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Abstract

Background: Plasma level of high-density lipoprotein-cholesterol (HDL-C), a heritable trait, is an
important determinant of susceptibility to atherosclerosis. Non-synonymous and regulatory single
nucleotide polymorphisms (SNPs) in genes implicated in HDL-C synthesis and metabolism are likely to
influence plasma HDL-C, apolipoprotein A-l (apo A-l) levels and severity of coronary atherosclerosis.

Methods: We genotyped 784 unrelated Caucasian individuals from two sets of populations (Lipoprotein
and Coronary Atherosclerosis Study- LCAS, N = 333 and TexGen, N = 451) for 94 SNPs in 42 candidate
genes by 5' nuclease assays. We tested the distribution of the phenotypes by the Shapiro-Wilk normality
test. We used Box-Cox regression to analyze associations of the non-normally distributed phenotypes
(plasma HDL-C and apo A-l levels) with the genotypes. We included sex, age, body mass index (BMI),
diabetes mellitus (DM), and cigarette smoking as covariates. We calculated the q values as indicators of
the false positive discovery rate (FDR).

Results: Plasma HDL-C levels were associated with sex (higher in females), BMI (inversely), smoking
(lower in smokers), DM (lower in those with DM) and SNPs in APOA5, APOC2, CETP, LPL and LIPC (each q
<0.01). Likewise, plasma apo A-l levels, available in the LCAS subset, were associated with SNPs in CETP,
APOAS5, and APOC2 as well as with BMI, sex and age (all q values <0.03). The APOAS5 variant SI9W was also
associated with minimal lumen diameter (MLD) of coronary atherosclerotic lesions, a quantitative index
of severity of coronary atherosclerosis (q = 0.018); mean number of coronary artery occlusions (p =
0.034) at the baseline and progression of coronary atherosclerosis, as indicated by the loss of MLD.

Conclusion: Putatively functional variants of APOA2, APOA5, APOC2, CETP, LPL, LIPC and SOAT2 are
independent genetic determinants of plasma HDL-C levels. The non-synonymous S19W SNP in APOAS is
also an independent determinant of plasma apo A-l level, severity of coronary atherosclerosis and its
progression.
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Background

Coronary artery disease is the most common cause of
death in the western hemisphere and is expected to
become the leading cause of morbidity and mortality in
the world by the year 2020 [1]. Plasma high-density lipo-
protein-cholesterol (HDL-C) level is a major determinant
of susceptibility to coronary atherosclerosis in the general
population [2-7]. A low plasma HDL-C level is the most
common lipid abnormality found in families with prema-
ture coronary atherosclerosis [2]. Plasma HDL-C level is
inversely associated with the progression of coronary
atherosclerosis and cardiovascular mortality [3-7]. In con-
trast, raising the plasma high HDL-C level, even modestly,
with the exception of inhibition of cholesteryl ester trans-
fer protein (CETP) with torcetrapib, protects against
atherosclerosis and reduces adverse cardiovascular events
[4,8-10].

Genetic studies of Mendelian traits have firmly estab-
lished the impact of genetic mutations on plasma HDL-C
levels. A prototypic example is Tangier disease, wherein
mutations in ABCA1 lead to very low plasma HDL-C and
apolipoprotein (apo) A-I levels and premature coronary
atherosclerosis [11,12]. Plasma HDL-C level in the general
population is also a heritable trait. Heritability of plasma
HDL-C level has been estimated to be greater than 50% in
most studies [13-18]. The estimates of heritability in the
Strong Heart Family Study and HERITAGE family study
were 50% and 52%, respectively [14,15]. Unlike the Men-
delian disorders, however, the specific genetic variants
that contribute to plasma HDL-C levels in the general
population are largely unknown. The advent of genome-
wide association studies (GWAS) has raised considerable
interest in identifying novel genetic determinants of com-
plex traits, such as plasma HDL-C. Accordingly, several
genes that influence plasma HDL-C levels have been iden-
tified [19,20]. Collectively, the associated variants in
GWAS accounted for only 5-8% of the variation in the
plasma HDL-C levels [19,20]. Hence, much of the herita-
bility of plasma HDL-C levels has remained unexplained.

We genotyped 784 unrelated Caucasian individuals from
two independent populations of Lipoprotein and Coro-
nary Atherosclerosis Study (N = 333) and TexGen (N =
451) for 94 non-synonymous or regulatory single nucle-
otide polymorphisms (SNPs) in 42 genes implicated in
HDL-C biosynthesis and metabolism. We analyzed asso-
ciation of the SNPs with plasma HDL-C and apo A-I levels
as well as with the severity and progression of coronary
atherosclerosis.

Methods

Study population

All participants signed informed consent for the genetic
studies and the institutional review board approved the
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study. We include 784 unrelated Caucasians, comprised
of the LCAS subpopulation (N = 333) and the TexGen
subpopulation (N = 451). The study design and the main
results of the LCAS have been published [21]. In brief, the
main LCAS included 372 Caucasians who had at least 1
coronary lesion causing 30% to 75% luminal diameter
stenosis on quantitative coronary angiography and had a
plasma low-density lipoprotein-cholesterol (LDL-C) level
of 115 to 190 mg/dl despite diet. DNA samples from 333
Caucasians were available. The baseline values of plasma
total cholesterol, LDL-C, HDL-C, triglyceride (TG) and
apolipoprotein levels were measured in all participants at
the baseline. Quantitative indices of severity of coronary
atherosclerosis were measured in 289 participants.

Given the relatively small sample size of the LCAS popu-
lation, we recruited 451 patients from outpatient clinics
(the TexGen study). The TexGen subpopulation was
matched for age and the mean plasma HDL-C level to the
LCAS subpopulation. Because of the small number of
females in the LCAS population, we included relatively
more females in the TexGen subpopulation. Individuals
taking medications with direct effects on plasma HDL-C
levels, such as niacin and fibrates were not included in the
study. Those with advanced co-morbid conditions,
including malignancies, advanced heart failure or valvular
heart disease were not included. Demographic data were
collected and fasting plasma total cholesterol, HDL-C,
LDL-C and TG levels were measured in all TexGen partic-
ipants.

Selection of the candidate genes and SNPs

We selected the candidate genes based on a prior knowl-
edge of their involvement in pathways leading to synthe-
sis, maturation, or catabolism of HDL-C in humans or in
experimental animals. Upon selection of the candidate
genes, we searched the SNP database (dbSNP Build 129)
to identify non-synonymous SNPs and the regulatory
SNPs in the 5' or 3' regions of the genes of interest. We
included only SNPs that have been validated, have a
known minor allele frequency (MAF) in the database or
were previously shown to be associated with plasma HDL-
C levels. Given the size of the study population, we mostly
selected the SNPs that had known minor allele frequen-
cies (MAFs) of > 0.1, while realizing that the MAFs could
differ in our study population. In view of the presence of
a very large number of SNP in each gene locus, the
selected SNPs comprised only a fraction of the total SNPs
in the candidate genes loci. We genotyped the selected
SNPs by fluorogenic 5' nucleotidase (Tagman) assays
using an ABI PRISM® 7900HT Real-Time PCR instrument.
The PCR conditions were 1 cycle at 95°C for 10 min, fol-
lowed by 40 cycles at 92°C for 15 sec and 60°C for 1 min
as recommended by the manufacturer (Applied Biosys-
tems, Foster City, CA). Investigators who had no knowl-
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edge of the angiographic and clinical data performed the
genotyping.

Since there was no known candidate SNP in ATP5B, a high
affinity HDL-C receptor for apo A-I [22], we sequenced its
entire coding region, 3' untranslated sequence and a 2 kbp
5' genomic fragment in 50 randomly selected individuals
from the LCAS subpopulation. We performed the
sequencing using the Big Dye Terminator Cycle Sequenc-
ing Ready Reaction Kit on an ABI Genetic Analyzers in
sense and anti-sense directions. The sequences were ana-
lyzed and "Blasted" against the genome databases.

Statistical analysis

We expressed the parametric variables as mean + SD and
tested the variables for Gaussian distribution by the Sha-
piro-Wilk normality test. We tested the distribution of
genotypes of each SNP for departure of the Hardy-Wein-
berg equilibrium (HWE) by the X? test using a web-based
program http://www.oege.org/software/hwe-mr-
calc.shtml[23]. We compared the mean values between
the two groups by the t test and analyzed the non-para-
metric variables by the Fisher exact test. We assigned indi-
cators to genotypes as 0, 1 and 2 to represent 0, 1 and 2
copies of the common allele (additive genetic model).
Likewise, we assigned indicators 0 and 1 to females and
males, respectively. Since the distributions of plasma
HDL-C and apo A-I levels deviated significantly from nor-
mality, we analyzed associations between the predictors
and plasma HDL-C and apo A-I levels by Box-Cox regres-
sion analysis using likelihood ratio tests (16,000 itera-
tions). We analyzed each potential predictor separately
and included those with p values < 0.10 in the multivari-
ate Box-Cox regression analysis to determine independent
association of the predictors with the phenotypes. We cal-
culated the False positive Discovery Rate (FDR) for the
results of multivariate analysis by calculating the q values
by the method of Storey and Tibshirani [24]. All statistical
analyses were performed using STATA, IC 10.1 for Macin-
tosh.

Results

Characteristics of the study population

The baseline characteristics of the study population
including the characteristics of the LCAS and TexGen sub-
populations are shown in Table 1. The subpopulations
were matched for age and mean plasma HDL-C levels.
There were more females and more individuals with dia-
betes mellitus in the TexGen subpopulation. There were
modest albeit statistically significant differences in body
weight (~3.4 Kg), body mass index (BMI, ~1.2 Kg/m?),
mean systolic or diastolic blood pressure (1-3 mmHg)
and the history of myocardial infarction between the two
subpopulations (Table 1).
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As would be expected, mean plasma HDL-C levels were
similar between the two groups. However, plasma total
cholesterol and LDL-C levels were significantly higher in
the LCAS subpopulations, as a high plasma LDL-C level
was a requirement for inclusion in the LCAS. Plasma apol-
ipoprotein levels and quantitative indices of severity of
coronary atherosclerosis were available only in the LCAS
subpopulation (Table 1).

Candidate genes and SNPs

The list of biologically plausible candidate genes and
SNPs analyzed in the present study and the MAFs in the
entire population are shown in Additional File 1. The gen-
otypes of all but 3 SNPs followed the HWE. The genotypes
of SNPs rs4301822 in APOF, 152306985 in MTP and
152038068 in PPARD showed significant departure from
the HWE (p < 0.05). The departure may reflect genotyping
errors or the population genetic structure. Therefore, they
were not included in the subsequent association analyses.

Independent predictors of plasma HDL-C levels

Plasma HDL-C and apo A-I deviated significantly from the
normal Gaussian distributions (z = 8.473, p < 0.00001 for
HDL-C and z = 6.386, p < 0.00001). Likewise, the log10
transformed HDL-C levels were non-normally distributed
(z = 2.360, p = 0.00913). Therefore, Box-Cox regression
analysis was used to determine association of the poten-
tial predictors with plasma HDL-C and apo A-I levels. Sex,
body mass index (BMI), diabetes mellitus (DM) and ciga-
rette smoking were independent predictors of plasma
HDL-C and apoA-I levels (Tables 2 and 3). The FDR for
each of the observed associations of sex, BMI, DM and
smoking all were very low (less than 0.1%). Therefore,
they were included in the subsequent analyses as covari-
ates.

We genotyped the study population for 94 SNPs in 42
genes (Additional File 1). Three SNPs were very rare and 2
not detected in the LCAS subpopulation. Therefore, we
analyzed 89 SNPs in the entire population and included
any potentially significance association, defined as p <
0.05, in the multivariate analysis. SNPs in APOAS5,
APOC2, CETP, LIPC and LPL were independent predictors
of plasma HDL-C levels (Table 4). The FDR for each of the
above genes was < 1 percent. Considering that plasma
HDL-C, DM and BMI may share common genetic etiology
as part of the metabolic syndrome; we repeated the Box-
Cox regression analysis after removal of BMI and DM
from the analysis as covariates. The results, shown in
Table 2, identify APOA2 and SOAT2 variants, in addition
to SNPs in APOA5, APOC2, CETP, LIPC and LPL also as
independent determinants of plasma HDL-C levels.

We also determined independent association of SNPs

with plasma HDL-C levels as a non-parametric phenotype
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Table I: Baseline Characteristic of the Study Population and Subpopulations

All LCAS TexGen P
N 784 333 451 -
Demographics
Age (years) 593110 59377 592+ 132 0.527
Male/Female (%) 586/198 (75/25) 281/52 (84/16) 305/146 (68/32) <0.001
Height (m) 1.73 £ 0.09 1.74 £ 0.08 1.73 £ 0.10 0.328
Body weight (Kg) 86.8 + 18.8 849 £ 15.6 88.3 £20.7 0.006
Body mass index (Kg/m2) 288+ 55 28.1 £+ 45 293 6.1 0.001
Systolic blood pressure (mmHg) 1259 £ 19.3 1245 £ 15.3 127.1 £ 21.8 0.029
Diastolic blood Pressure (mmHg) 758+ 11.9 76.7 £ 8.8 75.1 £ 13.7 0.028
Diabetes mellitus (%) 117 (14.5) 11 (3.3) 106 (23.5) <0.001
Smoker (%) 137 (17.5) 68 (20) 69 (15) 0.071
History of myocardial infarction (%) 289 (36.9) 131 (39) 158 (35) <0.001
Plasma Lipids levels
TC (mg/dl) 200.1 + 56.5 220.0 + 24.5 185.2 + 68.0 <0.001
HDL-C (mg/dl) 438+ 139 438+ 113 438+ 155 0.671
LDL-C (mg/dl) 123.9 £ 46.9 143.9 £ 19.9 107.5 = 55.1 <0.001
LDL-C/HDL-C 3.02+1.28 349 £ 091 2.65 + 1.40 <0.001
Triglyceride (mg/dl) 169.7 + 154.8 161.5 + 57.1 175.8 + 198.0 0.101
Plasma apolipoprotein levels (LCAS only)
N 333
Apolipoprotein A-l 132.7 £ 274
Apolioprotein B 1344 £ 20.8
Apolipoprotein B/Apolioprotein A-I 1.05 £ 0.26
Apolipoprotein C-Ill 352 + 328
Quantitative indices of severity of coronary atherolosclerosis (LCAS only)
N 289
Average baseline MLD (mm) 1.68 = 0.40
Mean number of coronary lesions 299 + 1.38
Number of subject with > two coronary lesion (%) 241 (83%)
Mean number of coronary occlusions 0.29 £ 0.55
Number of subject with > one coronary 72 (25%)

Abbreviations: m: meter; Kg: Kilogram; mmHg: millimeter mercury; mg/dl: milligram per deciliter; TC: Total cholesterol; HDL-C: High-density
lipoprotein-cholesterol; LDL-C: low-density lipoprotein-cholesterol; MLD: minimal lumen diameter.

of less or greater than the median value of 43 mg/dl by
logistic regression analysis (robust method). The results
were largely concordant with the results of Box-Cox
regression analysis, as sex, BMI, DM and smoking as well
as SNPs in APOA5, CETP and LPL were independent pre-
dictors of plasma HDL-C levels (all q values < 0.06).

Table 2: Independent Predictors of Median Plasma HDL-C
Levels Excluding BMI and DM as Co-variates (N = 784)

Since plasma triglyceride and HDL-C levels may share
common genetic determinants, we analyzed the associa-
tion of plasma triglyceride levels with the demographic
variables and SNPs in APOA5, APOC2, CETP, LIPC and
LPL. We used Box-Cox regression for the analysis because
of non-normal distribution of plasma triglyceride levels.
The main determinants of plasma triglyceride levels in the
present study population were BMI and LPL variants,

Table 3: Independent Predictors of Median Plasma apo A-l
Levels (N = 333)

Predictors Coefficient X2 P Q
Sex (Female =0, Male = 1) -0.271 91.873 <0.001 <0.00I Predictors Coefficient X2 P q
Smoking (Yes = 1,No =0) -0.118 14432 <0.001 <0.001 Sex (Female = 0, Male = I) -0.0271 79.986 <0.001 <0.001
Gene SNP Coefficient X2 P Q BMI (Kg/m2) -0.0012 27.609 <0.001 <0.001
CETP rs12149545 0.082 20.727 <0.001 <0.001 Age (years) 0.0005 I5.116 <0.001 <0.00l
LPL rs328 0.094 10.870 0.001  0.004 Gene SNP Coefficient X2 P q
APOAS rs3135506  -0.145 8729 0.003  0.008 MTP rs17029215 0.0045 10.655 0.001  0.005
APOA2 rs3829793 213 8259 0.004 0.009 CETP rs12149545 0.0042 7852 0.005 0018
rs3813627  -0.202 7207 0.007 0.0I3 rs58821 0.0035 4525 0.033 0.066
LIPC rs36041167 -0.088 5965 0.015 0.024 APOC2 rs22891 | 0.0036 5.875 0.015 0.034
APOC2 rs22891 | 0.041 5544 0.019 0.026 APOAS rs3135506  -0.0118 6.797 0.009 0.027
SOAT2 rs2272296  0.055 4538 0.033 0.040 SCARBI rs8388843  0.0040 6497 0.011 0.028

Abbreviations: as in Table 2; SOAT2: Sterol O-acyltransferase 2

Abbreviations: as in the previous Tables
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Table 4: Independent Predictors of Median Plasma HDL-C Levels (N = 784)

Predictors Coefficient
Sex (Female = 0, Male = |) -0.327

BMI (Kg/m2) -0.015

DM (Yes = |, No = 0) -0.224
Smoking (Yes = |, No = 0) -0.153
Gene SNP Coefficient
CETP rs12149545 0.121

LPL rs328 0.101
APOC2 rs22891 | 0.057
APOA5 rs3135506 -0.150

LIPC rs36041167 -0.110

X2 P Q
102.294 <0.001 <0.001
34.576 <0.001 <0.001
33.335 <0.001 <0.001
17.824 <0.001 <0.001
X2 P Q
11.566 0.001 0.003
9.903 0.002 0.005
8.239 0.004 0.008
7.206 0.007 0.012
7.144 0.008 0.012

Abbreviations: BMI: Body mass index; DM: Diabetes mellitus. CETP: Cholesteryl Ester Transfer; LPL: Lipoprotein Lipase; APOC2: Apolipoprotein

C-Il; APOAS: Apolipoprotein A-V; LIPC: Hepatic Lipase

while age and APOA5 had modest effects (Data not pre-
sented).

Independent predictors of plasma apo A-l levels

Plasma apo A-I levels also did not follow a normal distri-
bution. Therefore, we tested the association of plasma apo
A-1 levels with demographic predictors and SNP by Box-
Cox regression. Sex (higher in females), BMI (inversely),
age (positively) and SNPs in MTP, CETP, APOC2, APOA5
and SCARB1 were independent predictors of plasma apo
A-1levels (Table 3).

SNPs and severity of coronary atherosclerosis

There was no significant association between the demo-
graphic variables and the severity of coronary atheroscle-
rosis at the baseline. However, baseline MLD was
associated with the rs3135506 (S19W) SNP in APOAS5.
Those with the uncommon allele (GA only, no AA) had
more severe coronary atherosclerosis than those with the
common genotype (GG). The mean MLD was 1.42 + 0.43
mm in those with the GA genotype (N = 11) and 1.69 *
0.69 (N = 278) in those with the GG genotype (t = 2.204,
p = 0.014, q = 0.021). Likewise, the number of coronary
occlusion was greater in those with the GA as compared to
those with the GG genotype (0.064 + 0.67 vs. 0.28 + 0.54,
respectively, p = 0.034). It merits noting that the observed
association with the severity of coronary artery disease
was concordant with the effects of the SNP on plasma
HDL-C (~6 mg/dl lower in those with GA genotype) and
apo A-I (~13 mg/dl lower in those with the GA genotype)
levels. The MTP variants (rs2306986) were also associated
with the MLD at the baseline. The mean MLD was 1.66 +
0.40 mm in individuals with the GG genotype (N = 273)
as compared to 1.94 + 0.34 mm in those with the GC gen-
otype (N = 16, t = -2.8084, p = 0.0027, q = 0.008).

SNPs and progression of coronary atherosclerosis

Plasma levels of HDL-C (regression coefficient: 0.004,
95% CI: [0.002-0.006], t = 3.36, p = 0.001) and treatment
with fluvastatin (regression coefficient: 0.084, 95% CI:
[0.032-0.136], t =3.19, p = 0.002) were independent pre-

dictors of the progression of coronary atherosclerosis
(change in MLD) in the LCAS population [21]. Therefore,
we included HDL-C levels and treatment with fluvastatin
as covariates in the genetic analysis. Progression of coro-
nary atherosclerosis as determined by the change in MLD
during the 2.5 years follow up, was associated with S19W
SNP in APOA5. Those with the uncommon genotype
(AG) had greater loss of MLD (0.25 + 0.23 mm) over the
follow up period than those with the common genotype
(-0.05 + 0.25 mm, p = 0.0048).

Discussion

We analyzed association of plasma HDL-C levels with 89
putatively functional SNPs in 42 biologically candidate
genes in a well-characterized Caucasian population. The
results show that SNPs in genes encoding apo A-II
(APOA2) apo A-V (APOA5), apo C-II (APOC2), choles-
teryl ester transfer protein (CETP), hepatic lipase (LIPC),
lipoprotein lipase (LPL) and Sterol O-acyltransferase 2
(SOAT2) as well as demographic variables sex, BMI, DM
and smoking were independent predictors of plasma
HDL-C levels. The false positive discovery rates (q values)
for the observed associations were less than 5%, which is
considered low. Consistent with the above, SNPs in CETP,
APOC?2 and APOA5 were also independent predictors of
plasma apo A-I levels. Likewise, the APOA5 variant was
also associated with the severity of coronary atherosclero-
sis at the baseline as well as progression of coronary
atherosclerosis over a 2.5 years period.

The results of the present study are largely in accord with
the known biological effects of the genes in HDL-C bio-
synthesis, maturation and catabolism and largely sup-
ported by the previous data for SNPs in APOA5, CETP,
LIPC and LPL genes [20,25-31]. An interesting finding was
the concordant association of the S19W SNP in APOA5
with plasma HDL-C and apo A-I levels as well as the sever-
ity of coronary atherosclerosis and its progression. APOA5
encodes apo A-V, which is a component of HDL-C and an
important determinant of plasma triglyceride levels. The
APOA5 S19W variant has been previously associated with
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hypertriglyceridemia as well as with plasma HDL-C levels
[19,32]. However, the findings regarding the associations
of the S19W SNP with the severity and progression of cor-
onary atherosclerosis are new and in harmony with the
effects of the APOA5 variants on plasma HDL-C, apo A-1
and triglyceride levels. Thus, the findings further substan-
tiate the clinical significance of APOA5 variants in coro-
nary atherosclerosis.

The observed associations of plasma HDL-C and apo A-I
levels with APOC2 variants are also novel, albeit intrinsic
to the candidate gene approach is a prior biological plau-
sibility of the candidates and hence, the findings were not
unexpected. Apo C-II is an activator of lipoprotein lipase
(LPL) and a regulator of plasma triglyceride levels. Loss-
of-function mutations in APOC2 and LPL are associated
with severe hypertriglyceridemia [33]. As in the present
study, variants of LPL have been previously associated
with plasma HDL-C levels [34].

Association studies that include multiple SNPs have an
inherent risk of spurious associations. To shed some light
on the possibility of association by chance alone, we cal-
culated the FDR. We note the FDR for the above associa-
tions between plasma HDL-C and SNPs were quite low (q
values of < 0.01). Equally striking is the absence of signif-
icant associations between plasma HDL-C levels and
SNPs in many of the selected genes that have been previ-
ously implicated - through studies in humans or animals
- in HDL-C biosynthesis and metabolism. Various factors
may contribute to the null results for the above genes
including the characteristics of the study population,
competing factors (demographic predictors), and con-
servative approach to analysis as well as the possibility of
type 1I statistical error. The latter is typically due to inter-
play between the sample size of the study population, fre-
quencies of the alleles and the effect sizes. Despite our a
prior focus on common SNPs, the MAFs of 18 SNPs in our
study population were <0. 05. Unless the uncommon alle-
les impart major effects on the plasma HDL-C levels,
detection of a significant association would require a
much larger population. Nevertheless, at an MAF of 0.05,
assuming Hard-Weinberg equilibrium, the sample size of
the study population provided 85% power to detect a 5
mg/dl difference in the mean plasma HDL-C levels
between the common and uncommon genotypes, when o
is set at 0.05. A larger sample size would be required to
detect a smaller effect or the effects of even less frequent
alleles. Likewise, we note that the secondary findings in
the present study, namely, the observed associations
between SNPs and the quantitative indices of severity of
coronary atherosclerosis merit testing for replications.
Finally, the study population was comprised of self-
described Caucasians, which may not represent a geneti-
cally homogenous population. Hence, the results may be
subject to possible population stratification.
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The study is by no means comprehensive of all known
genes and SNPs with possible roles in the HDL-C biosyn-
thesis, maturation, conversion and/or catabolism.
Recently SNPs in GALNT2, which encodes N-actetylgalac-
tosaminyltransferase 2 locus were shown to be associated
with plasma HDL-C and triglyceride levels in GWAS
[19,35]. Similarly, SNPs at the MMAB/MVK locus, which
encode mevalonate kinase and methylmalonic aciduria
cbIB type, respectively have also been associated with
plasma HDL-C levels [20]. SNPs in VNNI encoding
pantetheinase or vannin 1 have also been associated with
plasma HDL-C levels [36]. Additional genes in animal
models also have been associated with plasma HDL-C lev-
els, such as Sirtl, encoding sirtuin 1 [37]. We did not
include these new genes primarily because their func-
tional roles in HDL-C biosynthesis and metabolism have
not yet been determined.

Conclusion

We genotyped 784 Caucasian individuals for 94 candidate
functional SNPs in 42 biologically plausible candidate
genes implicated in HDL-C biosynthesis and metabolism.
We report that SNPs in APOA2, APOA5, APOC2, CETP,
LIPC and LPL are independent determinants of plasma
HDL-C levels. SNPs in APOA5 are also associated with
plasma apo A-I level, severity of coronary atherosclerosis
as well as its progression.
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