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Abstract
Background: Gastric inhibitory polypeptide (GIP) is postulated to be involved in type 2 diabetes
mellitus and obesity. It exerts its function through its receptor, GIPR. We genotyped three GIPR
SNPs (rs8111428, rs2302382 and rs1800437) in German families with at least one obese index
patient, two case-control studies and two cross-sectional population-based studies.

Methods: Genotyping was performed by MALDI-TOF, ARMS-PCR and RFLP. The family-study:
761 German families with at least one extremely obese child or adolescent (n = 1,041) and both
parents (n = 1,522). Case-control study: (a) German obese children (n = 333) and (b) obese adults
(n = 987) in comparison to 588 adult lean controls. The two cross-sectional population-based
studies: KORA (n = 8,269) and SHIP (n = 4,310).

Results: We detected over-transmission of the A-allele of rs2302382 in the German families
(pTDT-Test = 0.0089). In the combined case-control sample, we estimated an odd ratio of 1.54
(95%CI 1.09;2.19, pCA-Test = 0.014) for homozygotes of the rs2302382 A-allele compared to
individuals with no A-allele. A similar trend was found in KORA where the rs2302382 A-allele led
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to an increase of 0.12 BMI units (p = 0.136). In SHIP, however, the A-allele of rs2302382 was
estimated to contribute an average decrease of 0.27 BMI units (p-value = 0.031).

Conclusion: Our data suggest a potential relevance of GIPR variants for obesity. However,
additional studies are warranted in light of the conflicting results obtained in one of the two
population-based studies.

Background
Obesity is a serious health problem in both developed
and in developing countries. It results from an interplay of
environmental and genetic factors that mediate energy
intake and expenditure. From twin studies it is estimated
that up to 80% of the variance in body mass index (BMI)
might be genetically determined [1-4]. These genetic con-
tributions seem to be especially important in individuals
with severe or early-onset forms of obesity [5]. The molec-
ular mechanisms of obesity are still far from being well
understood.

It has been suggested that the gastric inhibitory polypep-
tide (GIP) may be involved in type 2 diabetes mellitus and
obesity [6-8]. GIP, also known as glucose-dependent
insulinotropic peptide, is a gastrointestinal hormone of
42 amino acids secreted by endocrine K cells from the
duodenum in response to meal ingestion, especially for
meal containing fat or glucose [7,9]. The principal action
of GIP is the stimulation of glucose-dependent insulin
secretion [10]. Obesity leads to insulin resistance and
excessive insulin secretion after meal ingestion [11].
Plasma GIP concentrations are elevated in obese and dia-
betic humans and also in leptin deficient (ob/ob) rodents
[11].

Variables that can lead to a dysfunction or act as antago-
nists of GIP have been shown to reduce obesity and insu-
lin resistance [12]. Daily administration of GIP
antagonists, such as (Pro3)GIP, has been able to promote
weight loss and ameliorate insulin resistance in mice
[11,13]. Obese patients subjected to bariatric surgery, that
involves bypass of part of the small intestine, and conse-
quently reduction of GIP secretion, presented restoration
of normal glucose tolerance prior to weight loss [14].

GIP exerts its function through its specific receptor, GIPR.
Inactivation of GIPR results in a defective GIP signaling
[15]. Under normal diet, GIPR knockout mice (Gipr-/-) do
not exhibit changes in body weight but have reduced fat
mass compared with wild type (WT) mice [16,17], and
normal levels of glucose and insulin [6]. Under high fat
diet Gipr-/- mice, in comparison to WT mice, have a
reduced fat storage; they use fat as the main energy sub-
strate and do not develop obesity, insulin resistance, dia-
betes mellitus, impaired glucose tolerance, and fatty liver
like the WT [6,7,15-18]. Additionally, GIP signaling is

required for effective accumulation of nutrients under
high-fat diet, and inhibition of GIP signaling not only pre-
vents obesity but also insulin resistance [19]. Recently, a
study in mice [20] showed that vaccination against GIP
prevents its binding to the GIP receptor, consequently
reducing body weight gain under high fat diets. Nitz et al.
[21] showed preliminary evidence for nominal associa-
tion of a non-synonymous GIPR polymorphism
(rs1800437) and cardiovascular disease (CVD).

Taken together, these observations show the importance
of GIP signaling for fat storage rendering GIPR an interest-
ing candidate for obesity. In order to investigate whether
polymorphisms within the coding or adjacent regions of
the GIPR gene are associated with obesity, we genotyped
three single nucleotide polymorphisms (SNP) pertaining
to the gene in up to 761 German obesity families compris-
ing at least one extremely obese child or adolescent and
both parents. These SNPs include a coding non-synony-
mous, conservative SNP in exon 12 (rs1800437 G/C;
Glu354Gln), an intronic SNP (rs2302382 C/A in intron
1), and a SNP in the putative promoter region (rs8111428
A/G). These SNPs tag common variation of the gene (see
details below). Subsequently, we attempted to validate
our results in four independent German samples (two
case-control studies and two cross-sectional population-
based studies).

Methods
Characterization of Study Subjects
BMI was calculated as weight in kilograms and divided by
height in squared meters. Children and adolescents with
a BMI over the 90th age and gender specific BMI percentile
were considered overweight and children and adolescents
with BMI at or over 97th percentile were considered obese
[22]. In adults, overweight was defined as BMI ≥ 25 kg/m2,
obesity as BMI ≥ 30 kg/m2 [23].

Subjects
Obesity families
The sample consisted of German obese children, adoles-
cents (72% had a BMI ≥ 99th percentile, [22]) and their
parents recruited at the Universities of Marburg and Duis-
burg-Essen. For the family-based association analyses we
genotyped 1,041 obese children and adolescents and
1,522 of their parents (Table 1).
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Case-control studies
Cases: (A) 987 German obese (BMI ≥ 30 kg/m2) adults
from a study at the University of Marburg sampled in the
region of Marburg, Germany [24] (Table 1) and (B) 336
overweight and obese children and adolescents (all had a
BMI ≥ 90th percentile) recruited within the Obeldicks pro-
gram [25] at the University of Witten/Herdecke in the
region of Datteln, Germany (Table 1). Controls: 588 nor-
mal and underweight healthy (all had BMI < 75th percen-
tile) adults who were students at the University of
Marburg at the time of recruitment (Table 1, [24]). The
use of lean adults who were never overweight or obese
during childhood (assessed by interview [26]), as control
group reduces the chances of misclassification compared
to the use of lean children as controls who might become
overweight in adulthood.

KORA
(Kooperative Gesundheitsforschung im Raum Augsburg,
Surveys 3 and 4, Cooperative Health Research in the
Region of Augsburg) is a cross-sectional population-based
sample of 8,269 German adult individuals from the
region of Augsburg (Bavaria, Germany) [27]. In KORA,
65.9% of all participants were overweight and 22.4%
obese (Table 1) according to the WHO definition.

SHIP
(Study of Health in Pomerania) is a cross-sectional popu-
lation-based survey from the Northeastern area of Ger-
many comprising 4,310 adult German individuals. SHIP
was designed to address general health and community
medicine issues, with endocrine-metabolic disorders as a
main focus. In SHIP, 65.8% of all participants were over-
weight and 25.5% obese (Table 1) according to the WHO
definition.

All participants gave written informed consent and in the
case of minors, their parents. The studies were approved
by the local Ethical Committees and in case of KORA by
the Landesärztekammer Bavaria.

Genotyping and SNPs selection
We selected tagging SNPs (or proxy) for the two linkage
disequilibrium (LD) blocks covering the coding region
and the 5' region (24 Kb) of GIPR.

Genotyping the families for the SNPs rs2302382 and
rs8111428 was performed using Matrix-assisted desorp-
tion/ionization time-of-flight mass spectrometry
(MALDI-TOF MS) as described earlier [28]. SNP
rs1800437 (a) was genotyped using polymerase chain
reaction restriction fragment length polymorphism (PCR-
RFLP) analysis. Additional genotypes for SNPs rs2302382
(b) and rs8111428 (c) were performed using ARMS-PCR
as described previously (16): (a) rs1800437: F 5'-ATT ACC
GGC TGA GGT GAG G-3' and R 5'-CTG GAA GGA GCT
GAG GAA GA-3' digested with BssSI (C-allele 245 bp, G-
allele 150 and 94 bp). (b) rs2302382: Fo 5'-CAG CGT
AGC TCT AGG GCA ACC GCC CGC T-3' and Ro 5'-GAT
CAG GCC TGG AGG GTC CCA GGG CAA G-3':324 bp; Fi
5'-CCA CTC CGC GTG CCT CTC CCT CCT CC-3' and Ri
5'-CCG CAA CTC CCA GGC GTG ATG ATC CGT-3' (C-
allele 200 bp, A-allele 177 bp). (c) rs8111428: Fo 5'-AAA
GGA ACA GAC TGG AAG TAG AGA CAG-3' and Ro 5'-TTT
ATG ACA CAA GCT GAA AGT CAC AC-3':486 bp; Fi 5'-
TGT ATA TGA CTG TAT GTG ACT TGT GAC TG-3' and Ri
5'-CAC AAC TCT CCC TTA GTC TCA CCA AT-3' (G-allele
258 bp, A-allele 283 bp). All call rates were ≥ 99%; except
for rs2302382 for the obese children and adolescents and
for SHIP were the call rates were ≥ 90%.

Table 1: Characteristics of participants used for family-based association, case-control and cross-sectional population-based samples in 
GIPR analyses.

sub-group n participants sex (M/F) mean age (y) ± SD mean BMI (kg/m)2 ± SD

Group parents 1,522 761/761 42.55 ± 5.96 30.37 ± 6.28
children 1,041 477/564 13.88 ± 3.71 31.11 ± 6.051,2

obese children and
case-control adolescents 336 153/183 10.74 ± 2.75 28.29 ± 4.811

obese adults 987 361/626 46.31 ± 14.74 36.03 ± 5.39
underweight and normal
weight controls 588 235/353 25.28 ± 4.41 19.34 ± 1.94

KORA S3/S4 BMI ≥ 30 kg/m2 1,849 876/973 54.47 ± 0.29 33.58 ± 0.08
BMI < 30 kg/m2 6,420 3,267/3,153 47.92 ± 0.17 25.23 ± 0.04

SHIP BMI ≥ 30 kg/m2 1,099 531/568 54.90 ± 14.34 33.55 ± 3.29
BMI < 30 kg/m2 3,201 1,582/1,619 48.04 ± 16.69 25.13 ± 2.94

1all had a BMI ≥ the age and gender normalized 90th percentile [22]
272% even had a BMI ≥ the age and gender normalized 99th percentile [22]
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In silico analysis of GIPR polymorphisms
Possible alterations in splicing sites were analysed using
GeneScan [29]. Potential functions were analysed using
the FastSNP program [30].

Statistical analysis
All genotype distributions were tested for deviations from
Hardy Weinberg equilibrium (exact two-sided p-value
>0.14). For the coding SNP rs1800437 the p-value for
HWE in the parents (family study) was 0.035. Thus, we re-
genotyped a 96-well plate for this SNP to exclude false
genotyping results; the results were 100% identical to the
initial data, thus reducing the chance of genotyping errors.
Single marker family-based association analyses were car-
ried out using the pedigree disequilibrium test (PDT-aver-
age) while FAMHAP (Version 16, [31]) and UNPHASED
(Version 2.404, using the EM algorithm [32]) were used to
investigate haplotypes in families. Case-control associa-
tion analyses were performed using the exact or asymp-
totic Cochran-Armitage trend test with a linear trend or
Fishers exact test for crude allele frequency comparisons.
Correspondingly, BMI in KORA and SHIP were investi-
gated by linear regression analyses assuming an additive
genetic model with age and sex as covariates. Power calcu-
lations were done with the software QUANTO Version
1.2.3 [33] for common variants assuming a minor allele
frequency MAF of 0.2 and α = 0.05 (two-sided). For both
the family-based approach (761 trio families) and the val-
idation sample of 1,323 cases and 588 controls the power
estimates were larger than 80% to detect a log-additive
genotype relative risk of 1.3. For the quantitative analyses
in both population-based studies, the power estimate was
larger than 80% to detect a standardized additive effect of
0.08. Thus, all samples were well powered to detect at
least moderate to strong effect sizes of disease predispos-
ing variants.

Confidence intervals were calculated with coverage of
95% (abbreviated 95%CI) and accordingly the level α for
each test was 0.05 (two-sided). Unless otherwise stated all
reported p-values are nominal, two-sided and not
adjusted for multiple testing.

Results
Initial family-based association studies
We performed family-based association analyses in up to
2,563 German Caucasian individuals from 761 families.

The analyses indicated some evidence for transmission
disequilibrium for the investigated markers in particular
for the G-allele of rs8111428 (p-value = 0.0016) and the
A-allele of rs2302382 (p-value = 0.0089), both minor
alleles (Table 2). In addition, for the non-synonymous
SNP rs1800437, we observed a trend for the G-allele
(major allele) to be more frequently transmitted to the
obese offspring (p = 0.076; Table 2). To explore if a single
SNP or a haplotype was involved in obesity we further
analysed haplotype structure in the gene region using the
CEU population data from the International HapMap
Project [34] captured by Haploview software [35] (solid
spine algorithm). There are two regions of increased
between-marker LD (Figure 1). The first covers 24 kb and
the second 5 kb. For the two markers showing the strong-
est signals in our study, rs8111428 and rs2302382, there
are no direct HapMap data available. However, their phys-
ical positions indicate that they could be part of the first
haplotype block, as confirmed when using our family data
in Haploview (data not shown). For the SNP, rs1800437,
LD HapMap data was available indicating that this SNP
belongs to the second region which was supported by our
family data (data not shown). The pairwise r2 values
between the SNPs (using our family data) are shown in
Table 3. Subsequently, we performed analyses of the
transmitted haplotypes (Table 4). One haplotype (esti-
mated frequency = 21%) that included the minor alleles
of rs8111428 (G-allele) and rs2302382 (A-allele), was
more frequently transmitted in the families (p = 0.003).
Testing all haplotype combinations this haplotype had
the smallest adjusted p-value of 0.0055 which is corrected
for multiple testing. As the haplotype analysis revealed
that no haplotype by itself leads to a stronger association
signal, we decided to validate the best initial SNPs results.

Validation studies in case-control samples and in cross-
sectional population-based samples
To confirm the exploratory results we attempted to vali-
date these results by case-control studies in obese adults,
children, and adolescents compared to healthy normal
and underweight controls. Furthermore, genotyping was
done in two cross-sectional population-based samples.

The initially determined risk-allele (A) of rs2302382 was
more frequent in obese children (23.8%) and adults
(22.4%) than in the controls (19.1%; pFishers exact test =
0.013). Using the log-additive genetic model in the joint

Table 2: Results of the family-based association analyses for GIPR SNPs in families with severely obese offspring

SNP physical position n genotyped families localization risk-allele transmitted1 non- transmitted p-value

Putative
rs8111428 50859941 579 promoter G 403 329 0.0016
rs23023082 50864409 541 Intron 1 A 395 329 0.0089
rs1800437 50873232 761 Exon 12 G 1,644 1,599 0.0760

1as derived from PDT
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analyses of all cases against the control group, we e.g. esti-
mated that individuals homozygous for the A-allele have
an 1.54-fold increase in the odds for obesity compared
with individuals not carrying the A-allele (95%CI
1.09;2.19, pCA-Test = 0.014). The estimated odds ratio for
the heterozygous CA carriers was 1.24 (95%CI 1.04;1.48,
Table 5). When the children were analysed separately, the
odds ratios were descriptively larger than those observed
for the joint analyses.

Additionally, although for the non-synonymous SNP
rs1800437 the major risk allele was prima vista more fre-
quent in obese children (78.7%) and adults (79.6%) than
in the controls (77.5%), there was no significant differ-
ence in allele or genotype distributions (pFishers exact test =
0.395; pCA-Test = 0.219) (Table 5).

The cross-sectional population-based samples KORA and
SHIP were both genotyped for SNP rs2302382. In KORA,
the regression analyses showed a trend for the presence of
one A-allele to lead to an average increase of 0.12 BMI
units (95%CI -0.04;0.28; p-value = 0.136) (Table 6). Sim-
ilarly, stratification by WHO BMI categories underlined
this trend (pCA-Test; asy = 0.037 for the comparison of BMI <
30 vs. BMI ≥ 30). In SHIP, however, the effect of the A-
allele pointed into the opposite direction. In contrast to
all previous findings, the A-allele of rs2302382 was esti-
mated to decrease mean BMI units by 0.27 kg/m2 (95%CI
-0.52; -0.24; p-value = 0.031; pCA-Test;asy = 0.039 for the
comparison of BMI <30 vs. BMI ≥ 30 kg/m2).

Predictions of putative functional consequences of GIPR 
polymorphisms
The intronic SNP rs2302382 was analysed for alternative
splice sites (using GeneScan) caused by the base change,
but no respective alterations were found. No known func-
tion was found in FastSNP for rs2302382.

The non-synonymous SNP Glu354Gln (rs1800437) is
located in a transmembrane domain of GIPR [21]. Analy-
sis of the SNP rs1800437 using FastSNP showed that the
predicted altered protein has a low to medium risk to be
damaging (ranking 2–3; whereby 5 is the maximum risk).
This tool predicts that the respective mutation G/C creates
an additional exonic splicing enhancer in the sequence
comprising the C-allele.

Discussion
We provide evidence for an association of polymorphisms
in and near the GIPR gene with obesity or increased BMI.
We performed family-based association tests in up to 761
German nuclear families with severely obese offspring.
The haplotype analyses in the genotyped region indicated
the presence of two distinct regions of increased linkage
disequilibrium (LD): first, a putative regulatory region for
GIPR comprising SNPs rs8111428 and rs2302382 and
second, a region covering the GIPR coding region com-
prised SNP rs1800437.

Evidence for association with obesity was found for the
SNPs in the putative regulatory region of GIPR. In nuclear
families, we observed an increased transmission rate for
the minor alleles of rs8111428 (G-allele) and rs2302382
(A-allele) to the obese offspring, indicating the presence
of a possible risk haplotype for obesity. Further analyses
in two independent samples of cases and one control
sample underlined and validated this association. In two
large population-based cross-sectional samples of adults,
however, the results were ambiguous. While we observed
a similar trend for rs2302382 in KORA (> 8,000 individu-
als) where the risk allele was related to an increased BMI,
the same risk allele was inversely associated with BMI in
SHIP.

Table 3: Linkage disequilibrium (LD)1 between GIPR SNPs of the 
study using the family data.

rs81114282 rs2302382

rs23023822 0.71 -
rs18004373 0.039 0.039

1 values are given in pairwise r2

2 No LD information in HapMap
3 rs1800437 is the only proxy SNP for rs11672660 (r2 = 1.0)

Table 4: GIPR haplotype analyses in families with severely obese offspring using UNPHASED (Version 2.404; using the EM algorithm) 
and FAMHAP (Version 16)

rs8111428 rs2302382 rs1800437 transmitted non- transmitted estimated
frequency of the haplotype

p-value

A A G 18.02 30.01 0.04 0.179
A C G 325.20 326.90 0.57 0.919
A C C 103.80 129.10 0.16 0.054
G A G 123.80 86.10 0.21 0.003
G A C 7.20 6.90 0.01 0.179
G C G 8.00 7.00 0.02 0.179

The risk haplotype is marked in bold
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Analyses of the putative regulatory region of GIPR were
previously performed in patients with Cushing syndrome,
which is associated with obesity [36,37]. There were no
significant differences in genotype frequencies between
patients and controls [36]. Our family and case-control
data suggested an increased obesity risk with an estimated
odds ratio of 1.54 for individuals with two copies of the
risk A-allele at SNP rs2302382 in the putative regulatory
region. Since this SNP was not directly analysed in previ-
ous reports [36,37], functional studies are warranted. All
participants were recruited in Germany, for which popu-

lation stratification effects have shown to be of minor
importance under a case-control design [38].

Additionally, in the second LD region we found a trend
for the G-allele of rs1800437 to be more frequently trans-
mitted to obese children. The same allele was also more
frequently detected in obese cases than in controls (Tables
2 and 5).

Despite all evidence for the involvement and importance
of GIPR in obesity, until now few studies analysed variants

LD structure of GIPRFigure 1
LD structure of GIPR. LD structure of GIPR region using data from HapMap analysed by Haploview using the Spine LD algo-
rithm. Only SNP rs1800437 is informative as LD in HapMap (ellipse). The physical localization for the other two SNPs 
(rs8111428 and rs2302382) was represented manually with arrows. The pairwise r2 values are represented in the diamonds.

B

rs8111428 rs2302382 
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in GIPR and their risk for obesity. Some studies involving
the non-synonymous variant rs1800437 did not reveal
association with increased BMI [21,39] or to non-insulin-
dependent diabetes [39,40]. However, in one study, C-
peptide concentrations in serum of homozygous individ-
uals for the C-allele (minor allele) of rs1800437 were sig-
nificantly decreased (14%) after fasting [39].
Additionally, association with lower cholesterol levels
was found in heterozygous individuals with CVD [21].
Thus, the results of both studies (Lower C-peptide concen-
trations [39] and lower cholesterol levels [21]) are in line
with our case-control study where the C-allele was more
frequent in controls than in cases. Additionally, in our
German obesity families, we found a trend of the G-allele
(major allele) to be more frequently transmitted to
severely obese offspring (p = 0.076). Taken together, these
results suggest an association of the G-allele of rs1800437
with obesity. If a dysfunctional GIPR receptor leads to a
lower fat mass we have to assume that obesity would be
associated with gain of function mutations. Hence, we
assume a gain of function for the G-allele of non-synony-
mous SNP rs1800437 and the respective risk alleles of the

SNPs in the putatively regulatory region (rs2302382 and
rs8111428) which might alter transcription binding sites
causing an increased gene expression. Investigations with
independent and large samples are necessary to validate
our observed associations. Samples from the extremes of
the phenotype would be the best choice. Once an even
more robust signal is obtained, re-sequencing as well as
functional studies will be necessary to elucidate the func-
tional role of the GIPR variants.

GIPR is located at the region on chromosome 19q13 that
was reported to have highly differentiated SNPs showing
strong geographical variation within the English popula-
tion [41]. KORA and SHIP are population-based samples
with individuals from Southern and Northern Germany.
A similar effect as in the English population it could, at
least in theory, account for the discrepant result in SHIP.
An exploration of differences in genotype frequencies of
rs2302382 in KORA and SHIP, irrespective of phenotype,
indicated that this might be the case (p = 0.035). Addi-
tionally, there are multiple phenotypic variables which
differ between KORA and SHIP; examples are hyperten-

Table 5: Genotype and case-control analyses for three GIPR SNPs

SNP Group genotypes, n (frequency) frequency of allele effect size estimate 
– odds ratio 

(95%CI)1

p-value1

obese children and
rs8111428 adolescents 199 (0.592) AA 124 (0.369) AG 13 (0.039)GG 0.777 A 0.223 G ORAG 1.24 (1.04;1.49) 0.019

obese adults 633 (0.642) AA 308 (0.312) AG 45 (0.046)GG 0.798 A 0.202 G ORGG 1.54 (1.07;2.33)
controls 396 (0.676) AA 176 (0.300) AG 14 (0.024) GG 0.826 A 0.174 G

obese children and
rs2302382 adolescents 176 (0.587) CC 105 (0.350) AC 19 (0.063) AA 0.762 C 0.238 A ORAC 1.24 (1.04;1.48) 0.014

obese adults 597 (0.605) CC 337 (0.341) AC 53 (0.054) AA 0.776 C 0.224 A ORAA 1.54 (1.09;2.19)
controls 385 (0.655) CC 181 (0.308) AC 22 (0.037) AA 0.809 C 0.191 A

obese children and
rs1800437 adolescents 208 (0.619) GG 113 (0.336) CG 15 (0.045) CC 0.787 G 0.213 C ORCG 1.11 (0.94;1.32) 0.219

obese adults 625 (0.634) GG 319 (0.324) CG 42 (0.043) CC 0.796 G 0.204 C ORGG 1.24 (0.88;1.73)
controls 355 (0.605) GG 200 (0.341) CC 32 (0.055) CC 0.775 G 0.225 C

1 exact Cochran-Armitage trend test (assuming a linear trend) not corrected for age and sex where all obese individuals were pooled; separate 
comparison of adults and children against the controls revealed no substantially different results

Table 6: Genotype results for GIPR SNP rs2302382 in the population-based cohorts KORA and SHIP

Group genotypes, n (frequency) Allele frequency effect size estimate (95%CI)1 p-value1

CC CA AA C A

KORA BMI ≥ 30 kg/m2 1,103 (0.597) 644 (0.348) 102 (0.055) 0.771 0.229 βA 0.12 0.136
BMI <30 kg/m2 3,993 (0.622) 2,117 (0.330) 310 (0.048) 0.787 0.213 (-0.04; 0.28)

SHIP BMI ≥ 30 kg/m2 645 (0.640) 332 (0.329) 31 (0.031) 0.805 0.195 βA -0.27
(-0.52; -0.24)

0.031

BMI <30 kg/m2 1,842 (0.622) 995 (0.336) 126 (0.042) 0.790 0.210

1 linear regression under an additive genetic model (risk-allele A) corrected for age and sex, two-sided p-value
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sion [42] or smoking behaviour [43], which could also
account for the different genotypic effect.

It might seem surprising that GIPR has not been detected
in any of the currently published genome-wide associa-
tion studies on obesity (BMI) [e.g. [26,44-48]]. There are
at least two explanations: First, genome-wide SNP chips
do not cover well the region of GIPR. For example, the
Affymetrix Genome-Wide Human SNP 6.0 Array (with
more than 906,600 SNPs) in the region ± 50 Kb of GIPR
only comprises 3 SNPs and none of these SNPs is within
GIPR. The Illumina 580 K array on the other hand com-
prises 19 SNPs in the region ± 50 Kb of GIPR, but only
three of them are within the gene. One idea would be to
use imputation analyses to solve this problem. Imputa-
tions, however, heavily rely on just a few HapMap individ-
uals and the assumption that linkage disequilibrium
between markers is the same for these individuals and the
individuals actually genotyped. Moreover, for markers
like rs8111428 and rs2302382 there is no HapMap infor-
mation available making imputations impossible. Sec-
ond, current meta-analyses of genome-wide association
studies did focus on BMI in the general population; it
might well be that GIPR variants have a major impact in
extremes of the phenotype only.

Conclusion
In conclusion, our data provide a first step towards iden-
tification of GIPR variants potentially involved in obesity.
Most likely variations in the putative regulatory region of
the gene (e.g. rs2302382) are the most promising candi-
dates for independent validations in case-control samples
or in selected family samples as well as ultimately in func-
tional studies. If our findings indeed are truly positive,
this study also supports the observation [26,49] that
cross-sectional population-based studies seem to be less
powerful to detect obesity-marker associations as they are
rarely enriched with extremely obese individuals.
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