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Abstract

Background: Genetic factors may influence the susceptibility to high-risk (hr) human papillomavirus (HPV) infection
and persistence. We conducted the first genome-wide association study (GWAS) to identify variants associated with
cervical hrHPV infection and persistence.

Methods: Participants were 517 Nigerian women evaluated at baseline and 6months follow-up visits for HPV. HPV
was characterized using SPF10/LiPA25. hrHPV infection was positive if at least one carcinogenic HPV genotype was
detected in a sample provided at the baseline visit and persistent if at least one carcinogenic HPV genotype was
detected in each of the samples provided at the baseline and follow-up visits. Genotyping was done using the
Illumina Multi-Ethnic Genotyping Array (MEGA) and imputation was done using the African Genome Resources
Haplotype Reference Panel. Association analysis was done for hrHPV infection (125 cases/392 controls) and for
persistent hrHPV infection (51 cases/355 controls) under additive genetic models adjusted for age, HIV status and
the first principal component (PC) of the genotypes.

Results: The mean (±SD) age of the study participants was 38 (±8) years, 48% were HIV negative, 24% were hrHPV
positive and 10% had persistent hrHPV infections. No single variant reached genome-wide significance (p < 5 X
10− 8). The top three variants associated with hrHPV infections were intronic variants clustered in KLF12 (all OR: 7.06,
p = 1.43 × 10− 6). The top variants associated with cervical hrHPV persistence were in DAP (OR: 6.86, p = 7.15 × 10− 8),
NR5A2 (OR: 3.65, p = 2.03 × 10− 7) and MIR365–2 (OR: 7.71, p = 2.63 × 10− 7) gene regions.

Conclusions: This exploratory GWAS yielded suggestive candidate risk loci for cervical hrHPV infection and
persistence. The identified loci have biological annotation and functional data supporting their role in hrHPV
infection and persistence. Given our limited sample size, larger discovery and replication studies are warranted to
further characterize the reported associations.
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Background
Human papillomavirus (HPV) is a highly conserved
double-stranded DNA virus that has coevolved with
human populations for millennia [1]. Over 150 types of
HPV have been identified and about 40 types primarily
infect stratified cutaneous or mucosal epithelia [2]. HPV
infections are among the most common sexually trans-
mitted infections globally [3]. While most infections are
cleared naturally by the host’s immune system in ~ 2
years, the infection persists in about 10% of those
affected [4]. Persistent infection by high-risk (hr) HPV is
a risk factor for many epithelial cancers including head
and neck, anal and cervical cancers. Susceptibility to cer-
vical hrHPV infection, its persistence and progression to
neoplastic disease are determined by epidemiologic and
genetic factors. Many epidemiologic risk factors for cer-
vical hrHPV infection including oral contraceptives,
cigarette smoking, multiple sexual partners and co-
infection with HIV are well documented [5–8], however
little is known about the genetic risk factors.
Wang et. al evaluated a panel of 7140 candidate single

nucleotide polymorphisms (SNP) in 305 candidate
genes/regions selected based on a priori hypotheses
of their association with HPV infection and cervical can-
cer, within the population-based Guanacaste cohort in
Costa Rica. They reported that SNPs in Deoxyuridine
Triphosphatase (DUT), General Transcription Factor
IIH Subunit 4 (GTF2H4), 2′-5′-Oligoadenylate Synthe-
tase 3 (OAS3) and Sulfatase 1 (SULF1) gene regions were
associated with HPV persistence, while SNPs in the
Transmembrane Channel Like (TMC) 6 and TMC8 gene
regions were associated with progression to cervical
intraepithelial neoplasia (CIN) 3 and cervical cancer [9].
In a subsequent study in the same cohort, the investiga-
tors examined 18,310 SNPs in 1113 genes and reported
that SNPs in PRDX3 and RPS19 were associated with
HPV persistence and progression from persistent HPV
infection to CIN3+ [10]. We examined the association
between the aforementioned SNPs and prevalent hrHPV
infection in African women, and successfully replicated
RPS19:rs2305809 and TYMS:rs2342700 [11].
While the previous candidate gene studies have pro-

vided insight into the genetic risk of HPV infection and
persistence, agnostic approaches such as genome-wide
association studies (GWAS), which interrogate the entire
genome would be more useful to uncover novel suscep-
tibility loci for cervical hrHPV infections. A GWAS of
cervical hrHPV infection, can also identify novel bio-
markers and potential therapeutic targets in cervical
cancer, however, none have been conducted to date. We
therefore conducted this GWAS of cervical hrHPV
infections and tested previously reported associations
between genes/regions and prevalent and persistent
cervical hrHPV infections.

Methods
Study population
We studied 544 women participating in a cohort
study of cervical HPV infection and cervical cancer at
National Hospital, Abuja and University of Abuja
Teaching Hospital, Nigeria, and enrolled between
2012 and 2014, as previously described [5, 12–14]. All
the study participants were 18 years of age or older,
had a history of vaginal sexual intercourse, were not
currently pregnant and had no history of hysterec-
tomy. We collected data on socio-demographic char-
acteristics, sexual and reproductive history, and
confirmed participants’ HIV status from hospital med-
ical records at study entry. Participants were asked to
return for follow-up visits after 6 months, at which
time, the history, physical examinations and sample
collections were repeated. We collected venous blood
samples and performed pelvic examinations on all
the study participants at each study visit. Elution
swab system (Copan, Italy) was used to collect exfoli-
ated cervical cells, which were inserted in 1 ml Amies’
transport media (Copan).

HPV detection by SPF10/LiPA25

We extracted DNA from the cervical exfoliated cells as
previously described [11]. Samples were tested for HPV
DNA by hybridization of SPF10 amplimers to a mixture
of general HPV probes recognizing a broad range of
high-risk, low-risk, and possible hrHPV genotypes in a
microtiter plate format, as described previously [15]. All
samples determined to be HPV DNA positive by SPF10
DNA Enzyme Immunoassay (DEIA) were genotyped
using the LiPA25 version 1. The LiPA25 assay provides
type-specific information for 25 different HPV genotypes
simultaneously and identifies infection by one or more
of 13 hrHPV genotypes: 16, 18, 31, 33, 35, 39, 45, 51, 52,
56, 58, 59, and 68 [16, 17]. However, as this assay does
not differentiate between HPV 68 and 73, we defined
this HPV genotype (i.e. HPV68/73) as low-risk. We
defined hrHPV infection as prevalent if at least one
hrHPV genotype was detected in the baseline sample
and persistent if at least one hrHPV genotype was
detected in samples provided at both the baseline and
follow-up visits. We defined persistently negative as
absence of hrHPV genotype in the baseline and follow-
up visit samples.

Genotyping and imputation
Samples from the study participants were genotyped
using the Illumina Multi-Ethnic Global Array (MEGA)
which has ~ 1.7 million markers. Sample-level genotype
call rate was at least 0.95 for all the study participants.
We filtered out from the genotyped dataset SNPs that
did not meet the following criteria: autosomal SNPs

Adebamowo et al. BMC Medical Genetics          (2020) 21:231 Page 2 of 10



(n = 78,713), variant missingness < 0.05 (n = 96,410),
Hardy-Weinberg equilibrium (HWE) p > 1 × 10–6 (n =
7692) and minor allele frequency (MAF) > = 0.01 (n =
564,791). The resulting 958,363 SNPs that passed these
quality control filters had a SNP success rate of 0.9985
and were used as the basis for imputation.
Imputation was performed using the Sanger Imputation

Service (https://imputation.sanger.ac.uk/) [18]. Pre-
phasing was done with the Eagle2 algorithm [19] and im-
putation was done with positional Burrows-Wheeler
transform (PBWT) [20]. The reference panel used was the
African Genome Resources Haplotype Reference Panel, an
African genome imputation reference panel based on
9912 haplotypes (4956 samples) which includes all African
and non-African 1000 Genomes Phase 3 populations and
additional African genomes from Uganda, Ethiopia, Egypt,
Namibia and South Africa (including 2298 African sam-
ples with whole genome sequence data from the African
Genome Variation Project (AGVP) [21] and the Uganda
2000 Genomes Project (UG2G) [22]. The IMPUTE2
INFO score was used as a quality metric to evaluate the
uncertainty in genotype imputation. Imputation yielded a
total number of ~ 104 million markers. We filtered the
resulting imputation dataset for variants with info score ≥
0.3 and MAF ≥ 0.01, with a final set of ~ 18 million SNPs
which was used for association analysis.

Statistical analysis
From the original set of 544 women, we excluded 27
women from the baseline analyses because of incom-
plete data (5 missing HPV, 22 missing both HPV
and HIV results), leaving only 517 women in the
baseline analyses. Of the 517 women, we excluded
those who did not return for the follow-up visit (n =
9), those with missing HPV results (n = 35) and in-
cluded the remaining 473 women in the analyses for
persistent hrHPV infections. For the prevalent
hrHPV analysis, we compared 125 women with cer-
vical hrHPV infections (cases) to 392 women without
cervical hrHPV infections at baseline (controls). For
the persistent hrHPV analysis, we compared 51
women with hrHPV infection at both the baseline
and follow-up visits (cases) to 355 women without
hrHPV infections at either the baseline or follow-up
visits (controls). Using LD-pruned SNP genotype
data available on the same women, we computed
principal components based on the variance-
standardized relationship matrix with PLINK 1.9 [23,
24] using the parameters “--indep 50 5 2” , namely
with a window size of 50 SNPs, 5 SNPs to shift the
window at each step and a variance inflation factor
of 2. We found that the first principal component
was significant in the test for population differenti-
ation and included it in downstream association

analyses. The association between the genetic vari-
ants and prevalent or persistent hrHPV infection was
estimated using unconditional multivariate logistic
regression, assuming an additive genetic model ad-
justed for age, HIV status and the first principal
component. Genome-wide significance was set at p-
value < 5 × 10− 8. We used an additive genetic model
adjusted for HIV status to test for replication of SNPs
associated with HPV and cervical neoplasia in other
populations and considered p-values < 0.05 as statisti-
cally significant evidence for replication. The analyses
were conducted using PLINK.

Results
The mean (±SD) age of the participants was 38 (±8)
years while their mean (±SD) body mass index (BMI
[kg/m2]) was 27 (±6). About half of the participants
were HIV positive (52%, 270/517), 24% (125/517)
had prevalent cervical hrHPV infections at baseline
and 11% (51/473) had persistent hrHPV infections.
The distribution of type-specific prevalent and per-
sistent cervical hrHPV infections is shown in Table 1.
Non HPV16/18 were more prevalent in the study
population. The prevalence of HPV16 and HPV18 in
the study population were 2% (10/517) and 4% (8/
517), respectively. About 8% (10/125) of the women
with cervical hrHPV infections had HPV16 and 16%
(20/125) had HPV18 at baseline. HPV52 and HPV35
were the most prevalent HPV genotypes in the study
population. About 7% (37/517) of the study popula-
tion had HPV52, which accounted for about a third
of the HPV positive infections at baseline. HPV52
and HPV35 were also more likely to persist, com-
pared to the other hrHPV types. About 19% of the
participants had single cervical hrHPV infections
and ~ 9% of the participants had multiple cervical
hrHPV infections at both visits. Participants returned
for follow-up visits at a median (IQR) time of 5.7
(5.4–7.5) months.
The Manhattan plot, Fig. 1, shows all the SNPs and

Table 2 shows the top 20 SNPs associated with prevalent
cervical hrHPV infections. A cluster of SNPs (D’ = 1,
r2 = 1) located on chromosome 13, rs149473200,
rs147344426 and rs151071053 (Odds Ratio [OR], p-value
for all SNPs was OR: 7.06, p = 1.43 × 10− 6), had the
strongest association with cervical prevalent hrHPV. The
regional plot for rs149473200 in Fig. 1 shows that the
cluster of SNPs are intronic in Krüppel-like Factor 12
gene (KLF12) and shows the surrounding markers. SNPs
near Long Intergenic Non-Protein Coding RNA 290
gene (NCRNA00290) also had a borderline genome-wide
significant association with prevalent hrHPV.
The SNP with the strongest association was located on

Chr5:10847898, OR: 6.86, p = 7.15 × 10− 8, Table 3. This
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Table 1 Distribution of Type-Specific Prevalent and Persistent Cervical High-Risk (hr) HPV Infections by HIV status

HPV Type Prevalent Infections Persistent Infections

Total
n = 517

HIV Negative
n = 247

HIV Positive
n = 270

Total
n = 473

HIV Negative
n = 223

HIV Positive
n = 250

hrHPV Positive 125 (24.2%) 37 (14.9%) 88 (32.6%) 51 (10.8%) 10 (0.0%) 41 (1.8%)

HPV 16 10 (1.9%) 2 (0.8%) 8 (2.9%) 4 (0.9%) 0 (0.0%) 4 (1.6%)

HPV 18 20 (3.9%) 5 (2.0%) 15 (5.5%) 5 (1.1%) 0 (0.0%) 5 (2.0%)

HPV 31 11 (2.1%) 1 (0.4%) 10 (3.7%) 6 (1.3%) 1 (0.5%) 5 (2.0%)

HPV 33 16 (3.1%) 3 (1.2%) 13 (4.8%) 4 (0.9%) 1 (0.5%) 3 (1.2%)

HPV 35 27 (5.2%) 5 (2.0%) 22 (8.1%) 14 (3.0%) 3 (1.4%) 11 (4.4%)

HPV 39 7 (1.3%) 2 (0.8%) 5 (1.8%) 2 (0.4%) 0 (0.0%) 2 (0.8%)

HPV 45 9 (1.7%) 4 (1.6%) 5 (1.8%) 1 (0.2%) 0 (0.0%) 1 (0.4%)

HPV 51 9 (1.7%) 1 (0.4%) 8 (2.9%) 3 (0.6%) 0 (0.0%) 3 (1.2%)

HPV 52 37 (7.1%) 12 (4.8%) 25 (9.2%) 18 (3.8%) 5 (2.2%) 13 (5.2%)

HPV 56 9 (1.7%) 4 (1.6%) 5 (1.8%) 1 (0.2%) 0 (0.0%) 1 (0.4%)

HPV 58 10 (1.9%) 2 (0.8%) 8 (2.9%) 3 (0.6%) 1 (0.5%) 2 (0.8%)

HPV 59 7 (1.3%) 0 (0.0%) 7 (2.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

The table shows the number (percentage) of participants who were high-risk HPV positive at baseline

Fig. 1 Genome-wide association results for prevalent high-risk HPV. λ= 1.02. a Manhattan plot (b) Quantile–quantile plot (c) Regional plot for rs149473200
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variant has not been included in the 1000 Genomes data
resources. However, we found that the variants
surrounding this region, Chr5:10847888–10,847,902, are
located between Death Associated Protein gene (DAP)
and Catenin Delta 2 (CTNND2) genes. Figure 2 shows a
Manhattan plot and a regional plot of association with
persistent cervical hrHPV infections. Other top variants
associated with persistent hrHPV infections were
rs200516199 upstream of MicroRNA 365b gene
(MIR365–2), OR: 7.71, p = 2.63 × 10− 7; variants clustered
upstream of Nuclear Receptor Subfamily 5 Group A
Member 2 gene (NR5A2) and Junctophilin Type 2 gene
(JPH2). Next, we conducted a replication study by identi-
fying all SNPs associated with HPV and cervical neopla-
sia in other studies (Supplementary Table 1) and
evaluated their association with hrHPV in the present
study, using an adjusted additive genetic model. We
found rs9893818 (OR: 0.88, p = 0.58 for prevalent
hrHPV; OR: 0.92, p = 0.82 for persistent hrHPV) and
rs2299187 (OR: 0.95, p = 0.86 for prevalent hrHPV; OR:
1.13, p = 0.71 for persistent hrHPV) in our dataset but
they were not significantly associated with prevalent or
persistent cervical hrHPV infections (Supplemental
Table 2). Lastly, we conducted stratified analysis by HIV

status and found that none of the variants reached genome-
wide statistical significance (Supplemental Tables 3 and 4).

Discussion
This is the first GWAS of cervical hrHPV infection, to
our knowledge. The top three variants associated with
prevalent cervical hrHPV infection were clustered in
KLF12, while those associated with persistent cervical
hrHPV infection were near DAP, CTNND2, MIR365–2
and NR5A2. These associations were borderline
genome-wide significant. It is well established that the
determinants of prevalent and persistent cervical hrHPV
infections are different. Our finding of separate variants
associated with prevalent and persistent cervical hrHPV
suggests that their genetic risk factors may also differ.
The associated SNPs in KLF12, rs149473200 and

rs147344426, are eQTLs of CD3e molecule (CD3E), a pro-
tein coding gene which plays an essential role in T-cell devel-
opment and its defects cause immunodeficiency. KLF12, a
protein coding gene, is overexpressed in human B and T
lymphocytes, CD8 T cells and natural killer cells [25]. These
cells play important roles during immune response to
hrHPV infection, including recognizing and destroying
infected cells. hrHPV causes the immune system to become

Table 2 Associations of the Top 20 SNPS with Prevalent Cervical high-risk Infections

SNP Chr Base Position Near gene Reference allele MAF OR 95% CI P-value

rs149473200 13 74,295,767 KLF12 G 0.03 7.06 3.19–15.63 1.43 × 10− 6

rs147344426 13 74,298,464 KLF12 G 0.03 7.06 3.19–15.63 1.43 × 10− 6

rs151071053 13 74,299,405 KLF12 T 0.03 7.06 3.19–15.63 1.43 × 10− 6

rs572823632 13 74,299,732 KLF12a GAA 0.03 7.06 3.19–15.63 1.43 × 10− 6

rs73010973 4 181,310,690 NCRNA00290 T 0.06 3.86 2.22–6.72 1.70 × 10− 6

rs73010975 4 181,310,704 NCRNA00290 T 0.06 3.86 2.22–6.72 1.70 × 10− 6

rs74739185 4 181,311,019 NCRNA00290 G 0.06 3.86 2.22–6.72 1.70 × 10− 6

rs79140020 4 181,311,020 NCRNA00290 T 0.06 3.86 2.22–6.72 1.70 × 10− 6

rs35833676 21 32,961,256 TIAM1 C 0.07 3.45 2.07–5.73 1.79 × 10− 6

rs3818252 20 58,675,675 C20orf197 C 0.57 2.22 1.60–3.10 2.06 × 10− 6

rs112893815 4 181,311,254 NCRNA00290 C 0.06 3.77 2.17–6.53 2.22 × 10− 6

– 8 74,725,256 UBE2Wa G – 3.31 2.01–5.44 2.42 × 10− 6

rs506594 11 64,162,897 RPS6KA4 T 0.77 0.44 0.31–0.62 2.67 × 10− 6

rs73010952 4 181,308,382 NCRNA00290 G 0.06 3.69 2.14–6.38 2.77 × 10− 6

rs111800742 4 181,308,587 NCRNA00290 C 0.06 3.69 2.14–6.38 2.77 × 10− 6

rs73010957 4 181,309,080 NCRNA00290 A 0.06 3.69 2.14–6.38 2.77 × 10− 6

rs6574170 14 74,729,207 VSX2 A 0.04 5.29 2.63–10.67 3.16 × 10− 6

– 17 36,374,963 LOC440434a TA – 0.48 0.35–0.65 3.17 × 10− 6

rs17090215 13 74,039,057 KLF12 C 0.05 3.90 2.20–6.92 3.21 × 10−6

rs375435036 1 72,615,562 NEGR1a C 0.15 2.52 1.71–3.73 3.49 × 10− 6

For this analysis, 125 women with cervical hrHPV infections were compared to 392 women without cervical hrHPV infections at baseline. Base positions were
based on hg19; aThe variant is not in 1000 genomes v1, the nearest gene was obtained from variants surrounding the base location on the specific chromosome;
Odds Ratio (OR) and 95% Confidence Intervals (CI) were estimated using an additive genetic model; Models were adjusted for age, HIV status and the first
principal components of the genotypes
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more tolerant to infection by avoiding cytolysis of host cells,
inhibiting interferon synthesis and cytotoxic T cell function,
and inducing regulatory T cell infiltration [26–28]. This cre-
ates a cervical microenvironment that is susceptible to per-
sistent infection and carcinogenesis. KLF12 has been linked
to several cancers [29–32], including head and neck cancers
[33, 34], which are usually associated with hrHPV. A study
of HPV integration breakpoints in the human genome
showed that a copy of the virus was integrated between
KLF5 and KLF12 in HPV-positive SiHa cells [35]. Recently, a
whole-genome sequencing study on HPV-positive
SiHa, HeLa and cervical carcinoma cells showed
KLF12 was one of the top three integration sites for
HPV [36]. Thus, KLF12 may play a major role in the
underlying mechanisms that lead to hrHPV infection,
persistence and cervical carcinogenesis.
A locus between CTNND2 and DAP in the short arm

of chromosome 5, had the strongest association with
persistent cervical hrHPV infections in the present study.
CTNND2 gene encodes an adhesive junction associated
protein and is overexpressed in the cervix [25]. It has
been implicated in cancer formation and has been linked
to breast and ovarian cancers [37–39]. DAP encodes a
basic, proline-rich protein which acts as a positive

mediator of programmed cell death that is induced by
interferon-gamma [40]. It negatively regulates autophagy
and is a substrate for mammalian target of rapamycin
(mTOR) [41], which regulates different cellular pro-
cesses. Results from GWASs show that DAP is associ-
ated with digestive disorders, gut microbiota, height and
obesity [42–45]. There is some evidence that this gene
plays a pro-apoptotic role in breast and cervical cancers
[46–48]. Esteller et. al. showed that hypermethylation of
the CpG islands located in the promoter region of DAP
leads to transcriptional silencing thereby enabling malig-
nant growth [49].
rs200516199 and rs143668247 near MIR365–2 and

NR5A2 (LRH-1), respectively, were also associated with
persistent cervical hrHPV infections. Like CTNND2 and
DAP, MIR365–2 has also been linked to breast and cervical
cancers [50, 51]. It appears to have an oncogenic effect in
some cancers [52, 53] and tumor suppressor effect in others
[54–57]. Bioinformatics and experimental research studies
have proved that apoptotic markers BAX and BCL-2, are
two of the main targets of this microRNA [58, 59].
rs143668247 alters motifs in POU Class 5 Homeo-
box 1 (POU5F1) gene. Aberrant expression of this
gene in adult tissues is associated with tumorigenesis

Table 3 Associations of the Top 20 SNPS with Persistent Cervical high-risk Infections

SNP Chr Base Position Near gene Reference allele MAF OR 95% CI P-value

– 5 10,847,898 DAPa C – 6.87 3.41–13.84 7.15 × 10−8

rs143668247 1 199,701,882 NR5A2 C 0.35 3.66 2.24–5.97 2.03 × 10−7

rs200516199 17 29,917,727 MIR365–2 TTTGA 0.04 7.71 3.54–16.78 2.63 × 10− 7

rs116834259 20 42,742,258 JPH2 T 0.11 4.42 2.50–7.81 3.15 × 10− 7

rs11452236 20 42,751,590 JPH2 C 0.13 4.03 2.34–6.92 4.78 × 10− 7

rs74358070 20 42,727,587 JPH2 T 0.11 4.24 2.41–7.47 5.52 × 10−7

rs16832308 2 133,253,243 GPR390 A 0.04 6.30 3.05–13.01 6.49 × 10−7

rs62167448 2 133,254,091 GPR39 C 0.04 6.30 3.05–13.01 6.49 × 10−7

rs150410476 11 37,223,676 C11orf74 A 0.03 8.31 3.60–19.16 6.80 × 10−7

rs12740341 1 199,699,781 NR5A2 C 0.26 3.18 2.01–5.03 7.94 × 10−7

rs79032354 20 42,732,460 JPH2 C 0.13 3.91 2.27–6.71 7.96 × 10−7

rs6130527 20 42,733,946 JPH2 G 0.13 3.91 2.27–6.71 7.96 × 10−7

rs4810411 20 42,751,472 JPH2 C 0.13 3.81 2.24–6.50 7.99 × 10−7

rs2502139 1 199,695,633 NR5A2 A 0.27 3.17 2.00–5.02 8.94 × 10−7

rs34026413 1 199,695,074 NR5A2 A 0.27 3.10 1.97–4.88 7.94 × 10−6

– 1 26,304,144 PAFAH2a C – 10.19 4.01–25.92 7.94 × 10− 6

rs543084794 2 133,250,145 GPR39a C 0.04 6.44 3.04–13.65 7.94 × 10− 6

rs79014529 20 42,717,781 TOX2 C 0.13 3.81 2.22–6.53 7.94 × 10− 6

rs1429702 1 199,694,059 NR5A2 T 0.27 3.10 1.96–4.87 7.94 × 10−6

rs6130520 20 42,716,399 TOX2 G 0.13 3.77 2.20–6.47 7.94 × 10−6

For this analysis, 51 women with hrHPV infection at both the baseline and follow-up visits were compared to 355 women without hrHPV infections at either the
baseline or follow-up visits. Base positions were based on hg19; aThe variant is not in 1000 genomes v1, the nearest gene was obtained from variants surrounding
the base location on the specific chromosome; Odds Ratio (OR) and 95% Confidence Intervals (CI) were estimated using an additive genetic model; Models were
adjusted for age, HIV status and the first principal components of the genotypes
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[37]. rs143668247 is located 295 kb 5′ of NR5A2, an
orphan receptor recently identified as a negative
modulator of hepatic inflammatory processes [60]. It
encodes a protein which is highly expressed in the
liver and is involved in regulating the expression of
genes for lipid metabolism, hepatitis B virus [61, 62]
and several cancers [63–69]. Although these genes
have not been previously linked to HPV infection,
subsequent GWAS may confirm our findings.
Our study is limited by its exploratory nature. Given

the small sample size of this study the power of the
study was limited. Thus, we may have missed associa-
tions with smaller effect sizes and we could not examine
the relationship between variants and type-specific
hrHPV and by HIV status. Our replication study yielded
two SNPs, TMC6/TMC8:rs9893818 which was reported
to be associated with CIN3/cervical cancer [9] and
CACNA2D1:rs2299187, which was associated with
survival of head and neck squamous cell carcinoma in a
recent GWAS [70]. However, these variants were not
associated with hrHPV in our study. Also, rs7082598
variant in PRDX3 and rs2305809 variant in RPS19,

which were shown to be associated with HPV persist-
ence in a candidate gene study conducted within Guana-
caste cohort in Costa Rica, were not associated with
hrHPV in our study. This may be due to inadequate
sample size, variability in the types of hrHPV or popula-
tion differences. Unlike our study population which was
comprised of only African women, the population of
Guanacaste is heavily admixed and has been described
as being composed mainly of European (42.5%) and Na-
tive American (38.3%) ancestries, with considerable Afri-
can influence (15.2%) and a small influence from Asians
(4%) [71]. The frequency of rs7082598 is 0.14 (AFR),
0.11 (AMR), 0.04 (ASN) and 0.08 (EUR) [72], our study
may have been underpowered to detect an association
with this variant. The frequency of rs2305809 is 0.89
(AFR), 0.52 (AMR), 0.56 (ASN) and 0.48 (EUR) [72],
suggesting that most African women have this variant
regardless of their HPV status, which is most likely why
we were unable to detect an association between
rs2305809 and HPV in our study population. The find-
ings from this exploratory study suggests that there are
significant associations between genetic variants and

Fig. 2 Genome-wide association results for persistent high-risk HPV. λ = 1.00. a Manhattan plot (b) Quantile–quantile plot (c) Regional plot
for rs116834259
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cervical hrHPV infection and larger studies are war-
ranted. The strengths of our study include studying a
well-characterized longitudinal cohort with multiple
hrHPV assessments in the participants. Secondly, the
main loci identified have biological and functional sup-
port for a role in HPV infection and persistence. Lastly,
the variant frequencies we observed were similar be-
tween our samples and those of west African ancestry
samples in the 1000 Genomes dataset, validating the
genotype accuracy in our datasets.

Conclusion
In conclusion, our study yielded suggestive genetic risk
factors for prevalent and persistent cervical hrHPV
infections. Further investigations of genetic variation in
the KLF12, CTNND2 and DAP genes may provide
insight into mechanisms of susceptibility to hrHPV
infection and persistence. Larger discovery and replica-
tion studies are warranted to confirm these findings.
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