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Abstract

Background: Autism, a heterogeneous disease, is described as a genetic psychiatry disorder.
Recently, abnormalities at the synapse are supposed to be important for the etiology of
autism.SHANK3 (SH3 and multiple ankyrin repeat domains protein) gene encodes a master synaptic
scaffolding protein at postsynaptic density (PSD) of excitatory synapse. Rare mutations and copy
number variation (CNV) evidence suggested SHANK3 as a strong candidate gene for the
pathogenesis of autism.

Methods: We performed an association study between SHANK3 gene polymorphisms and autism
in Chinese Han population. We analyzed the association between five single nucleotide
polymorphisms (SNPs) of the SHANK3 gene and autism in 305 Chinese Han trios, using the family
based association test (FBAT). Linkage disequilibrium (LD) analysis showed the presence of LD
between pairwise markers across the locus. We also performed mutation screening for the rare
de novo mutations reported previously.

Results: No significant evidence between any SNPs of SHANK3 and autism was observed. We did
not detect any mutations described previously in our cohort.

Conclusion: We suggest that SHANK3 might not represent a major susceptibility gene for autism
in Chinese Han population.

Background interests and behavior. Autism together with childhood
Autism is a pervasive developmental disorder mainly  disintegrative disorder, pervasive not otherwise specified
characterized by limited or absent verbal communication,  (PDD-NOS, or atypical autism) and Asperger syndrome

lacking of reciprocal social interaction or responsiveness  share the similar characteristics and are all included as
and restricted, stereotypical, and ritualized patterns of  autism spectrum disorder (ASD), also known as pervasive
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developmental disorder (PDD). Family and twin studies
have conclusively described autism as a highly heritable
neuropsychiatry disorder with heritability estimates of
over 90% and the environmental factors contributing no
more than 10% [1-3]. Nevertheless, autism is etiologically
heterogeneous.

Shank3 (SH3 and multiple ankyrin repeat domains 3; also
termed ProSAP2, proline-rich synapse-associated protein
2) is a master synaptic scaffolding protein|4,5]. In rats and
human beings, Shank3 is expressed preferentially in cere-
bral cortex and cerebellum[6,7]. With its multiple protein
interaction domains, this molecule directly or indirectly
connects with neurotransmitter receptors and cytoskele-
ton proteins|[8,9]. It also participates in the formation,
maturation and enlargement of dendritic spines and is
essential for the formation of functional synapses[10].

Accumulating discoveries indicate that autism's cause may
reside in abnormalities at the synapse[3]. Synapses are the
physical sites through which neurons in the brain connect
with each other into an integrated circuit. In 2003, the
alterations in synaptic function was first proposed to be a
possible cause of autism[11]. Neuroligins are a family of
postsynaptic cell adhesion molecules and may be
involved in the synaptogenesis[12]. Mutations of genes
encoding neuroligins (NLGN3, NLGN4X) were supposed
to be pathogenic for autism and Asperger syndrome[13].
Neuroligin-deficiency mouse models according to these
findings exhibit some deficits that are reminiscent of ASD
in human[14,15]. The "neuroligin autim pathway" was
postulated[3]. Shank3 acts as a binding partner for neuro-
ligins(NLGNs)[16]. It was reported that rare mutations in
SHANK3 may contribute to the pathogenesis of autism.
Durand et al. reported two de novo alterations in
SHANK3 in subjects with ASD but not in control individ-
uals. Oneis a G insertion, and the other is a deletion of the
terminal 22q13 with the breakpoint in intron8 of
SHANK3([17]. Moessner et al. identified de novo variants
with an A962G exchange in exon8 leading to a hetero-
zygous Q321R substitution[18]. They also reported a het-
erozygous deletion encompassing SHANK3 in a female
proband but in neither parent nor in two unaffected
brothers[18]. Recently Gauthier et al. found a de novo
deletion at an intronic splice site in their autistic patients,
and this deletion will lead to aberrant splicing of the tran-
script[19]. SHANK3 could also belong to the "NLGN
autism pathway"[1].

All these indicate that SHANK3 might be a strong candi-
date gene for autism. Resequencing has been applied to
identify the rare mutations of this gene, but the linkage
and association studies of SHANK3 are still insufficient. In
this study, we attempted to investigate the association
between the SHANK3 gene polymorphisms and autism in
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305 Chinese Han trios on a population-based approach
using the family-based association test (FBAT). We also
performed mutation screen of this gene in probands with
autism in order to detect the rare de novo mutations
reported previously.

Methods

Subjects

The sample for this study consisted of 305 Chinese Han
family trios (singleton autistic disorder patients and their
unaffected biological parents). These families were
recruited at the Institute of Mental Health, Peking Univer-
sity, China. Of the 305 autistic child probands, 281 were
male and 24 were female. The mean age of the children at
the time of testing was 11 years (range 3-25 years). Diag-
noses of autism were established by senior psychiatrists.
All patients fulfilled the DSM-IV criteria for autistic disor-
der. The cases were assessed using childhood autism rat-
ing scale (CARS)[20] and autism behavior checklist
(ABC)[21]. Children with fragile x syndrome, tuberous
sclerosis, a previously identified chromosomal abnormal-
ity, dysmorphic features, or any other neurological condi-
tion suspected to be associated with autism were
excluded. All subjects provided written informed consent
for participation in this study. The study was approved by
the Fthics Committee of the Health Science Center,
Peking University.

Genotyping and sequencing

Genomic DNA was extracted from the blood using a Qia-
gen QIAamp DNA Mini Kit. We selected seven single
nucleotide polymorphisms (SNPs) in the SHANK3 gene
according to the dbSNP http://www.ncbi.nlm.nih.gov/
SNP/ and the international HapMap project http://
www.hapmap.org/, including 159616915 (missense poly-
morphism), 1$2106112(synonymous polymorphism),
1s6010065, 1313057681 (missense  polymorphism),
152301584 (3'UTR), rs41281537 and 1s756638. Mutation
screen for the rare de novo mutataion reported previously
was performed by sequencing exon8 (for A962G|[18]),
exon21 (for G insertion[17]) and donor splice site G dele-
tion of intron19[19] in all the 305 probands with autism.
The SNPs with frequencies of minor allele frequency
(MAF) in our sample greater than 5% were used as genetic
markers in this study. Three SNPs (159616915, 1s6010065,
1s13057681) were analyzed by polymerase chain reac-
tion-restriction fragment length polymorphism (PCR-
RFLP) analysis. Direct DNA sequencing was used for ana-
lyzing the other SNPs (rs2106112, 152301584,
1s41281537, 1s756638) and detecting the rare de novo
mutation reported previously. The information of primers
and PCR-RFLP analysis is given in Table 1. The PCR
amplification was performed in a 25 pl volume contain-
ing GC Buffer (TaKaRa), 200 mM of each dNTPs, 0.3 mM
of each primer, 1 U of Taq DNA polymerase, and 40 ng of
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Table I: Information of the primers and PCR-RFLP Analysis
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SNP Primer sequence (5'—>3') Product (bp) RFLP Allele (bp)
rs9616915 Forward: acctgggggcttcacctgacta 207 Ava ll T C
Reverse: cccaacccagcacacagagg (180/27) (121/59/127)
rs13057681 Forward: ccgcaagagccccctggtga 328 Sty | G C
Reverse: caggaggcgctcgtcgatggag (198/130) (328)
rs6010065 Forward: ccttacctgggtgggcatt 423 Hinf G C
Reverse: acggggagggctcttgtg (166/257) (423)
rs2106112 Forward: ctgagccactcggaggttgcet 340
Reverse: gtccgaccttcaccacgtteac
rs2301584, rs41281537, rs756638 Forward: cgccaacagtccaggtcac 489
Reverse: cagaaggcatgggctgagtt
G insertion in exon2| Forward: cgggaggagcggaagtcac 409
Reverse: ggacccegttggeaaactct
A962G in exon8 Forward: cgcacgccatgtgtgcattcct 473
Reverse: tctcggggttggggggtcagac
splice doner site of intron19 Forward: gcctggggtggggtctgag 754

Reverse: ttggagcctgggctgtgtg

PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism; SNP, single nucleotide polymorphism.

the genomic DNA. The conditions used for PCR amplifi-
cation were an initial denaturation phase at 94°C for 5
min, followed by 36 cycles at 94°C for 30 sec, annealing
at 60-65°C for 30-60 sec, and extension at 72°C for 30
sec, followed by a final extension phase at 72°C for 7 min.
A 15 pL aliquot of the PCR product mixtures was com-
pletely digested with 3 units of restriction enzyme over-
night. Digestion products were visualized through
ethidium bromide staining after electrophoresis in 1%-
3% agarose gels. The DNA sequencing was performed
after cleaning the PCR product using a BigDye Terminator
Cycle Sequencing Ready Reaction Kit with Ampli Taq
DNA polymerase (PE Biosystem). The inner primers were
used for the cycle-sequencing reaction, and the fragments
were separated by electrophoresis on an ABI PRISM 377-
96 DNA Sequencer (Applied Biosystem, Foster city,
U.S.A).

Statistical analyses

Deviation from the Hardy-Weinberg equilibrium (HWE)
for genotype frequency distributions was analyzed using
the Chi-square goodness-of-fit test. To perform single-
and multi-locus tests of association, we used the FBAT
program (v. 1.5.1)[22]. The FBAT program uses a general-
ized score statistic to perform a variety of transmission dis-
equilibrium tests, including haplotype analysis.
Moreover, the FBAT program provides pairwise linkage
disequilibrium (LD) analysis to detect an inter-marker
relationship, using D' values. SNP pairs were considered
to be in strong LD if D' > 0.70. The global haplotype tests
of association were performed under "multiallelic" mode
in haplotype FBAT. Meanwhile, the individual haplotype
tests were conducted under "biallelic" mode in haplotype
FBAT. Family-based association tests were performed

under an additive model in the present study. The signifi-
cance level for all statistical tests was two-tailed P < 0.05.

Results

Seven SNPs in SHANK3 gene were genotyped in 305 Chi-
nese Han autism trios. SNPs rs2106112 and rs13057681
were not polymorphic in our samples. They were not used
as genetic markers for the association analyses. The other
five SNPs  (1s9616915, 16010065, 152301584,
1s41281537, 15756638) were polymorphic with MAF >
5% and were then used as genetic markers for the associa-
tion study. None of the genotype distributions of these
five SNPs in parents or patients deviated from Hardy-
Weinberg equilibrium (data not shown). Allele frequen-
cies and the results of FBAT for single SNP analyses are
shown in Table 2. None of the five SNPs was significant
evidence (P < 0.05) for preferential transmission of an
allele by FBAT in all samples. To further analyze the pat-
tern of linkage disequilibrium (LD) in our sample, we
computed pairwise LD for all possible combination of the
five SNPs using D' values (Table 3). Four SNPs
(rs6010065, 152301584, rs41281537, 1s756638) were
found to be in strong LD with each other (D'> 0.7) except
for 19616915 (Table 3). To determine whether any spe-
cific haplotype would confer a higher risk for autism, we
tested all specific and globe haplotype composed of these
SNPs. Two haplotypes displayed weak association with
autism. These are C-G-G-A (rs6010065- rs2301584-
1s41281537- 15756638, P = 0.040) and G-A (rs41281537-
15756638, P = 0.047), respectively (Table 3). After 1,000
permutation tests the haplotype C-G-G-A was still associ-
ated with autism (P = 0.041), but no significance
remained in the haplotype G-A (P = 0.050). No statisti-
cally significant association (P < 0.05) was observed for
any other haplotypes in any set of families in HBAT anal-
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Table 2: Results of FBAT for the five SNPs
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Makers Allele Afreq Families S E (S) Var (S) z P-values

rs9616915 T 0911 87 128.000 123.500 24.750 0.905 0.365
C 0.089 87 46.000 50.500 24.750 -0.905 0.365

rs6010065 G 0.500 235 242.000 236.500 79.250 0618 0.536
C 0.500 235 228.000 233.500 79.250 -0.618 0.536

rs2301584 G 0.811 159 218.000 217.000 46.000 0.147 0.882
A 0.189 159 100.000 101.000 46.000 -0.147 0.882

rs41281537 G 0.858 133 188.000 189.500 37.750 -0.244 0.807
A 0.142 133 78.000 76.500 37.750 0.244 0.807

rs756638 G 0.812 155 218.000 213.000 45.500 0.741 0.458
A 0.188 155 92.000 97.000 45.500 -0.741 0.458

FBAT, family-based association test; Afreq, allelic frequency. Families, number of informative families; S, test statistics for the observed number of
transmitted alleles; E(S), expected value of S under the null hypothesis (i.e., no linkage or association). Significant P values (< 0.05) are in boldface.

yses (data not shown). Moreover, the entire global test for
haplotype transmission revealed a negative result (data
not shown). To detect the de novo mutations reported
before, we sequenced the exon8 (for A962G)[18], part of
exon21 (for G insertion)[17], the donor splice site of
intron19[19] of SHANK3 in 305 probands. However, we
didn't find any genetic variants or the mutations reported
previously.

The SHANK3 gene spans about 60 kb. In Affimatrix SNP
5.0 chip of 240 trios from this sample, it included 16 CNV
probes covering SHANK3 gene and its flanking region.
The smallest distance between two probes was less than
500 bp. In these probes, one CNV probe was located at
intron8 which was reported as a breakpoint of a de novo
deletion[17], and a few CNV probes were quite close to
exon21 which was reported as a breakpoint of a de novo
translocation in 22q13 deletion syndrome[7]. However,
we didn't find any genomic imbalance in all these 240
trios or control (unpublished data).

Discussion

Shank3 is a master synaptic scaffolding protein, acting as
the bridge of some neurotransmitter receptors and the
downstream signal transduction. It has been postulated to
perform important roles in excitatory synapse assembly
[23-26], dendritic formation and maturation[10,27,28].
The de novo alterations of this gene and their roles in the
pathogenesis of autism have been reported by some stud-
ies [17-19]. Based on this evidence, we hypothesized that

Table 3: Measure of Pairwise Linkage Disequilibrium D (D")
Between Five SNPs in SHANK3 gene

rs9616915  rs6010065  rs2301584  rs41281537
rs6010065  -0.024(0.58)
rs2301584 -0.003(0.21) 0.082(0.87)

rs41281537 -0.010(0.82) 0.068(0.95) -0.023(0.86)
rs756638  -0.007(0.44) 0.081(0.86) -0.027(0.77) 0.115(1.00)

the SHANK3 might be a strong candidate gene for autism.
However, there was few evidence of association between
SHANK3 polymorphisms and autism. In the present
study, we investigated the association of SHANK3 poly-
morphisms and autism in 305 Chinese Han trios. We
detected seven dbSNPs of SHANK3, including two non-
polymorphic SNPs 1s2106112 (synonymous mutation)
and 1513057681 (H1033D) in our samples. In a family-
based association study for all the other five SNPs we
found no evidence for transmission disequilibrium for
any single marker (P > 0.05), even for the missense SNP
1$9616915C>T which was reported as a non-synonymous
variant identified in ASD[19]. In attempt to identify de
novo genetic variants in SHANK3 that had been reported
previously, we performed mutation screen of exon8, part
of exon21, the donor slpice site of intron19 of SHANK3 in
305 probands with autism, and only identified one novel
synonymous variant (T1231). In addition, the specific
and global-haplotype FBAT tests of association were per-
formed. Four SNPs were located in a block with high LD
including rs6010065, 152301584, rs41281537, 1s756638.
However, only C-G-G-A (1s6010065- 152301584-
1s41281537- 15756638, P = 0.040) exhibited a weak asso-
ciation with autism in our sample. We didn't detect any
genomic imbalance of SHANK3 and its flanking region in
our sample using Affimetrix 5.0 chip either. Our finding
suggested that SHANK3 doesn't represent a major suscep-
tibility gene for autism in the autism families ascertained
from Chinese Han population.

Several potential reasons might explain the difference
among various reports about SHANK3 gene and autism.
One might be the racial and ethnic differences in genotype
distribution and association with autism risk. For exam-
ple, the allele frequency of the SHANK3 non-synonymous
SNP 1s9616915 was obviously different between Chinese
and the other populations in the National Center for Bio-
technology Information (NCBI) gene database. For Euro-
pean (CEU), and Nigeria population, the frequencies of
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allele C are 0.533 and 0.383 respectively, but for Chinese
Han population (CHB) it is 0.044. Further, the variety of
the investigated samples should be noticed. The previous
evidence about SHANK3 was always from subjects with
ASD, including autism, Asperger syndrome and PDD-
NOS. Our autism cases only include patients with infan-
tile autism, and not other cases of the etiologically more
heterogeneous ASD. The heterogeneity of the investigated
samples combined with the heterogeneity of neurodevel-
opmental disorders might hamper the understanding of
genetic factors associated with autism. In order to enhance
the possibility of finding relevant genetic cause, the phe-
notype variability in sample should be reduced[29]. In the
present study we examined a relatively homogenous sam-
ple of autism to reduce the heterogeneity. The location of
SHANK3 is at 22q13.3, which is a critical region for 22q13
deletion syndrome that also has autistic behavior. There
are strong evidence that haploinsufficiency of SHANK3
plays a major role in 22q13 deletion syndrome[30].
SHANKS3 is very likely to be involved in the pathogenesis
of some mutual phenotypes of ASD and 22q13 deletion
syndrome, such as delay of expressive speech. Further-
more, 22q13 deletion syndrome has a clinical phenotype
overlapping in part the ASD phenotype. So subjects with
22q13 deletion may be included in ASD samples. It is
really critical for the researches on autism to exclude the
2213 deletion syndrome. We didn't detect any genomic
imbalance of 22q13 in our samples using Affimetrix SNP
5.0 chip. Moreover, although the disruption of SHANK3
seems to be associated with 22q13 deletion syndrome,
there is also contrary evidence that the haploinsufficiency
for 22q13 genes other than SHANK3 have major
effects[31]. The present study indicates that SHANK3 may
not be a critical gene for the etiology of infantile autism in
Chinese Han population. As autism is a heterogeneous
disease, the rare mutations of SHANK3 gene seem to
explain the etiology of only a small proportion of cases
with autism. Sykes et al. reported recently that they didn't
find any CNV or SNP association of SHANK3 within their
ASD sample, although they didn't sequence the gene[32].
Their suggestion that SHANK3 deletions may be limited
to a portion of autism was coincident with ours.

There was few association or linkage study for SHANK3
and autism. Our family-based association study provided
an indication that SHANK3 was not critical for the patho-
genesis of autism in Chinese Han population or only
account for a small proportion of autism individuals. In
addition, our results also reinforce the need for the
detailed LD mapping, mutation screening and CNV anal-
ysis of SHANK3 in different population or other neurode-
velopmental disorders.

http://www.biomedcentral.com/1471-2350/10/61

Conclusion

The present study did not find strong evidence of
SHANK3 polymorphisms and autism or identify any
described non-synonymous mutations in our cohort.
These might indicate that SHANK3 doesn't represent a
major susceptibility gene for autism in the autism families
ascertained from Chinese Han population.
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