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Abstract
Background: Chronic obstructive pulmonary disease (COPD) is influenced by both
environmental and genetic factors. ADAM33 (a disintegrin and metalloproteinase 33) has been one
of the most exciting candidate genes for asthma since its first association with the disease in
Caucasian populations. Recently, ADAM33 was shown to be associated with excessive decline of
lung function and COPD. The aim of this study was to evaluate the potential relationship between
polymorphisms of ADAM33 and COPD in a Han population in northeastern China.

Methods: A total of 312 COPD patients and a control group of 319 healthy volunteers were
recruited for this study. Eight polymorphic loci (V4, T+1, T2, T1, S2, S1, Q-1, and F+1) of ADAM33
were selected for genotyping. Genotypes were determined by using the polymerase chain reaction-
restriction fragment length polymorphism (PCR-RFLP) method.

Results: Statistically significant differences in the distributions of the T2G, T1G, S2C, and Q-1G
alleles between patients and controls were observed (P < 0.001, odds ratio (OR) = 2.81, 95%
confidence interval (CI) = 2.19-3.61; P < 0.001, OR = 2.60, 95% CI = 2.06-3.30; P = 0.03, OR = 1.31,
95% CI = 1.02-1.69; and P < 0.001, OR = 1.93, 95% CI = 1.50-2.50, respectively). Haplotype analysis
showed that the frequencies of the CGGGGAGC, CGGGGAGT, CGGGCAGC, and
CGGGGGGC haplotypes were significantly higher in the case group than in the control group (P
= 0.0002, 0.0001, 0.0005, and 0.0074, respectively). In contrast, the haplotype CGAAGAGC was
more common in the control group than in the case group (P < 0.0001).

Conclusion: These preliminary results suggest an association between ADAM33 polymorphisms
and COPD in a Chinese Han population.

Background
Chronic obstructive pulmonary disease (COPD) is a
major cause of chronic morbidity and mortality. The

World Health Organization (WHO) listed COPD as the
fifth leading cause of death in the world, and it is esti-
mated that COPD will be the third most common cause
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of death globally by 2020 [1]. It is also an increasingly
common problem in China. A survey of 20,245 partici-
pants in seven regions in China in 2007 indicated that the
prevalence of COPD in adults aged ≥40 years was 8.2%.
The disease is characterized by airflow limitation and is
associated with an abnormal inflammatory response of
the lungs in response to noxious particles or gases, espe-
cially cigarette smoke [1]. These products lead to emphy-
sema and airway remodeling, which is manifested by
squamous and mucous metaplasia of the epithelium,
smooth muscle hypertrophy, and airway wall fibrosis.
These pathological abnormalities interact synergistically
to cause progressive airflow obstruction [2]. Cigarette
smoke is by far the most important risk factor for COPD,
but there is a wide range in disease severities, irrespective
of the number of pack years of smoking. Furthermore,
only a minority (10-20%) of smokers develop clinically
significant COPD. This suggests that, aside from smoking,
there are underlying genetic factors that play a role in the
development and severity of COPD. Based on family stud-
ies, the estimated relative risk for genetic susceptibility to
COPD is about three [3].

ADAM33, is a member of the ADAM (a disintegrin and
metalloprotease) family. ADAM proteins are involved in
cell adhesion, cell fusion, cell signaling, and proteolysis
[4,5]. The latter can be illustrated by the capacity to shed
cytokines, growth factors, or their receptors from the cell
surface and the remodeling of extracellular matrix compo-
nents. Garlisi demonstrated that ADAM33 is an active
proteinase that is able to cleave α2-macroglobulin [6] and
synthetic peptides [7]. The enzymatic activity of ADAM33
can be inhibited by tissue inhibitor of metalloproteinase-
3 and -4 (TIMP-3 and -4, respectively) as well as several
small molecules [7]. This suggests that ADAM33 is
involved in pulmonary defenses and tissue remodeling.
Chronic respiratory diseases such as COPD and asthma
are characterized by airflow obstruction and a chronic,
persistent inflammatory process. The inflammatory proc-
ess is a complex interaction between many cellular mech-
anisms, inflammatory mediators, and their effects [8]. A
crucial pathological feature of COPD is airway inflamma-
tion and remodeling. Puxeddu et al. [9] showed that a
truncated, soluble form of ADAM33 containing the cata-
lytic domain caused rapid induction of endothelial cell
differentiation in vitro and angiogenesis ex vivo and in
vivo. Although not as well studied, there is evidence that
the vascular area of the airway is significantly increased in
COPD and that this increase correlates with the degree of
airflow obstruction [10].

Genome-wide screening revealed that chromosome
20p13 was significantly linked to asthma and airway
hyperresponsiveness in 460 families with asthma from

the UK and the USA. This genomic region contains the
gene ADAM33 [11]. Since the first report of an association
between ADAM33 polymorphisms and asthma in two
Caucasian populations from the UK and the USA, a
number of replication studies have been published with
differing results [12-15]. The differences in the association
results may be due to phenotypic and environmental het-
erogeneity between cohorts. Additional studies demon-
strated that SNPs within the ADAM33 locus are associated
with accelerated decline of lung function in the general
population and in asthma patients [16,17]. The ADAM33
gene is expressed in airway smooth muscle cells and
fibroblasts in the lung [18], suggesting that it is not only
important in the development of asthma but also in dis-
ease progression, possibly through airway remodeling
[19,20]. These latter findings suggest a function of
ADAM33 related to lung growth and repair in general
rather than solely associated with asthma. Recent studies
revealed that SNPs within ADAM33 confer susceptibility
to COPD in the general population and are associated
with airway inflammation in COPD [21,22]. The aim of
the current study was to determine whether ADAM33
SNPs are associated with COPD in a Chinese Han popu-
lation.

Methods
Population subjects
COPD patients were recruited from the Second Affiliated
Hospital of Harbin Medical University in China. A total of
312 patients with stable COPD who had not been previ-
ously treated with theophylline, β2-adrenergic receptor
agonists, or glucocorticosteroids were recruited for this
study. The diagnosis of COPD was established using the
following criteria: (1) history of cigarette smoking (a min-
imum of 10 pack years) in patients who were current
smokers at the time of evaluation; (2) no exposure (occu-
pational or otherwise) to other substances known to cause
lung disorders; (3) absence of atopy; (4) no history of sys-
temic or other pulmonary disease or congenital and/or
acquired systemic immunodeficiency; (5) forced expira-
tory volume in the first second (FEV1)/forced vital capac-
ity (FVC) <70% and FEV1 after inhalation of 200 mg
salbutamol <80%. The control group consisted of 319
unrelated subjects with healthy pulmonary function and
no known medical illnesses or family disorders. Control
subjects were patients visiting the same hospital for a
health check-up or community volunteers. They were
matched for age, gender, and smoking history with the
case group. The characteristics of the study population are
shown in Table 1. Participants were of Han origin and
lived in Harbin, which is in northeast China.

Approval from the local regional ethics committee was
obtained before initiating the study. COPD patients and
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healthy controls were informed of the study protocol and
provided written consent. Genomic DNA was extracted
using a DNA Extraction Kit (Qiagen, Germany) from
peripheral blood that was anticoagulated in ACD (acid-
citrate dextrose).

Genotyping by PCR-RFLP
Eight SNPs were chosen from published ADAM33 SNPs
associated with excess decline in FEV1 and/or presence of
COPD. Information on the selected SNPs is shown in
Table 2. Genotyping was performed by polymerase chain
reaction-restriction fragment length polymorphism (PCR-
RFLP) analysis. The polymorphic region was amplified by
PCR using a T-Gradient Thermoblock PCR System (Iome-
tra, Germany) in a 25 μl reaction solution containing 0.3
μg genomic DNA, 10× PCR buffer, 0.3 mM MgCl2, 0.2
mM dNTPs, 2 U TaqDNA polymerase (Takara, Japan),
and 0.1 μmol of each primer (Invitrogen, USA). Genotyp-
ing primers are shown in Table 2. PCR products were

digested overnight with restriction enzymes (NEB, UK)
according to the manufacturer's protocol and analyzed by
agarose gel electrophoresis. The restriction enzymes and
the length of the digested fragments are shown in Table 3.

Statistical analyses
Each SNP was tested for deviation from Hardy-Weinberg
equilibrium (HWE) using the χ2 statistic with expected
frequencies derived from allele frequencies. SNPs were
excluded from the analysis if they were out of HWE (P <
0.05). The allele frequencies for the case group and con-
trol group individuals were statistically compared using
the χ2 test with SPSS software for Windows (version 14.0;
SPSS Inc, Chicago, IL). Haplotype frequencies for multi-
ple sites in phase-unknown cases and controls were esti-
mated using the expectation-maximization method of
Haploview 4.1 software http://www.broad.mit.edu/mpg/
haploview/. The relative risk associated with rare alleles
was estimated as an odds ratio (OR) with a 95% confi-
dence interval (CI).

Results
Distribution of eight polymorphisms in the case and 
control groups
Deviations from Hardy-Weinberg equilibrium were not
seen in the COPD or control group for any polymor-
phisms. The genotype frequencies of the ADAM33 SNPS
in the COPD and control groups are shown in Table 4.
The genotype and allele frequencies were compared
between the two groups. The frequencies of the T2G allele,
the T1G allele, and the Q-1G allele were significantly
higher in cases than in controls (P < 0.001, OR = 2.81,
95% CI = 2.19-3.61; P < 0.001, OR = 2.60, 95% CI = 2.06-
3.30; P < 0.001, OR = 1.93, 95% CI = 1.50-2.50, respec-
tively). Statistically significant differences in the distribu-

Table 1: Description of the studied population

Characteristic CASE CONTROL

Number of patients 312 319
Age (years) 60.5 (7.8) 61.5 (8.1)
Male: Female 186:126 192:127
Pack years of smoking 35.46 (15.9) 32.54 (12.7)
FEV1 (% predicted) 52.5 (8.6) 91.5 (9.6)
FEV1/FVC (%) 47.5 (7.6) 90.5 (11.6)
Postbd FEV1 (% predicted) 58.5 (9.6) 93.5 (10.5)
Postbd FEV1/FVC (%) 49.2 (8.5) 91.5 (11.8)

Data are means and standard deviations (in parentheses)
Pack year: (packs per day) × (years smoked)
FEV1: forced expiratory volume in first second
FVC: forced vital capacity
Postbd: post bronchodilator

Table 2: Description of the investigated ADAM33 SNPs

Chromosome Position Reference SNP ID SNP Name Alleles Primer Sequences

3589161 2787094 V4 C/G F: 5'-ACACACAGAATGGGGGAGAG-3'
R: 5'-CCAGAAGCAAAGGTCACACA-3'

3590127 2280089 T+1 A/G F: 5'-CTGAGCCCAGAAACCTGATT-3'
R: 5'-AGAAGGGAAGGGCTCATGC-3'

3590205 2280090 T2 A/G F: 5'-TTCTCAGGGTCTGGGAGAAA-3'
R: 5'-GCCAACCTCCTGGACTCTTA-3'

3590234 2280091 T1 A/G F: 5'-ACTCAAGGTGACTGGGTGCT-3'
R: 5'-GAGGGCATGAGGCTCACTTG-3'

3591742 528557 S2 C/G F: 5'-AGAGCTCTGAGGAGGGGAAC-3'
R: 5'-TGTGCAGGCTGAAAGTATGC-3'

3591765 3918396 S1 A/G F: 5'-TGTGCAGGCTGAAAGTATGC-3'
R: 5'-AGAGCTCTGAGGAGGGGAAC-3'

3592207 612709 Q-1 A/G F: 5'-GGATTCAAACGGCAAGGAG-3'
R: 5'-GTTCACCTAGATGGCCAGGA-3'

3595085 511898 F+1 C/T F: 5'-CTGCCACAATGTACAGTTCCA-3'
R: 5'-AAGGACTTCTCAACCCACGA-3'
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tions of the three alleles were observed between the two
groups. The frequency of the S2C allele was slightly higher
in the case group than in the control group (P = 0.031, OR
= 1.31, 95% CI = 1.02-1.69). The details are shown in
Table 5.

ADAM33 haplotype analysis
We constructed the haplotypes of cases and controls. Hap-
lotypes with frequencies >2% were selected for analysis.
There were nine haplotypes in all samples. The frequency
of haplotype CGGGGAGC was significantly higher in
cases than in controls (P = 0.0002). The frequencies of
haplotypes CGGGGAGT, CGGGCAGC, and CGGGGGGC
were also significantly higher in cases (P = 0.0001, 0.0005,
and 0.0074, respectively). In contrast, the haplotype
CGAAGAGC was more common in the control group
than in the case group (P < 0.0001). The details are listed
in Table 6.

Discussion
The present study is the first demonstration of an associa-
tion between ADAM33 polymorphisms and COPD in an
East Asian population. Using a case-control design, we
investigated the relationship between human ADAM33
polymorphisms and COPD in northeast China. Our
results showed that the T1, T2, S2, and Q-1 SNPs were sig-
nificantly associated with COPD. As multiple SNPs may
act in combination to increase the risk of COPD, haplo-
types were constructed, and their frequencies were com-
pared between the case and control groups. The haplotype
data suggests that the CGGGGAGC, CGGGGAGT,
CGGGCAGC, and CGGGGGGC haplotypes may be risk
factors for COPD. In contrast, the CGAAGAGC haplotype
may be a protective factor for the disease.

It is known that lung function decline is a risk factor for
the development of COPD and cardiovascular disease
[23]. Lee and coworkers demonstrated that ADAM33 pro-
tein levels in bronchoalveolar lavage fluid (BALF) are
inversely correlated with predicted FEV1 values in patients
with asthma [20]. Associations of polymorphisms in
ADAM33 with FEV1 decline may therefore constitute a
risk for the development of COPD as well. In previous
studies, it has been shown that polymorphisms in the
ADAM33 gene play a role not only in asthma susceptibil-
ity, but in its progression [16]. In a Dutch population, the
SNPs S1, S2, and Q-1 were associated with FEV1 decline,
and the SNPs S1, S2, F+1, and T2 were associated with the
presence of COPD [21]. In another study of European
children, SNPs F+1, M+1, T1, and T2 were associated with
lower FEV1 [24]. These conflicting results could be due to
ethnic differences between the Caucasian populations
and the East Asian population in the present study.
Another possibility is that there may be differences in the
genetic background of COPD in Chinese, Caucasian, and
Dutch populations. Therefore, further studies investigat-
ing the distributions of the ADAM33 gene variants in
other populations is required.

In our study, three SNPs were associated with COPD. The
T1 and T2 SNPs are located in the exon 19 (which
includes an SH3 domain and a phosphorylation site) of
the cytoplasmic tail, which may affect signaling. The SNP
Q-1 is located in the intron immediately before exon 16,

Table 3: Restriction enzymes and lengths of digested fragments

V4 T+1 T2 T1 S2 S1 Q-1 F+1

Enzyme PstI HpyAV HpyCH4III NcoI FseI HinfI BtsCI BsmBI
Length of digested fragments(bp) G: A: A: A: C: G: A: C:

168+206 284+28 198+112 140+260 148+156 132+172 20+138 208+192
C:374 G:312 G:310 G:400 G:304 A:304 G:158 T:400

Table 4: ADAM33 genotype frequencies in cases and controls

Frequency No (%)

Genotype CASE(n = 312) CONTROL(n = 319) P-value

V4 CC 200(64.10) 215(67.40) 0.3830
CG 93(29.81) 88(27.59) 0.5373
GG 19(6.09) 16(5.01) 0.5556

T+1 AA 9(2.88) 7(2.20) 0.5813
AG 63(20.20) 64(20.06) 0.9676
GG 240(76.92) 248(77.74) 0.8057

T2 AA 11(3.53) 60(18.81) < 0.0001
AG 100(32.05) 139(43.57) 0.0003
GG 201(64.42) 120(37.62) < 0.0001

T1 AA 83(26.60) 179(56.11) < 0.0001
AG 170(54.49) 122(38.24) < 0.0001
GG 59(18.91) 18(5.65) < 0.0001

S2 CC 30(9.62) 23(7.21) 0.2761
CG 121(38.78) 105(32.92) 0.1244
GG 161(51.60) 191(59.87) 0.0365

S1 AA 171(54.81) 200(62.70) 0.0441
AG 120(38.46) 99(31.03) 0.0501
GG 21(6.73) 20(6.27) 0.8142

Q-1 AA 13(4.17) 40(12.54) 0.0002
AG 100(32.05) 130(40.75) 0.0232
GG 199(62.38) 149(46.71) < 0.0001

F+1 CC 154(49.36) 159(49.84) 0.9032
CT 128(41.03) 138(43.26) 0.5698
TT 30(9.61) 22(6.90) 0.2143
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which contains an epidermal growth factor (EGF) domain
[25]. EGF signaling is important in lung morphogenesis,
and mice lacking the EGF receptor (EGFR) demonstrate
abnormal branching and poor alveolarization. EGFR sig-
naling regulates matrix metalloproteases, which mediate
epithelial-mesenchymal interactions during lung mor-
phogenesis [26]. ADAM33 is closely related to matrix met-
alloproteases, but may bind EGF directly. A disturbance in
the EGF domain will likely affect regulation of ADAM33.
Through alterative splicing, exon 16 can be spliced out,
giving rise to the β-variant of ADAM33. This variant was
found in 30% of ADAM33 mRNA transcripts in pulmo-
nary fibroblasts [27]. Because the EGF domain is incom-
plete, it has been suggested that the β-variant prevents
maturation of ADAM33 and may exert a dominant-nega-
tive effect on its protease activity [28]. The intronic Q-1
SNP may therefore influence the splicing of the β-variant
[29] and disturb the maturation of ADAM33. Subsequent
effects on protease activity may result in a defect in tissue
repair after inflammation-induced damage. This may lead
to progressive destruction of alveolar tissue and thereby
enhance accelerated decline in lung function.

We have previously shown that polymorphisms in the
ADAM33 gene are associated with adult allergic asthma

and rhinitis in a Chinese Han population [30]. Interest-
ingly, we now present evidence that polymorphisms in
ADAM33 are associated with COPD in a Chinese Han
population. In these studies, some common SNPs are
associated with all three diseases, suggesting that they
contribute to accelerated airway dysfunction in various
disease progressions. However, some specific SNPs are
only associated with one disease. This phenomenon is
consistent with the pathogenetic mechanisms of the three
diseases. On one hand, the pathogenetic mechanisms of
asthma, allergic rhinitis, and COPD are different from
each other, and each disease has its specific diagnosis. On
the other hand, there may be some overlapping aspects in
their pathogenetic mechanisms. At present, the mechanis-
tic roles of the disease-associated SNPs have yet to be elu-
cidated, especially in the context of the pathophysiology
of asthma and COPD. Further research on ADAM33
should clearly involve functional studies to elucidate the
roles of ADAM33 SNPs in lung function loss, asthma, and
COPD.

Conclusion
In summary, our results suggest an association between
the ADAM33 gene polymorphisms and COPD in the
northeastern Chinese Han population.

Table 5: Association of ADAM33 alleles with COPD

Minor allele frequency

SNP Allele Case Control P-value Odds ratio (95% CI)

V4 G:C 0.210 0.188 0.3310 1.15 (0.87-1.51)
T+1 G:A 0.130 0.122 0.6861 1.07 (0.77-1.49)
T2 G:A 0.196 0.406 < 0.0001 2.81 (2.19-3.61)
T1 A:G 0.462 0.248 < 0.0001 2.60 (2.06-3.30)
S2 G:C 0.290 0.237 0.0313 1.31 (1.02-1.69)
S1 A:G 0.260 0.218 0.0819 1.25 (0.97-1.63)
Q-1 G:A 0.202 0.329 < 0.0001 1.93 (1.50-2.50)
F+1 C:T 0.301 0.285 0.5321 1.08 (0.85-1.38)

Table 6: Association of ADAM33 haplotypes with COPD

Frequencies

Haplotype Frequencies Case Control P value of χ2-test

CGGAGAGC 0.122 0.125 0.199 0.7353
CGAAGAGC 0.064 0.032 0.096 < 0.0001
CGGGGAGC 0.053 0.077 0.030 0.0002
GGGAGAGC 0.034 0.035 0.034 0.8664
CGGAGAGT 0.034 0.034 0.033 0.908
CGGGGAGT 0.03 0.049 0.012 0.0001
CGGGCAGC 0.027 0.043 0.011 0.0005
CGGGGGGC 0.027 0.039 0.015 0.0074
CGGACAGC 0.023 0.029 0.018 0.1904
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