Mb from a pre-
viously implicated candidate gene SFTPA2. This peak also
contains a strongly associated SNP rs1437803 (Additional
file 2, P-value 0.0005, rank 5), which is 513 kb from
SFTPA2. The human surfactant protein A (SP-A) is
expressed in the Eustachian tube, plays a role in innate
host defense, upregulates phagocytosis of many OM risk
pathogens (including Streptococus pneumoniae, Haemo-
philus influenzae, and respiratory syncytial virus), and con-
sists of two very similar functional genes SFTPAI and
SFTPA2 located 5 kb apart on chromosome 10. Ramet et
al [53] reported that the frequency of specific SP-A haplo-
types and genotypes differ between children who experi-
ence their first episode of acute otitis before age 6 months
and the general population. Pettigrew et al [54] also found
that polymorphisms within the SP-A loci were protective
for otitis media among white infants at risk for asthma.

In the remaining linkage peaks, the majority of the genes
highlighted by GRAIL as possible candidates do not have
prior evidence of involvement with OM.

While none of the association results (Additional file 2)
are significant after correction for multiple testing, the
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level of evidence required is less for previously implicated
genes. Thus, in addition to the associated SNP 513 kb
from SFTPA2 mentioned above, it is noteworthy that we
have associated SNPs 48 kb from interferon-y (IFNG) on
chromosome 12. Genetic variants at IFNG are associated
with risk for otitis media in infants infected with the res-
piratory syncytial virus (RSV) [55]. When RSV-induced
and non-RSV-induced otitis media cases were compared,
significantly higher levels of IFNG were found in the RSV-
induced cases [56]. We also observed two associated SNPs
870 kb from tumor necrosis factor (TNF) on chromosome
6. A TNF -308 polymorphism was associated with both
otitis media susceptibility and placement of tympanos-
tomy tubes [57]. Variants in the promoter region of TNF
were associated with being otitis-prone [58].

The gamete competition test of association used here
relies on transmission distortion within families, and so
should detect association signals at larger distances than
the conventional case/control association test in unrelat-
eds. Even so, the proximity of some association signals to
previously implicated candidate genes mentioned above
may not be that meaningful, as these regions contain
many other plausible candidate genes.

Conclusion

Our linkage scan, the largest to date, has identified two
strong linkage peaks, on 17q12 and 10q22.3 that are
likely to contain genes which influence risk for severe OM.
While both of these peaks contain intriguing and plausi-
ble candidate genes, further fine-mapping, replication,
and functional studies are required to reach more firm
conclusions. We also find association signals near previ-
ously implicated risk genes (SFTPA2, IFNG, and TNF).
Our hope is that our genetic results will help contribute to
an enhanced understanding of the etiology of otitis media
that ultimately may help lead to improved treatment and
prevention of this extremely common childhood disease.
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