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Abstract

Background: There is a growing awareness that interaction between multiple genes play an
important role in the risk of common, complex multi-factorial diseases. Many common diseases are
affected by certain genotype combinations (associated with some genes and their interactions). The
identification and characterization of these susceptibility genes and gene-gene interaction have been
limited by small sample size and large number of potential interactions between genes. Several
methods have been proposed to detect gene-gene interaction in a case control study. The
penalized logistic regression (PLR), a variant of logistic regression with L, regularization, is a
parametric approach to detect gene-gene interaction. On the other hand, the Multifactor
Dimensionality Reduction (MDR) is a nonparametric and genetic model-free approach to detect
genotype combinations associated with disease risk.

Methods: We compared the power of MDR and PLR for detecting two-way and three-way
interactions in a case-control study through extensive simulations. We generated several
interaction models with different magnitudes of interaction effect. For each model, we simulated
100 datasets, each with 200 cases and 200 controls and 20 SNPs. We considered a wide variety of
models such as models with just main effects, models with only interaction effects or models with
both main and interaction effects. We also compared the performance of MDR and PLR to detect
gene-gene interaction associated with acute rejection(AR) in kidney transplant patients.

Results: In this paper, we have studied the power of MDR and PLR for detecting gene-gene
interaction in a case-control study through extensive simulation. We have compared their
performances for different two-way and three-way interaction models. We have studied the effect
of different allele frequencies on these methods. We have also implemented their performance on
a real dataset. As expected, none of these methods were consistently better for all data scenarios,
but, generally MDR outperformed PLR for more complex models. The ROC analysis on the real
dataset suggests that MDR outperforms PLR in detecting gene-gene interaction on the real dataset.

Conclusion: As one might expect, the relative success of each method is context dependent. This
study demonstrates the strengths and weaknesses of the methods to detect gene-gene interaction.
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Background

Genetic mapping of a trait involves implementation of
a number of statistical strategies to identify relative
position(s) of gene(s) influencing the trait in the
genome. Such strategies have been a major breakthrough
in identification of genes responsible for simple human
diseases or traits. More than 1600 genes have been
identified [1] for simple human traits such as nail patella
syndrome [2], cystic fibrosis [3] since the 1980s. Many
complex traits of medical relevance such as Diabetes,
Asthma, and Alzheimer’'s disease are controlled by
multiple genes. Interaction between genes, low pene-
trance, and environmental factors make the gene
discovery difficult for these complex traits. A common
study design for genetic mapping of a trait is a case-
control study design where genotype data on a large
number of single nucleotide polymorphisms (SNPs) are
collected for a number of cases and controls to study the
association between these SNPs and the trait. There is a
growing evidence that these SNPs interact with each
other in determining the susceptibility to complex traits
or diseases. The investigation of such gene-gene interac-
tions presents new statistical challenges as the number of
potential interactions between the SNPs can be large.

Gene-gene interaction or epistatis has been defined in
multiple different ways [4-6]. Biological epistasis, as
defined by [7], is the physical interactions among
biomolecules in gene regulatory networks and biochem-
ical pathways at the cellular level of an individual.
Statistical epistasis, as defined by [8], is the deviation
from additivity in a linear mathematical model that
describes the relationship between the genotypes and
phenotype at a population level. The relationship between
biological and statistical epistasis is often confusing. It is
important to understand the relationship if we make
biological inferences from statistical results [9]. The focus
of the present study is the detection and characterization of
statistical epistasis in human populations.

The traditional parametric statistical approach to model-
ing the relationship between disease status and SNPs is
logistic regression which has some obvious limitations.
As each additional main effect is included in the logistic
model, the number of possible interaction terms grow
exponentially. Due to the sparseness of the data in high
dimensions, parameter estimates often tend to have large
standard errors, making it difficult to detect interaction.
Several methods have been proposed to detect gene-gene
interaction in a case control study design.

These methods can be categorized broadly into para-
metric and nonparametric approaches. Parametric meth-
ods assume a model to describe the effect of each SNP or
combination of SNPs on the disease. Some examples of
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parametric approaches are ridge penalized logistic
regression [10], LASSO [11], and logic regression [12].
All these methods try to address the potential problem of
fitting gene-gene interaction models through traditional
logistic regression and propose alternative ways to
identify interactions. Recently, [10] proposed the pena-
lized logistic regression (PLR), which is analogous to
ridge regression to detect gene-gene interaction. Under
certain models as well as on two real datasets, they
demonstrated that PLR outperforms Multifactor Dimen-
sionality Reduction method [13] and Flextree [14]. The
use of penalized logistic regression [10] showed sub-
stantial promise for overcoming the limitations of
traditional logistic regression.

The nonparametric approaches for detection gene-gene
interaction search through different levels of interaction
regardless of the significance of the main effects. In
nonparametric methods, several data mining approaches
have been developed and employed in the detection of
gene-gene interactions. Some of these approaches are
Combinatorial Partitioning Method or CPM [15], Neural
Network [16], Multifactor Dimensionality Reduction or
MDR [13,17]. These methods detect the relevant inter-
actions between the SNPs by either reducing the
dimension of the vast genetic data or recognizing the
useful hidden patterns. These approaches do not make
any assumption about the nature of dependence
between the trait and the SNPs; instead, it is determined
from the data. This makes the nonparametric methods
more flexible compared to the parametric methods.
Recently [18] has compared a number of different
models and MDR came out to be a performing fairly
well across all comparison. Hence, we have selected
MDR as the representative of the nonparametric
approaches and compared its performance with PLR
through extensive simulations.

In this paper, we have studied the power of MDR and PLR
for detecting gene-gene interaction in a case-control study
for various interaction models. As compared to [10], we
have considered a wide variety of 2-way and 3-way
interaction models with strong or weak effects of the
predictors. We have also studied the influence of the
minor allele frequencies of the SNPs on the performance
of the methods. Our findings were somewhat different
from [10]. We did not find PLR consistently outperform-
ing MDR. If there was an additive sub-model that
explained the interaction among the SNPs, PLR per-
formed better. On the other hand, MDR was particularly
good in detecting the weak effects of a purely epistatic
interaction. The prediction errors were generally lower for
MDR as compared to PLR. Moreover, the ROC analysis on
the real dataset suggested that MDR outperformed PLR in
detecting gene-gene interaction on the real dataset.
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Results and Discussion

Simulation | & Results

We have compared the power of MDR and PLR for
detecting 2-way interaction in a case-control study
through extensive simulations. We generated 9 models
with different magnitudes of interaction effect. For each
model, we simulated 100 datasets. Each dataset con-
tained 400 samples (200 cases and 200 controls) and 20
SNPs, only 2 of which (SNP1 and SNP2) were associated
with the disease. We considered a wide variety of models
such as models with just main effects, models with only
2nd-order interaction effects or models with both main
and interaction effects to represent the underlying
genetic models for the effect of the associated SNPs on
the disease. The coefficients of the models were selected
somewhat arbitrarily to cover a variety of prevalence and
heritability of the disease. If we denote the alleles of
SNP1, SNP2 by (A, a) and (B, b) respectively, then the 9
models used in the simulation were

1. Model 1: Logit(p) = -6.9 + 7.31 I(SNP1 = Aa,
SNP2 = BB) + 7.31 I(SNP1 = AA, SNP2 = Bb) + 7.31
I(SNP1 = AA, SNP2 = BB)

2. Model 2: Logit(p) = -6.9 + 6.5 [(SNP1 = AA) + 6.5
I(SNP2 = BB) - 13 I(SNP1 = AA, SNP2 = BB)

3. Model 3: Logit(p) = -6.9 + 6.9 I[(SNP1 = AA) + 6.9
I(SNP2 = BB)
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4. Model 4: Logit(p) =-2.197 + 0.811 [(SNP1 = AA) +
0.811 I(SNP2 = BB)

5. Model 5: Logit(p) =-2.197 + 0.811 [(SNP1 = AA) +
0.811 I(SNP2 = BB) + 1.96 I(SNP1 = AA, SNP2 = BB)
6. Model 6: Logit(p) =-2.197 + 0.811 I(SNP1 = AA) +
0.811 I(SNP2 = BB) - 1.622 I(SNP1 = AA, SNP2 = BB)
7. Model 7: Logit(p) = -2 + 1 I(SNP1 = AA) + 1
I(SNP2 = BB) - 2 I(SNP1 = AA, SNP2 = BB)

8. Model 8: Logit(p) = -2 + 1 I(SNP1 = Aa) + 1
I(SNP2 = Bb) - 2 I(SNP1 = Aa, SNP2 = Bb)

9. Model 9: Logit(p) = -0.575 + 1 I(SNP1 = Aa,
SNP2 = Bb) + 1 I(SNP1 = Aa, SNP2 = BB) - 1 I(SNP1 =
AA, SNP2 = Bb).

Three levels of the 2 associated SNPs were distributed so
that the conditional probabilities of being diseased were
as in Table 1 (often referred as the penetrance tables).
The levels of the remaining 18 SNPs were in Hardy-
Weinberg equilibrium separately for cases and controls.
Figure 1 shows the log odds of being diseased for all
possible combinations of levels of the 2 associated SNPs.
For Model 2 to Model 8, the SNPs had main effects,
while for Model 1 and Model 9, they did not have any
main effect. The log odds were additive for Model 3, 4,
while the other 7 models show certain interaction effects.
We simulated all the models under different allele
frequencies such as 0.1, 0.2 and 0.5 to assess the effect

Table I: Penetrance Tables for 2-way interactions. Penetrance tables of nine different models with 2-way interactions. SNP1 has three
genotypes AA, Aa, aa and SNP2 has three different genotypes BB, Bb, bb. Each cell of a penetrance table represents the probability of

being affected given the cell genotype

Model | Model 2 Model 3

bb Bb BB bb Bb BB bb Bb BB
aa 0 0 0 aa 0 0 4 aa 0 0 5
Aa 0 0 .6 Aa 0 0 4 Aa 0 0 5
AA 0 .6 .6 AA 4 4 0 AA 5 5 |
Model 4 Model 5 Model 6

bb Bb BB bb Bb BB bb Bb BB
aa . N 2 aa . N 2 aa N . 2
Aa | | 2 Aa | | 2 Aa | | 2
AA 2 2 .36 AA 2 2 8 AA 2 2 |
Model 7 Model 8 Model 9

bb Bb BB bb Bb BB bb Bb BB
aa 12 .12 27 aa 12 27 12 aa .36 .36 .36
Aa 12 .12 27 Aa .27 12 27 Aa .36 60 60
AA 27 27 12 AA 12 27 12 AA .36 .60 .36
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Figure |
The pattern of log-odds for 2-way interaction models. The patterns of log-odds for class| (affected) for different levels
of the two SNPs (SNPI and SNP2) under nine different models with 2-way interactions. The subfigures (a), (b), (c), (d), (e), (f),
(g), (h), (i) represent Model I, Model 2, Model 3, Model 4, Model 5, Model 6, Model 7, Model 8 and Model 9 (Table 1)
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of allele frequency on the power of each approach. The
heritability with the minor allele frequency of 0.50 for
the causal SNPs were 51%, 29%, 50%, 4%, 19%, 2%,
4%, 3.5% and 6% for Model 1, 2, 3,4, 5, 6,7, 8 and 9
respectively. The prevalence of the disease was 0.18,
0.15, 0.25, 0.15, 0.18, 0.14, 0.18, 0.19, and 0.48 for
Model 1, 2, 3, 4, 5, 6, 7, 8 and 9 respectively.

For MDR, we searched for 1-way to 3-way interaction
using 10-fold cross-validation. We first looked for the
best model among 1-way, 2-way and 3-way interactions
in terms of the minimum prediction error. Once the
dimension of the interaction model was selected, we
then chose the best model with the previously selected
order of interaction using the maximum cross-validation
consistency. To be comparable with MDR, we allowed
up to 3 terms to enter in the model for PLR. The PLR
allows up to 3 SNPs to remain in the final model if one
specifies the maximum number of terms to be 3. For
each simulated dataset, we cross-validated the regular-
ization parameter A for a wide range (1 x 10%, 1 x 1074,
0.01, 1, 100, 100000) according to the BIC criterion [10].
We selected the A that yielded the largest average (cross-
validated) log-likelihood and used the chosen A to select
a PLR model using again the BIC criterion.

We estimated the power of each method as the numbers
of times (out of 100) for which the correct SNPs were
identified. We also varied the allele frequencies of the
associated SNPs to check the impact of allele frequencies
on the power of MDR and PLR. Figure 2 summarizes
the power comparisons of MDR and PLR when P(A) =
P(B) = 0.1, P(A) = P(B) = 0.2, P(A) = P(B) = 0.5 under
each of these 9 models in Table 1, where the minor
alleles of SNP1 and SNP2 are denoted by A and B
respectively. We kept the minor allele frequency of the
non-associated SNPs fixed at 0.5.

For the power comparison, we counted the finally
selected model as a correct model only if the two SNPs
associated with the disease were reported. We did not
count a model as a correct model if only one of the two
SNPs were reported. So we only counted a model as a
correct model for MDR if MDR selected a 2-way model as
a best model and the 2 SNPs reported were SNP1 and
SNP2. If any SNP other than SNP1 and SNP2 was present
in the final model, we did not count it as a correct model.
For PLR, we counted a model as a correct model if it
reported only SNP1 and SNP2 either as main-effects, or as
a two-way interaction. If any SNP other than SNP1 and
SNP2 was present in the final model, we did not count it
as a correct model for PLR. According to Figure 2, we see
that both MDR and PLR had great power to detect
interaction under Model 1, Model 2 and Model 3,
although PLR had a slightly larger power. Under each of
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these 3 models, the effect size of at least one of these 9
genotype combinations such as (AA, BB), of the 2 SNPs
was hugely different from the other categories. Hence the
power to detect association was very good for both these
approaches. We noticed that the performance of the MDR
approach got worse when P(A) = P(B) = 0.1 under Model
1. This is due to the fact that the case-control ratio became
close to 1 at the discriminating combination (AA, BB),
when the associated allele frequencies were 10%.

The effect-size difference between the different genotype
combinations of SNP1 and SNP2 got substantially
smaller in Model 4 as compared to Model 3, even
though both were additive models. Both methods lost
substantial amount of power in Model 4 compared to
Model 3. Still there was some advantage of using PLR as
compared to MDR, when the effects were additive
(Model 3, Model 4). When the disease allele frequency
was 0.5, PLR outperformed MDR under Model 4 and
performed even better under Model 5. Model 5 had the
same magnitude of main effects for AA and BB genotypes
as in Model 4, but had an additional interaction term for
the genotype combination (AA, BB) (Figure 1). For
Model 5, the expected misclassification error of the one-
SNP interaction model is 0.36, which is almost the same
as 0.35, the expected misclassification error of the two-
SNP interaction model. MDR found it hard to distin-
guish between these two models. In contrast, PLR was
able to still estimate the two main effects separately and
sometimes the additional interaction term.

From Model 6 to Model 8, MDR outperformed PLR.
Especially in model 8, MDR consistently outperformed
PLR for different disease allele frequency. Under model
9, PLR had more power when the disease allele
frequency was 0.2 while MDR had more power with
allele frequency 0.5. Under model 8 with P(A) = P(B) =
0.5, the expected misclassification errors of one-SNP
model and two-SNP model were 0.5 and 0.38 separately,
while 0.5 and 0.386 with P(A) = P(B) = 0.1. In both
occasions, MDR preferred the two-SNP model over the
one-SNP model because of the lower misclassification
error rate of the former one. The PLR had a moderate
power when P(A) = P(B) = 0.1 and lost power greatly
when P(A) = P(B) = 0.5. In the latter situation the
expected cases and controls are centered in three
genotype cells such as (Aa, Bb), (Aa, BB) and (Aa, bb),
while there are very few data points in other cells. This
have caused huge instability in the estimation of the
parameters, a common problem in parametric approach.

We noticed that the performance of the methods heavily
depends on the allele frequency of the associated SNPs.
We also noticed that MDR generally outperforms PLR,
when the underlying nature of interaction is complex.
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Figure 2

Power Comparison for two-way interactions. Figure shows the power of MDR and PLR for detection of interaction
under 9 different 2-way interaction models. Eeach plot represents the power of MDR and PLR under different allele
frequencies of the associated SNPs. The power of MDR was presented with a solid line and the power of PLR was presented
with a dashed line in each figure. The subfigures (a), (b), (c), (d), (e), (f), (g), (h), (i) represent the power plots for Model I,
Model 2, Model 3, Model 4, Model 5, Model 6, Model 7, Model 8 and Model 9 (Table I) respectively.
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Table 2: Comparison of prediction error between MDR and PLR

Model MDR PLR
Model | 0.077 (0.014) 0.077 (0.013)
Model2 0.131 (0.016) 0.132 (0.015)
Model3 0.123 (0.015) 0.123 (0.015)
Model4 0.379 (0.038) 0.407 (0.047)
Model5 0.331 (0.027) 0.345 (0.026)
Modelé 0.413 (0.049) 0.457 (0.062)
Model7 0.383 (0.033) 0.460 (0.065)
Model8 0.386 (0.032) 0.485 (0.038)
Model9 0.382 (0.036) 0.437 (0.048)

The prediction error of MDR and PLR for 2-way interaction models
when P(A) = P(B) = 0.5, where A and B are the minor alleles of SNPI
and SNP2 respectively.

From the above analysis (Figure 2), we also noticed that
when the case/control ratio is about 1, the high-risk or
low-risk assignment in the MDR method is unstable. The
MDR method also faces the sparseness of data in high
dimensions when the allele frequency is way lower than
0.5 (Model 7, Model 9). On the other hand, the
estimation of parameters in PLR approach can be heavily
affected even when the disease allele frequency is 0.5
(Model 8). We reported the average prediction errors of
these two approaches in Table 2. The PLR approach had
generally higher prediction errors than the MDR
approach, especially when the interaction model was
complex. We also checked if the power differences
between these two methods were statistically significant.
Using a normal approximation to the two binomial
distributions, the p-values corresponding to the null
hypothesis that the expected probability of rejection is
same for MDR and PLR were 0.2446, 0.0317, 0.0115,
0.0005, < 0.0001, 0.0248, 0.0069, < 0.0001 and 0.1548
for Model 1, 2, 3, 4, 5, 6, 7, 8 and 9 respectively for an
allele frequency of 0.50.

Simulation 2 & Results

We also compared the power of MDR and PLR for
detecting 3-way interactions. We generated 6 epistatic
models with different magnitudes of interaction effect.
For each model, we simulated 100 datasets. Each dataset
contained 400 samples (200 cases and 200 controls) and
20 SNPs, only 3 of which (SNP1, SNP2, SNP3) were
associated with the disease. Three levels of the 3
associated SNPs were distributed so that the conditional
probabilities of being diseased were as in Table 3. The
levels of the remaining 5 SNPs were in Hardy-Weinberg
equilibrium for cases and controls, separately. Figure 3
displays the log odds of being diseased for all possible
combinations of levels of the 3 associated SNPs. We
simulated all the models under different allele frequen-
cies such as 0.1, 0.2 and 0.5 to assess the effect of allele
frequency on the power of each approach. We kept the
minor allele frequency of the non-associated SNPs fixed
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at 0.5. We again considered models with just main
effects, with only 2nd order or 3rd order interaction
effects or with both main and interaction effects to
represent the underlying genetic models for the asso-
ciated SNPs. The coefficients of the models were selected
somewhat arbitrarily to cover a wide variety of pre-
valence and heritability of the disease.

If we denote the associated SNPs by SNP1, SNP2 and
SNP3 and the alleles of SNP1, SNP2 and SNP3 by (A, a),
(B, b) and (C, c) respectively, then the 6 interaction
models were

1. Model 1: Logit(p) = -5 + 3 I(SNP1 = Aa, SNP2 = Bb,
SNP3 = Cc) + 3 I(SNP1 = AA, SNP2 = BB, SNP3 = CC)
2. Model 2: Logit(p) = -5 + 3 I(SNP1 = AA) + 3
I(SNP2 = BB) + 3 I(SNP3 = CC)

3. Model 3: Logit(p) = -5 + 4 I(SNP2 = BB) + 4
I(SNP3 = CC) -8 I(SNP1 = AA, SNP2 = BB) + 5
I(SNP1 = Aa, SNP2 = BB, SNP3 = CC) + 6 I(SNP1 =
AA, SNP2 = BB, SNP3 = CC)

4. Model 4: Logit(p) = -5 + 3 I(SNP1 = AA, SNP2 =
BB) + 3 I(SNP1 = AA, SNP3 = CC) + 3 [(SNP2 = BB,
SNP3 = CC)

5. Model 5: Logit(p) = -5 + 3 I(SNP3 = Cc) + 3
I(SNP1 = AA, SNP2 = BB, SNP3 = CC)

6. Model 6: Logit(p) = -5 + 3 I(SNP1 = AA) + 3
I(SNP2 = BB) + 3 I(SNP3 = CC) - 6 I(SNP1 = AA,
SNP2 = BB)

The heritability with the minor allele frequency of 0.50
for all SNPs were 7%, 47%, 23%,43%, 5%, and 38% for
Model 1, 2, 3, 4, 5 and 6 respectively. Model 1 was a
purely epistatic model with no main effect or second
order interactions. Model 2 was an additive model with a
main effect for each of the 3 SNPs. Model 3 had a main
effect term for the 2nd SNP and a third order interaction
term. Model 4 was an additive model with pairwise
interaction among the 3 SNPs. Model 5 had a main effect
term and there was a third order interaction among the
SNPs. For Model 6, each of the 3 SNPs had a main effect
and a pair-wise interaction term between SNP1 and
SNP2 in opposite direction to the main effect. The
prevalence of the disease was 0.02, 0.17, 0.13, 0.04, 0.06,
0.12 for Model 1, 2, 3, 4, 5 and 6 respectively.

For MDR, we searched through 1-way to 4-way interac-
tion models using 10-fold cross-validation. With PLR,
the maximum number of terms to be allowed to enter
into the model was preset at 4. For each simulated
dataset, we cross-validated the regularization parameter
for awide range (1 x 10, 1 x 10, 0.01, 1, 100, 100000)
according to the BIC criterion. We selected the A that
yielded the largest average (cross-validated) log-like-
lihood and used the chosen A to select a PLR model
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Table 3: Penetrance tables: 3-way interactions

Model |
3rd factor = cc 3rd factor = Cc 3rd factor = CC
Bb Bb BB bb Bb BB bb Bb BB
aa 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
Aa 0.007 0.007 0.007 0.007 0.12 0.007 0.007 0.007 0.007
AA 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.12
Model 2
3rd factor = cc 3rd factor = Cc 3rd factor = CC
bb Bb BB bb Bb BB bb Bb BB
aa 0.007 0.007 0.12 0.007 0.007 0.12 0.12 0.12 0.73
Aa 0.007 0.007 0.12 0.007 0.007 0.12 0.12 0.12 0.73
AA 0.12 0.12 0.73 0.12 0.12 0.73 0.73 0.73 0.98
Model 3
3rd factor = cc 3rd factor = Cc 3rd factor = CC
bb Bb BB bb Bb BB bb Bb BB
aa 0.007 0.007 0.27 0.007 0.007 0.27 0.007 0.007 0.27
Aa 0.007 0.007 0.27 0.007 0.007 0.27 0.007 0.007 0.27
AA 0.27 0.27 0.007 0.27 0.27 0.50 0.27 0.27 0.73
Model 4
3rd factor = cc 3rd factor = Cc 3rd factor = CC
bb Bb BB bb Bb BB bb Bb BB
aa 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.12
Aa 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.12
AA 0.007 0.007 0.12 0.007 0.007 0.12 0.12 0.12 0.98
Model 5
3rd factor = cc 3rd factor = Cc 3rd factor = CC
bb Bb BB bb Bb BB bb Bb BB
aa 0.007 0.12 0.007 0.007 0.12 0.007 0.007 0.12 0.007
Aa 0.007 0.12 0.007 0.007 0.12 0.007 0.007 0.12 0.007
AA 0.007 0.12 0.007 0.007 0.12 0.007 0.007 0.12 0.12
Model 6
3rd factor = cc 3rd factor = Cc 3rd factor = CC
bb Bb BB bb Bb BB bb Bb BB
aa 0.007 0.007 0.12 0.007 0.007 0.12 0.12 0.12 0.73
Aa 0.007 0.007 0.12 0.007 0.007 0.12 0.12 0.12 0.73
AA 0.12 0.12 0.73 0.12 0.12 0.73 0.007 0.007 0.12

Penetrance tables of six different models with 3-way interactions. SNP| has three genotypes AA, Aa, aa and SNP2 has three different genotypes BB,
Bb, bb and SNP 3 has three different genotypes CC, Cc, cc. Each cell of a penetrance table represents the probability of being affected given the cell
genotype.
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Figure 3

The pattern of log-odds for 3-way interaction models. The patterns of log-odds for class| (affected) for different
levels of the three SNPs (SNPI, SNP2 and SNP3) under six different models with 3-way interactions. SNP| has three levels AA,
Aa, aa; SNP2 has three different levels BB, Bb, bb and SNP3 has three levels CC, Cc, cc. Each row presents a specific
interaction model. The rows 1, 2, 3, 4, 5 and 6 list the interaction models Model |, Model 2, Model 3, Model 4, Model 5
and Model 6 (Table 3) respectively.
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based on the BIC criterion. We counted the finally
selected model as a correct model only if the three SNPs
associated with the disease were reported. We did not
count a model as a correct model if only two of the three
SNPs were reported. So we only counted a model as a
correct one for MDR if MDR selected a 3-way model as a
best model and the 3 SNPs reported were SNP1, SNP2,
and SNP3. If any SNP other than SNP1, SNP2, SNP3 was
present in the final model, we did not count it as a
correct model. For PLR, we counted a model as a correct
one if it reported only the SNP1, SNP2 and SNP3 either
as main-effects, or as a 2-way or a 3-way interaction. If
any SNP other than SNP1, SNP2, SNP3 was present in
the final model, we did not count it as a correct model.

Figure 4 illustrates the power of MDR and PLR for
different allele frequencies of the three associated SNPs
separately for each model. We can see that both MDR
and PLR had very small power to detect the 3-way
interaction when the disease allele frequency was
generally low (0.1 or 0.2) under all the models except
Model 2 and 6, where the population prevalence of the
disease as well the heritability was high. When P(A) =P
(B) = P(C) = 0.5, both methods had great power under
Model 1 but PLR outperformed MDR under Model 2 and
MDR did better under Model 3. We noticed that the
power of both methods heavily depends on the allele
frequency of the associated SNPs. Moreover, we found
that in Model 2, there is definite advantage of using PLR
over MDR when the effects are additive (Figure 3). MDR
suffered from the sparsity of the cells in higher
dimension and equal case-control ratios and hence had
lower power than PLR in Model 2, especially when the
disease allele frequency was 0.1 or 0.5. On the other
hand, when the nature of interaction among the SNPs
were complex (Model 3), MDR did a better job than PLR.
PLR had almost zero power to detect interaction under
all allele frequencies, whereas MDR detected the com-
plex interaction in 25 of these 100 simulations, when the
disease allele frequency was 0.5. Both methods perform
very similar to detect the pairwise interactions in Model
4 and only detected the interaction model at allele
frequency of 0.5. Model 5 had very low population
prevalence of the disease and the heritability was quite
low. Both approaches did not have adequate power to
detect the interaction. For a minor allele frequency of 0.5
for the associated SNPs, the PLR approach had zero
power to detect interaction, whereas MDR detected it in
7 of the 100 simulations. Model 6 was very similar to
Model 4. It had a 2nd order interaction term in addition
to the main effects. The performance of the models were
similar to Model 4. The MDR approach performed very
similar to PLR for minor allele frequency of 0.2 of the
associated SNPs, but it suffered a significant power loss
when the minor allele frequencies were 0.1 or 0.5.

http://www.biomedcentral.com/1471-2350/10/127

We have reported the average prediction errors of these
two approaches in Table 4. The PLR approach had
generally higher prediction errors than the MDR
approach, especially when the interaction model was
complex. We also checked if the power differences
between these two methods were statistically significant.
Using a normal approximation to the two binomial
distributions, the p-values corresponding to the null
hypothesis that the expected probability of rejection is
same for MDR and PLR were 0.4951, < 0.0001, < 0.0001,
1, 0.0209, and < 0.0001 for Model 1, 2, 3, 4, 5 and 6
respectively for an allele frequency of 0.50.

Real Data Analysis

We have compared the performance of MDR and PLR to
detect gene-gene interaction that are associated with
acute rejection(AR) in kidney transplant patients. All
research subjects reported in the real data analysis were
fully consented through a human subjects-approved
protocol (IRB Code Number 0006M54661) by the
Institutional Review Board of the University of Minne-
sota in compliance with the Helsinki Declaration. Whole
blood was obtained with informed consent and DNA
isolated from 271 kidney allograft recipients, 136 of
whom had acute rejection (AR) within 6 months of
transplant, and 135 of whom did not have any
detectable AR after at least 8 years post-transplant. All
received Ab induction and CNI, with either MMF or
sirolimus. The average age of the rejection group was
44 + 14.3 years, whereas the age distribution for the non-
rejectors was 47.9 + 12.2 years. There were 56% males
and 44% females in the rejection group and the non-
rejection group had 58% males and 42% females. The
mean time to rejection was 4.8 weeks with a standard
deviation (sd) of 7.7 weeks in the rejection group.
Among the non-rejectors, the average length of trans-
plant was 12.2 years with a sd of 2.1 years. DNA variants
were genotyped using a Affymetrix custom genotyping
chip containing 3,590 single nucleotide polymorphisms
(SNPs), many of which are thought to be functional
variants within biologically relevant genes to acute
rejection including genes in pathways associated with
immunity, cell signaling, ADME, cell growth and
proliferation [19]. Genotyping was performed using the
Affymetrix GeneChip Scanner 3000 Targeted Genotyping
System (GCS 3000 TG System), which utilizes molecular
inversion probes to simultaneously identify the 3404
pre-selected SNPs. Methods for genotyping have been
previously described and were performed in strict
adherence to the manufacturer’s protocol [20]. For this
comparison study, we randomly selected 120 caucasian
patients with acute rejection within 6 months of
transplant, and 120 caucasian patients without any
detectable AR after at least 8 years post-transplant.
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Power for 3-way interactions. Figure shows the power of MDR and PLR for detection of interaction under 6 different
3-way interaction models. Eeach plot represents the power of MDR and PLR under different allele frequencies of the
associated SNPs. The power of MDR was presented with a solid line and the power of PLR was presented with a dashed line
in each figure. The subfigures (a), (b), (c), (d), (e), (f) represent the power plots for Model |, Model 2, Model 3, Model 4,
Model 5, Model 6 (Table 3) respectively.
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Table 4: Comparison of prediction error between MDR and PLR

Model MDR PLR
Model | 0.233(.024) 0.248(0.032)
Model2 0.363(.041) 0.381 (0.043)
Model3 0.185(0.018) 0.197(0.019)
Model4 0.147(0.020) 0.140(0.021)
Model5 0.262(0.019) 0.274(0.021)
Modelé 0.228(0.021) 0.235(0.022)

The prediction error of MDR and PLR for 3-way interaction models
when P(A) = P(B) = P(C) = 0.5, where A, B and C are the minor alleles
of SNPI, SNP2 and SNP3 respectively.

Of the 3404 SNPs typed, 80 SNPs had no data and hence
excluded from the analysis. Of the remaining 3324 SNPs,
the call rate was 98.6%. Our goal here was to detect any
evidence of interaction among the SNPs associated with
acute rejection(AR) in kidney allografts. For all the SNPs,
we did Fisher’s exact test and selected only the top 100
most significant SNPs for the interaction detection
purpose. Among these 100 SNPs, we excluded those
SNPs which have minor allele frequency less than 5%.
We also excluded those SNPs which have more than 10%
missing values. This gave 77 SNPs in the final dataset.
We imputed the missing data for each SNP from the
observed genotype distribution. Then we applied MDR
and PLR methods to detect evidence of interaction
among the 77 SNPs and AR.

We reported in Table 5, the top 20 SNPs exhibiting
strong association with acute rejection (AR) according to
Fisher's exact test. The most significant association was
with the SNP rs2147668 in replication factor gene RFC3.

http://www.biomedcentral.com/1471-2350/10/127

The second significant SNP rs875740 was located on the
gene ABCC1, which functions as the plasma membrane
drug-efflux pump. The third significant one rs2238136
was on the gene VDR, which encodes the nuclear
hormone receptor for vitamin D3 and also functions as
a receptor for the secondary bile acid lithocholic acid.
Some of the other SNPs exhibiting significant associa-
tions were involved in pathways affecting drug metabo-
lism or were involved in the immune system. We noticed
that two admixture SNPs, which were located in the X
Chromosome, also showed significant association. Due
to the X Chromosome inheritance, we analyzed these
SNPs separately in males and females. We found that
both rs2211463 and 132189394 were highly significant
in males, with p values 0.0005 and 0.0004 respectively.
But these two SNPs were not significant in females, with
p values 0.596 and 0.30 respectively.

We first applied MDR on this dataset. We considered
only up to 3 way interactions. Ten-fold cross validation
was used to obtain the best model for each given number
(n = 1,2,3) SNPs. With a given number of SNPs, the
training error was used to choose the best model at each
cross validation and CV consistency was used to select
the best model across the 10-fold cross validation. For
one SNP model (main effect model), 6 out of 10 times,
MDR chose SNP rs875740 and thus the best model was
1s875740. For two SNPs model (2-way interaction
model), the best one was rs2741045*rs288326; and for
three SNPs model(3-way interaction model), the best
model was 18937369 *rs4459610*rs1805335. The results
of MDR is shown in Table 6. We also reported the

Table 5: Results from single SNP association analyses: Top 20 SNPs showing significant association with acute rejection according to
Fisher’s exact test. The p values are not corrected for multiple testing

SNPs genes pvalue (Putative) Function
rs2147668 RFC3 0.0001 Replication factor C 3
rs875740 ABCCI 0.0006 plasma membrane drug-efflux pump
rs2238136 VDR 0.0009 Vitamin D receptor
rs4988515 IGFBPI 0.0009 Insulin-like growth factor binding protein |
rs442332 TNFRSFI7 0.0009 B-cell maturation factor
rs2211463 Admixture 0.0010 Unknown

rs2189394 Admixture 0.0012 Unknown

rs2741045 UGTIA9 0.0013 Drug metabolizing enzyme
rs288326 FRZB 0.0013 frizzled-related protein
rs1049897 MGP 0.0014 Regulator of cartilage development
rs10276036 ABCBI 0.0015 Initiate T lymphocyte-mediated immunity
rs 1800875 CMAI 0.0019 Degradation of the extracelluar matrix
rs4072037 MUCI 0.0021 encodes a mucin glycoprotein(s)
rs| 1539762 MYEOV 0.0023 myeloma overexpressed gene
rs2241339 ABCBI | 0.0024 Progressive intrahepatic cholestasis-2
rs2741046 UGTIA9 0.0028 Drug metabolizing enzyme
rs2014800 ABCCI 0.0030 plasma membrane drug-efflux pump
rs2695232 SOD3 0.0031 superoxide dismutase 3
rs1052369 ANKRD29 0.0033 ankyrin repeat domain 29
rs2305030 LTK 0.0033 leukocyte receptor tyrosine kinase
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Table 6: Performance of MDR on kidney acute rejection dataset
with 10-fold cross validation

Model Training Test cv
Error Error Consistency

rs875740 (ABCCI) 0.37 0.41 6/10

rs2741045%rs288326 0.32 0.44 4/10

(UGTIA9) * (FRZB)

rs937369*rs4459610%rs1805335 0.25 0.36 4/10

(ABCCI) * (ACE) * (RAD23B)

averaged training error and averaged test error for these
models. We obtained the best overall model based on
the averaged test error. The best overall model was
(15937369 (ABCC1)) x (rs4459610 (ACE))  (rs1805335
(RAD23B)) with averaged test error 0.36 from 10-fold
cross-validation. The sensitivity and specificity of the
best three SNPs model(also the best overall model)were
0.833 and 0.642 respectively (Figure 5). The p-values
from the single SNP association analyses were 0.007,
0.010 and 0.016 for SNPs rs937369, rs4459610 and
rs1805335 respectively. Figure 6 shows the distribution

<
-
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0.2

0.0

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

False Positive rate (1-Specificity)

Figure 5

ROC Curve. Receiver operating characteristic (ROC)
curves for penalized logistic regression. The value for MDR is
represented by a solid square in the plot.
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of the cases and controls in the 3-way contingency table
of the 3 selected SNPs.

We next fitted a penalized logistic regression model to
this kidney AR data. To be comparable with MDR, the
maximum number of terms to be entered in the model
(also in the selection procedure) is set at 3. Stepwise
selection (forward selection and backward deletion) is
used to select the final model according to the BIC
criterion. Based on the 5-fold cross validated average log-
likelihood, we searched the regularization parameter
lambda in a wide range [x 10, 10,000] and ended up
with lambda = 0.01 as the optimal tuning regularization
parameter. The final model included three main effects
1s2147668(RFC3), rs875740 (ABCC1) and 1rs1138358
(BCL2A1); one 2-way interaction 1s2147668 (RFC3) x
1s1138358 (BCL2A1). The p-values from the single SNP
association analyses were 0.0001, 0.0014 and 0.014 for
SNPs 152147668, 15875740 and rs1138358 respectively.

Penalized logistic regression gives the predicted prob-
abilities of being a case. By changing the cut-off points
varying from 0 to 1, we get a serials of sets of sensitivities
and specificities. Figure 5 shows the ROC cure for PLR
and MDR. The ROC curve by PLR and the solid square by
MDR are all away from the identity line y = x towards the
upper left corner, indicating that these methods perform
far better than random guess. The solid square point is
above the ROC curve (Figure 5), suggesting that the
overall best model identified by MDR outperformed PLR.
Compared to PLR with 0.5 cutoff (Table 7), MDR had
higher sensitivity (0.833 vs 0.708) and also had slightly
higher specificity (0.642 vs 0.625). MDR also did better
than PLR in terms of misclassification error (Table 7).
The CV consistencies for MDR were somewhat low. Our
sample size was small in terms of detecting interaction.
MDR faces from sparseness in high-dimensional con-
tingency table, which probably would have played a
role in the low values of cross-validation consistency.
The misclassification error, specificity and sensitivity
values indicated that the MDR approach provided a
reasonable result. We suspect that there are more genes
involved that the three genes reported here. Since our
sample size was small, we did not feel comfortable to
check beyond the third order interaction. We did notice
that some other combinations also showed up more
than twice in the 10 cross-validation runs for the third
order interaction.

The SNP 1s937369 is within the first intron of the ATP-
binding cassette, sub-family C, member 1 gene (ABCC1).
The protein product is a small molecule transporter
involved in multi-drug resistance [21]. The protein is
ubiquitously expressed throughout the body and has a
broad substrate specificity. The SNP rs4459610 results in
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The case-control distribution for MDR. The case-control distribution of the finally selected 3-way interaction model for
MDR. If a person falls in the red cell, MDR classifies him as a case(AR), otherwise a control.

Table 7: Comparison of prediction performance between MDR
and PLR on kidney acute rejection dataset

Misclassification error Sensitivity Specificity
MDR 0.260 0.833 0.642
PLR 0.330 0.708 0.625

a nonsynonymous amino acid substitution (p.K715N)
in the angiotensin-converting enzyme (ACE). This
enzyme catalyzes the conversion of angiotensin I into
the physiologically active peptide angiotensin II, which
plays a role in the renin-angiotensin system. Variations
of ACE have been previously associated with transplant
outcome [22]. The SNP rs1805335 is within the fifth
intron (IVS5-15A>G) of the human homolog of Sacchar-
omyces cerevisiae Rad23, a protein involved in nucleo-
tide excision repair (NER). RAD23 has recently been
implicated in the regulation of targeting protein to the
proteasome for degradation [23].

The SNP rs2147668 is within the promoter of the
replication factor C (activator 1) 3 gene (RFC3). The
protein product is an accessory protein for DNA
polymerase delta and epsilon and is involved in sensing
DNA damage and DNA replication stress [24]. The SNP
rs1138358 is a non-synonymous amino acid substitu-
tion (p.K39N) in BCL2-related protein Al (BCL2A1).
This gene is involved in the NF-kappaB signaling
pathway resulting in T-cell proliferation in response to
inflammatory mediators [25].

Of the genes that contained the identified SNPs, ABCC1,
ACE and BCL2A1 have the greatest biological relevancy

to transplant outcomes including acute rejection. The
protein product of ABCC1 is involved in drug transport
and may affect serum concentrations. Variants of ACE
have been previously associated with transplant out-
comes and BCL2A1 is involved in lymphocyte activation,
which would be important in the immune response to a
kidney allograft. The protein products of RAD23 and
RFC3 are both involved in DNA synthesis and repair
with RAD23 also involved in protein degradation. The
importance of variants within these genes to transplant
outcome is unclear.

Conclusion

Statistical methods for the detection of gene-gene
interactions in a case-control study can be categorized
broadly into parametric and nonparametric approaches.
PLR is one parametric method which assumes a model to
describe the effect of each SNP or combination of SNPs
on the disease. MDR is a non-parametric data mining
approach which does not make any assumption about
the nature of dependence between the trait and the
SNPs.

The performance of MDR and PLR are heavily dependent
on the allele frequencies of the associated SNPs. Both
MDR and PLR work very well when there is a clear
pattern in the epistatic model. When there is no such
clear pattern, MDR works also well when #case/#control
ratio is moderately away from 1 in most (at least half of
the cells) genotype combinations. We noticed that due to
these issues in high-dimensional contingency table,
MDR could not identify all the factors associated with
the disease, but correctly identified a subset of the
factors. On the other hand, PLR performs better if the
nature of the SNP effects is additive, but PLR did not do a

Page 14 of 17

(page number not for citation purposes)



BMC Medical Genetics 2009, 10:127

great job in capturing complex interaction patterns in
our simulation studies. In general, MDR outperformed
PLR when the underlined patterns of dependence among
the SNPs were complex.

MDR suffers from several technical disadvantages. First,
cells in high-dimensional tables will often be empty;
these cells cannot be labeled based on the cases/control
ratio. Second, the binary assignment (high-risk/low-risk)
is highly unstable when the proportions of cases and
controls are similar. In high-dimensional interactions,
PLR also will have unstable estimates for the parameters
and hence will suffer from the loss of power. But, if the
SNP effects are really additive, then estimation can be
carried out in lower dimensions and hence PLR will have
advantage over MDR in this situation.

Methods

Multifactor Dimensionality Reduction (MDR)

The MDR method, proposed by [13], is widely used for
detecting gene-gene interactions that are associated with
common complex genetic diseases. As an alternative to
traditional logistic regression, MDR is nonparametric
and genetic model free [17] demonstrated that the MDR
method identified a four-locus interaction on the risk of
sporadic breast cancer and was able to detect a high-
order interaction in simulated data in the absence of any
statistically significant main effects. Although the MDR
method can not distinguish between main effects and
interactions, a major strength of the MDR method is its
ability to detect higher order interactions even in the
absence of main effects.

Let us consider a case-control dataset with N SNPs on n
individuals. We have equal number of cases as controls.
Suppose M (M < N) is the highest order interaction we
want to address. With MDR, multilocus genotypes are
pooled into high risk and low risk groups, effectively
reducing the dimensionality of the genotype predictors
from m dimensions to one dimension [17]. MDR carries
out an exhaustive search of all possible 1-way, 2-way, 3-
way, up to M-way combinations of predictors (SNPs).
The prediction error of each model is estimated using k-
fold (usually k = 10) cross-validation. First, we randomly
divide the data into k equal parts. The model is
developed using each (k-1) parts of the data, the training
data, and then used to make predictions about the
disease status on the remaining part of the data. The
cross-validation is repeated k times and averaged to
reduce the bias in the estimation of prediction error.

For any given m (m < M), the general procedure to
implement the MDR method to detect the optimum
m-way interaction, is illustrated as the following:

http://www.biomedcentral.com/1471-2350/10/127

1. Run k-fold (often k = 10) cross-validation to find
the best set of m-way interactions. For each cross-
validation fold, repeat the following steps:

(a) use every possible part as the test data and the
other remaining 9 parts as the training data.

(b) a set of m SNPs is then selected from the pool of
all SNPs.

(c) m SNPs and their possible multifactor cells are
represented in m-dimensional space (The m-way
contingency table is formed on the training data)
(d) each multifactor cell is labeled as high-risk if case/
control ratio exceeds or equal to some threshold T
(eg., T = 1.0), and low-risk otherwise.

(e) MDR searches for all possible combinations of

m SNPs. Totally we need to construct () con-

tingency tables and correspondingly get (N ) training
errors. The model with the lowest trarirhing error
(misclassification error) is selected, and the predic-
tion error (test error) of the model is estimated using
the independent test data.

2. Calculate the averaged k prediction errors as the
prediction error for model size m. Obtain the cross-
validation consistency, a measure of the number of
times a particular set of SNPs is identified across
cross-validations.

We selected the final model size with the lowest
prediction error and the final model is selected based
on the largest cross-validation consistency. That is, the
model that minimizes the prediction error and/or
maximizes the cross-validation consistency is selected
as the final MDR model.

The goal of MDR is to change the representation of the
data using a constructive induction algorithm to make
nonadditive interactions easier to detect using any
classification method such as naive Bayes or logistic
regression [26,27]. This is accomplished by first labeling
each genotype combination as high-risk or low-risk using
some function of a discrete endpoint such as case-control
status. A new MDR variable with two levels is constructed
by pooling all high-risk genotype combinations into one
group and all low-risk combinations into another group.
Evaluation of the predictor can be carried out using cross-
validation [28] and permutation testing [29]. Cross-
validation is a useful approach for limiting false-positives
by assessing the generalizability of models [30].

There is a growing popularity of the MDR approach and
it has been recently extensively used for gene-gene
interaction detection in many real studies. The strong
point in favor of MDR is that it can detect multiple SNPs
associated with a disease. It searches through any level of
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interaction without considering the significance of the
main effects. It is therefore able to detect high-order
interactions even when the underlying main effects are
statistically not significant. On the other hand, MDR
suffers from several technical disadvantages. MDR
assigns each genotype combination (cell) as high-risk
or low-risk and thus converts the high-dimensional
dataset to a single dimension. First, cells in high-
dimensional tables will often be empty; these cells
cannot be labeled as high-risk or low-risk. Second, MDR
has a very adhoc way of assigning each cell as high-risk/
low-risk. This binary assignment (high-risk/low-risk) is
highly unstable when the proportions of cases and
controls are similar.

One could calculate the expected prediction error of
MDR for an interaction model. For a given interaction
model, the penetrance table could be used to calculate
the expected number of cases and controls in each cell of
a contingency table. If a cell has expected case-control
ratio >1, the cell is classified as high-risk. Otherwise the
cell is classified as low-risk. The expected prediction error
is computed as the total number of the controls in all
high-risk cells and the number of cases in the low-risk
cells divided by the total sample size. For high
dimensional interaction, MDR often suffers from the
sparsity in high dimensional contingency tables and
cannot classify nearly empty cells as high-risk or low-risk
accurately. In such cases, a lower dimensional contin-
gency table can provide more information and hence can
have lower prediction errors than the model involving
true interacting SNPs. In such cases, MDR can only detect
a sub-group of the interacting SNPs.

Penalized logistic regression
The standard logistic regression model has form:

Tx ) Pr(Y=1|X) \_ ,
10g[1—nx ]_lOg[Pr(Y:O|X) J_ﬁ°+Xﬁ’ (1)

where X is a vector of predictors (here genotypes) and Y
is the affectation status of an individual. The coefficients
are typically estimated by maximizing the likelihood,
which maximizes the log-likelihood

k
(Bo B) =Y | ¥jlog(myx,) +(n;—y))log(l—7x ) ]
j=1

(2)

where y; is the number of affected people at setting X; of
a predictor X, and n; is the total number of samples at
setting X;, j = 1(1)k. [10] proposed using a variant of logistic
regression with L, regularization to fit gene-gene interaction
models. Here the regularization is realized by maximizing

http://www.biomedcentral.com/1471-2350/10/127

the log-likelihood subject to a size constraint on L, norm
of coefficients and leads to minimizing the following
penalized negative log-likelihood:

LBo B.2)=Po )+ SNIBIE ()

Here (B, ) indicates the binomial log-likelihood, and
A is a positive constant. The model is fitted by repeating
the Newton-Raphson steps which result in the iteratively
reweighted ridge regressions (IRRR) algorithm [31].

When the above iteration converges, we get the
coefficient estimates. However, none of the coefficients
is zero unless the distribution of the factors is extremely
sparse. For interpretability, it is necessary to conduct
variable selection to include only a subset of predictors
in the final model. This is done by forward selection
followed by backward deletion. The choice of a factor/
interaction to be added in the forward step or deleted in
the backward step is based on the score S = deviance +
cp x df, where cp is complexity parameter and df is the
effective degrees of freedom. The cp is usually set as 2 or
log(sample size) for AIC and BIC respectively. The final
model is the one that has minimum score S. The authors
claimed that using quadratic regularization with logistic
regression has a number of attractive properties. The
penalization enables to fit the coefficients in a stable
fashion when fitting interactions between categorical
factors; Zero cells are handled gracefully.

The obvious advantage of this approach over MDR will
be if the real effects are additive. For example, if there are
three loci active, and their effect is additive, MDR can
only see them all as a three-factor interaction. Typically
the power for detecting interactions decreases with
number of active loci, since the number of parameters
grows exponentially with it. Hence PLR can be a better
approach in this case, since the real effects are additive
and lower dimensional.

In this paper, we have studied the power of MDR and
PLR for detecting gene-gene interaction in a case-control
study for various interaction models through simulation
studies. We have also studied their performance on a real
dataset.
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