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Abstract

Background: To determine the carrier frequency and pathogenic variants of common genetic disorders in the
north Indian population by using next generation sequencing (NGS).

Methods: After pre-test counselling, 200 unrelated individuals (including 88 couples) were screened for pathogenic
variants in 88 genes by NGS technology. The variants were classified as per American College of Medical Genetics
criteria. Pathogenic and likely pathogenic variants were subjected to thorough literature-based curation in addition
to the regular filters. Variants of unknown significance were not reported. Individuals were counselled explaining
the implications of the results, and cascade screening was advised when necessary.

Results: Of the 200 participants, 52 (26%) were found to be carrier of one or more disorders. Twelve individuals
were identified to be carriers for congenital deafness, giving a carrier frequency of one in 17 for one of the four
genes tested (SLC26A4, GJB2, TMPRSS3 and TMC1 in decreasing order). Nine individuals were observed to be carriers
for cystic fibrosis, with a frequency of one in 22. Three individuals were detected to be carriers for Pompe disease
(frequency one in 67). None of the 88 couples screened were found to be carriers for the same disorder. The
pathogenic variants observed in many disorders (such as deafness, cystic fibrosis, Pompe disease, Canavan disease,
primary hyperoxaluria, junctional epidermolysis bullosa, galactosemia, medium chain acyl CoA deficiency etc.) were
different from those commonly observed in the West.

Conclusion: A higher carrier frequency for genetic deafness, cystic fibrosis and Pompe disease was unexpected,
and contrary to the generally held view about their prevalence in Asian Indians. In spite of the small sample size,
this study would suggest that population-based carrier screening panels for India would differ from those in the
West, and need to be selected with due care. Testing should comprise the study of all the coding exons with its
boundaries in the genes through NGS, as all the variants are not well characterized. Only study of entire coding
regions in the genes will detect carriers with adequate efficiency, in order to reduce the burden of genetic
disorders in India and other resource poor countries.
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Background
Birth defects, defined as abnormalities of structure and
function present from birth, are progressively contribut-
ing to a greater proportion of fetal, neonatal, infant and
childhood mortality in developing countries. This is due
to the decline in infectious and nutritional causes due to
extensive use of immunizations, control of diarrheal and
respiratory infections, and improvements in health care
[1]. In the West, 29.8% of early mortality and 29.2% of
chronic problems, are due to birth defects [2]. The
major difference in the type of disorders observed in de-
veloping and developed countries is a higher incidence
of autosomal recessive single gene disorders due to con-
sanguinity and endogamous marriages in the former [2,
3]. WHO estimated that globally 206,000 deaths and
about 7% of all neonatal deaths are caused by birth de-
fects [4]. In India, the Sample Registration System Sur-
vey during 2010–2013 showed the contribution of
congenital malformations to childhood mortality, infant
mortality and neonatal mortality as 4.4, 4.6 and 4.0% re-
spectively [5]. In the tertiary care hospitals birth defects
contributed from 4.2 to 13.4% of perinatal mortality,
making congenital malformations and genetic disorders
as the third leading cause of neonatal mortality [6]. The
burden of genetic disorders in India has been presented
in a number of publications and their prevention
through screening has been emphasized [3, 7].
Birth defects, including genetic disorders, can cause

significant mortality, diminish productivity and quality
of life and cause social stigmatization and economic bur-
den especially in resource poor countries. Their preven-
tion is therefore a priority in all countries.
Most countries carry out prevention by screening for

infections during pregnancy by serology, chromosomal
disorders by biochemical test and structural abnormal-
ities by ultrasonography. However, population preva-
lence studies have shown that the number of single gene
disorders is almost equal to or exceeds chromosomal
disorders and congenital malformations combined [3, 7–
9]. The cost of prevention through screening for single
gene disorders is much less than the cost of treatment.
For example, in Cyprus where thalassemia is common, it
was shown that the cost of 8 weeks of prevention was
equivalent to the cost of 1 week of treatment of the thal-
assemia population [10]. The Ministry of Health of Israel
reported that the life time health care cost for persons
with thalassemia vs the cost of national screening pro-
gram was in a ratio of 4.22 to 1 [11]. The need to reduce
the prevalence of genetic disorders in developing coun-
tries is greater now as the new treatments of genetic dis-
orders are exorbitantly expensive and out of reach for
these families [12, 13]. Moreover most of this expend-
iture has to be covered by out of pocket expenses by the
patients/parents themselves.

Screening for carriers of single gene disorders such as
cystic fibrosis and Tay Sach disease has also been shown
to be cost effective [14, 15]. Beauchamp et al. examined
the clinical impact of a 176-condition expanded carrier
screening and demonstrated its cost-effectiveness to re-
duce the burden of Mendelian disease as compared with
minimal screening [16]. Zhanga et al. considered the im-
pact and cost-effectiveness of offering preventive popula-
tion genomic screening for BRCA1/2, MLH1/MSH2
genes, cystic fibrosis, spinal muscular atrophy and fragile
X syndrome to all young adults (18–25 years) in a
single-payer health-care system in Australia, and re-
ported that it would be highly cost-effective, but ethical
issues need to be considered [17].
The basic objective of carrier screening is to identify car-

riers and offer them reproductive options from choosing
to marry someone who is not a carrier of the same disease
(premarital screening) or prenatal diagnosis. In the event
that both the husband and wife are carriers of the same
disorder, preimplantation genetic diagnosis (after in vitro
fertilisation) or prenatal diagnosis (during early stages of a
naturally conceived pregnancy) can be carried out [18].
Screening only those families who have a previously af-
fected child is very inefficient, as majority of affected chil-
dren are born to couples with no previous family history.
Similarly screening only those who have an a-priori in-
creased risk of being a carrier based on their personal and
family history or who are consanguineously married, or in
couples who are opting for sperm or egg donation
(Assisted Reproduction Technologies) would still be an in-
adequate strategy to identify the carriers of genetic disor-
ders. It is best to screen all couples for the genetic
disorders common in that population.
World-wide, carrier screening has evolved from an

ancestry-based (e.g. in Jewish populations) to pan-ethnic
testing, and from single gene disorders, such as cystic fi-
brosis or α/β-thalassemia, by Sanger sequencing or
hematologic techniques, to multiple disorders through
Next Generation Sequencing (NGS) [19]. In the West,
carrier screening by NGS was initially limited to targeted
genotyping because most of the pathogenic variants in
the Caucasian population had been characterized and
the results were easier to interpret as the subjects were
screened for known variants [19]. This approach is not
suitable in resource poor countries as most of the patho-
genic variants in different genes have not been charac-
terized. However, screening later shifted to NGS of all
coding exons of genes to identify carriers more effi-
ciently. This is more suited in India and other resource-
poor countries, identifying only the variants that are
pathogenic or likely pathogenic and ignoring variants of
uncertain significance.
Carrier screening studies for single gene disorders in

India, as a service, have chiefly been carried out for β-
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thalassemia, based on hematologic technique [20]. Iso-
lated studies for p.Phe508del in cystic fibrosis [21] and
p.Trp24Ter in GJB2 related hearing loss [22] and more
recently SMN1 deletion in SMA (Spinal muscular atro-
phy) [23] have been performed as research studies. The
objectives of the present study were to determine the
carrier frequency of variants in 88 genes expected to be
common in Asian Indians and to identify the pathogenic
or likely pathogenic variants.

Methods
Subjects
This study was carried out at Sir Ganga Ram Hospital, a
tertiary care multispecialty facility, over a period of 22
months from October 2016 through June 2018. Institu-
tional ethical clearance was obtained prior to commen-
cing the study (Ethical clearance number EC/08/ 16/
1066). The molecular analysis was performed at Med-
genome Laboratories Ltd., Bangalore. Two hundred un-
related individual (n = 101 male, n = 99 female) between
the age of 20–60 years, visiting the Medical Genetics and
Obstetrics and/or Gynaecology out-patient clinic for
various reasons unrelated to genetic disorders were en-
rolled, after pre-test counselling. Individuals known to
be carriers of any genetic disease, or with history of a
chronic medical disorder or familial genetic disorder
were excluded from the study. The relevant history and
clinical data of each individual was recorded on standard
case record proformas (Supplementary file 1).

Sample size
A sample size of 200 unrelated individuals was planned
for enrolment in this pilot study.

Statistical analysis
Descriptive analysis was done, and outcome reported
as proportion of carriers upon total individuals tested
(n/200). Confidence interval was calculated by Wilson
method [24].

Selection of gene panel
The selection of genes followed the Wilson and Jungner
criteria [25]. Genes selected were those which cause high
impact disorders that have significant effect on lifespan or
reduce quality of life; or genes with moderate impact that
do not reduce lifespan but impact quality of life; or disor-
ders with significant socioeconomic burden for which
couples would consider prenatal diagnosis. Limited litera-
ture available on the prevalence of various monogenic dis-
orders in India was reviewed. The study by Ankala et al.
[26], summarised the prevalence of galactosemia in India
1:10,300, congenital adrenal hyperplasia (CAH) 1:2600,
phenylketonuria 1:18,300, and amino acid disorders 1:
3600. The prevalence of childhood hearing loss in India

was estimated as 1:500 in one study in 2009 [27]. The true
prevalence of cystic fibrosis in India is unknown but sus-
pected to be high in a recent review done by Mandal et al.
[28], based on the increased citations in recent years.
Lazarin et al., [29] also observed a carrier frequency of 1:
40 for cystic fibrosis in South Asian population, much
higher than expected from data in India. The genetic
register maintained about patients evaluated at our centre
was analysed. Eighty eight genes [72 autosomal recessive
(AR), 7 X-Linked (XL), 9 autosomal dominant (AD/AR)
were selected for testing (Supplementary file 2). A smaller
number of disorders were aimed at to develop a short but
efficient panel that could be offered at a low cost. Two re-
cessive disorders (cystic megalencephaly and calpainopa-
thy) were included as they are common in an ethnic
group (Agrawals) in North India [26]. Familial Hyperchol-
esterolemia, though an autosomal dominant disorder was
studied as it is life threatening and early treatment can
save lives. The study was planned in coherence with
American College of Medical Genetics (ACMG) position
statement on prenatal/preconception expanded carrier
screening [30]. Some common disorders were ex-
cluded either because these are not detectable by
NGS technology with accuracy or the disorder can
be screened easily by haematological tests. These in-
cluded β-thalassemia, deletions in SMN1 (survival
motor neuron 1) causing SMA (spinal muscular at-
rophy), FXS (Fragile X syndrome), and DMD (Du-
chenne muscular dystrophy). Deletion study of CAH
was excluded, although sequencing of the gene was
performed. Large copy number variations in any of
the 88 genes were also not included, in this se-
quence – based study.

Pre and post-test counselling
Prior to the testing, all individuals were counselled about
the type of disorders being tested, the implications of be-
ing a carrier, the benefits of enrolment of the partner
and voluntary nature of testing. Relevant personal, family
and ethnic data were recorded. Subjects were clinically
examined to rule out any chronic disorder. In post-test
counselling the individuals were explained about carrier
status and its implications, cascade screening of family
members and residual risks remaining after the results
(unscreened disorders, chromosomal disorders and
indels). The study methodology is depicted in Fig. 1.

Molecular and Bioinformatic analysis
DNA was extracted from blood using Qiagen kit, and
targeted genes were captured by a custom kit. The li-
braries were sequenced to mean coverage of > 80-100X
on Illumina sequencing platform. The sequences ob-
tained were aligned to human reference genome
(GRCh37/hg19) using BWA program [31, 32] and
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analysed using Picard and GATK version 3.6 [33, 34].
Gene annotation of the variants was performed using VEP
(Variant effect predictor) program against the Ensembl re-
lease 87 human gene model [35]. Clinically relevant
pathogenic variants were annotated using published vari-
ants in the literature and a set of diseases databases –
ClinVar [36], OMIM (Online Mendelian inheritance in
man) [37], GWAS catalogue (Genome wide association
study in man) [38], HGMD (Human gene pathogenic vari-
ant database) [39] and SwissVar [40].

Common variants were filtered based on allele fre-
quency in 1000Genome Phase 3 [41], GnomAD [42],
dbSNP147 [43], and an in house database of 100,000
exomes in Indian subjects (Medgenome). Non-
synonymous variants effect was calculated using multiple
algorithms such as PolyPhen-2 (polymorphism pheno-
typing v2) [44], SIFT (Sorts intolerant from tolerant)
[45], Mutationtaster2 [46], Mutation Assessor [47] and
LRT (Likelihood ratio test) [48]. Splicing prediction tools
used were Mutationtaster2 [46], BDGP (Berkeley

Fig. 1 Study flow chart
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drosophila genome project) [49] and HSF (human spli-
cing finder) [50]. Various filters applied to variants in-
cluded Variant quality (pass), 1000 genomes MAF (<
0.05), exonic and canonical splice site and read depth
(>10x). Variants remaining after applying the listed fil-
ters were subjected to ACMG classification. Only those
variants fulfilling the ACMG criteria for pathogenic and
likely pathogenic were shortlisted [51]. The literature
was reviewed for the filtered variants before assigning
carrier status.

Validation of NGS results
All disease associated variants were manually inspected
using IGV (integrative genomics viewer). It was observed
that all variants had sequencing depth > 30. No strand
biasness was observed. All variants were of good map-
ping quality. None of the variants were in highly repeti-
tive regions. These were further validated using Sanger
sequencing.

Results
Population demographics
Of the 200 individuals enrolled, 61.5% belonged to the
31–40 years age group (Table 1). Eighty eight percent had
enrolled with their partner and none of them were con-
sanguineously married. Maximum number of persons
belonged to the northern states of India (Delhi (n = 74),

Punjab (n = 50), Haryana (n = 44), Uttar Pradesh (n = 18),
Himachal Pradesh (n = 5), Jammu and Kashmir (n = 5)
and Rajasthan (n = 4). Majority of the individuals identi-
fied themselves as Hindu Punjabi (20.5%). Detailed reli-
gious and ethnic characteristics of the subjects is listed in
Table 1. Some individuals (5%) could not be classified as
they were either unsure of their caste and origin or were
born of an inter-caste marriage.

Carrier frequency
Of the 200 participants, 52 (26%) were found to be carrier
of one or more disorders (Table 2). Congenital deafness as
the most common disorder identified, with a carrier fre-
quency of 1 in 17, for one of the four genes SLC26A4 (sol-
ute carrier family 26, member 4), GJB2 (gap junction beta
2 protein), TMPRSS3 (transmembrane protease, serine 3)
and TMC1 (transmembrane channel like protein 1), in de-
creasing order. Cystic fibrosis was the second most com-
monly observed disorder with a carrier frequency of 1 in
22. Three subjects were detected to be carriers for Pompe
disease (frequency 1 in 67) (Table 2).
There was no couple where both husband and wife were

carriers for the same disorder. No woman was found to be a
carrier for the seven X-linked disorders included in the
panel (Fabry disease, Ornithine transcarbamylase deficiency,
hemophilia A and B, Hunter syndrome, severe combined
immunodeficiency (SCID) and adrenoleukodystrophy).

Table 1 Demographic characteristics of the individuals enrolled in the study

Parameter No of individuals (n = 200) Percentage

Age 20–30 yrs 61 30.5%

31–40 yrs 123 61.5%

41–50 yrs 13 6.5%

51–60 yrs 3 1.5%

Sex Male 101 50.5%

Female 99 49.5%

Religion & Caste Hindu Punjabi 41 20.5%

Brahmin 30 15%

Agarwal 28 14%

Jat 18 9%

Punjabi 14 7%

Rajput 6 3%

Pahadi 6 3%

BrahminBengali 4 2%

Marwari 2 1%

Kashmiri Pandit 2 1%

Other 10 5%

Jain 18 9%

Sikh 12 6%

Muslim 9 4.5%
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Of the 52 (26%) subjects found to be carriers, majority
were carriers for one disorder (n = 47/200 = 23.5%) and
five for two disorders (n = 5/200 = 2.5%). No individual
was found to be a carrier for three or more disorders.

Disease causing variants
The disease-causing variants were identified 57 times in
52 of 200 subjects (Table 3). Number of variants were
47, as some variants were identified more than once.
Majority were of missense type (72.34%). Among the
already reported variants, 29.5% (n = 13/44) have been

described in patients belonging to the Indian subcontin-
ent (India, Pakistan, Bangladesh). The individual variants
are listed in Tables 3 & 4 and discussed in more detail
later. Three splice site variants were novel (not reported
in the literature or locus specific databases) and fulfilled
ACMG criteria for pathogenicity (Table 4).

Discussion
The study was designed to determine the carrier fre-
quency of single gene disorders other than β-thalassemia
for which has a carrier frequency of about 3–4% has

Table 2 Carrier frequency of the disorders screened

S.no Disease name (OMIM no.) N (no. of
carriers)/200
individuals

% 1 in
_

Wilson 95% Confidence Interval

Lower % Upper %

Total no. of carrier individuals 52 26 3.84 19.9 31.9

1 Cystic fibrosis - CFTR (219700) 9 4.5 22.22 2.4 8.3

2 Deafness - SCL26A4 (274600) 5 2.5 40.0 0.78 5

3 Deafness - GJB2 (220290) 3 1.5 66.67 0.5 4.3

4 Deafness - TMPRSS3 (601072) 3 1.5 66.67 0.5 4.3

5 GSD type II - GAA (232300) 3 1.5 66.67 0.5 4.3

6 Methyl malonicaciduria mut A – MMAA (251100) 2 1 100 0.27 3.6

7 AR polycystic kidney – PKHD1 (263200) 2 1 100 0.27 3.6

8 Galactosemia - GALT (230400) 2 1 100 0.27 3.6

9 Smith Lemli Opitz syndrome – DHCR7 (270400) 2 1 100 0.27 3.6

10 Albinism type II - OCA2 (203200) 2 1 100 0.27 3.6

11 Megalencephalic leukoencephalopathy with
cysts -MLC1 (604004)

2 1 100 0.27 3.6

12 Gaucher disease - GBA (230800) 2 1 100 0.27 3.6

13 Phenylketonuria – PAH (261600) 2 1 100 0.27 3.6

14 Epidermolysis bullosa (Junctional) -LAMC2(226,700, 226,650) 2 1 100 0.27 3.6

15 Niemann Pick disease type C1 – NPC1 (257220) 1 0.5 200 0.088 2.77

16 Deafness - TMC1 (600974) 1 0.5 200 0.088 2.77

17 Biotinidase deficiency - BTD (253260) 1 0.5 200 0.088 2.77

18 Medium chain acyl CoA deficiency -ACADM (201450) 1 0.5 200 0.088 2.77

19 Limb girdle muscle dystrophy type 2A -CAPN3 (253600) 1 0.5 200 0.088 2.77

20 Congenital adrenal hyperplasia -CYP21A2(201910) 1 0.5 200 0.088 2.77

21 Primary hyperoxaluria type 1 - AGXT (259900) 1 0.5 200 0.088 2.77

22 Argininosuccinic aciduria - ASL (207900) 1 0.5 200 0.088 2.77

23 Canavan disease - ASPA (271900) 1 0.5 200 0.088 2.77

24 Glutaric aciduria type 1 – GCDH (231670) 1 0.5 200 0.088 2.77

25 Krabbe disease - GALC (245200) 1 0.5 200 0.088 2.77

26 Congenital ichthyosis - TGM1 (242300) 1 0.5 200 0.088 2.77

27 Metachromatic leukodystrophy – ARSA (250100) 1 0.5 200 0.088 2.77

28 Zellweger syndrome – PEX1 (214100) 1 0.5 200 0.088 2.77

29 Epidermolysis bullosa dystrophica – COL7A1 (226600) 1 0.5 200 0.088 2.77

30 Very long chain acyl CoA dehydrogenase
deficiency - ACADVL (201475)

1 0.5 200 0.088 2.77

P Pathogenic, LP Likely pathogenic
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been shown in many studies in India [52]. Disorders
such as spinal muscular atrophy (SMA), fragile X syn-
drome (FXS) and Duchenne muscular dystrophy (DMD)
are common in all populations including South Asians
were also excluded as these are difficult to detect with
NGS [53]. Recently, we showed the carrier frequency of
SMA in North India to be 2.25% [23]. However, carrier
frequency for other single gene recessive disorders is
not known and significant differences in prevalence
and pathogenic variants have been seen in different
populations [54].

CFTR (cystic fibrosis transmembrane conductance
regulator) pathogenic and likely pathogenic variants
There were nine disease-causing variants identified in
the CFTR gene in this cohort. Of these, only one case
had the common p.Phe508del pathogenic variant i.e.
11% (n = 1/9). Two pathogenic variants detected in
CFTR gene in this study have been observed before in
our laboratory (p.Arg75Ter and p.Ser549Asn). The
remaining six pathogenic variants have not been re-
ported in Indians earlier (Table 3). The variants
p.Ser549Asn, p.His199Tyr, p.Arg1070Gln have been de-
scribed by multiple authors and functional studies have
been carried out classifying them as pathogenic as per
ACMG criteria. The other four variants p.Ile1366Phe,
p.Cys491Phe, p.Phe1337Val, p.His620Leu have been
documented to be associated with disease, however lack
adequate functional studies. They meet the ACMG cri-
teria for likely pathogenicity (Table 3).
CFTR c.3854C > T, p.Ala1285Val variant was identified

in three individuals, which though has been reported in
the literature [55] associated with congenital bilateral ab-
sence of vas deferens CBAVD), is more likely to repre-
sent a common polymorphism due to its observance in
high frequency in the NGS data in the Indian population
(0.5% minor allele frequency in South Asians in Gno-
mAD exomes). This variant was not included in the list
of disease associated variants.
Studies on the genetic profile of cystic fibrosis patients

in India shows high variability, and many rare and new
variants have been observed, while only few pathogenic
variants (p.Arg1162Ter, p.Met1Thr, c.1161delC, p.Ser549-
Asp and c.1525-1G > A) are reported more than once
[56–58]. This suggests the lack of founder or common
mutations in CFTR gene and thus emphasises the need
for sequencing of all coding regions of the CFTR gene in
suspected cases in the Indian population. In the present
study except for p.Phe508del no other pathogenic variant
was present in the ACMG panel of cystic fibrosis [59]. In
view of the heterogeneity in pathogenic variants, Mandal
et al. also suggested that a single panel of pathogenic vari-
ants cannot be used for diagnosis or carrier testing of CF
in India [28]. Archibald et al. also observed that the

pathogenic variants in cystic fibrosis vary according to
ethnic origin [53]. Lim et al. reported in ExAC database
that the pathogenic variants in the CFTR in non-
Europeans are different from those in people of European
descent. They noted that none of the current genetic
screening panels or existing CFTR pathogenic variant da-
tabases cover a majority of deleterious variants in any geo-
graphical region outside of Europe [60].
Among the nine disease causing variants identified in

the CFTR gene in the present cohort, only one case had
the common p.Phe508del pathogenic variant i.e. 11%
(n = 1/9). Kapoor and Kabra et al. studied cord blood
samples of 955 newborns and reported a p.Phe508del
carrier frequency of one in 238 (0.42%) [21]. They esti-
mated the frequency of homozygous p.Phe508del as 1/
228,006. However, this cannot be considered to repre-
sent the true prevalence of cystic fibrosis in India as it
took into account only one pathogenic variant. Compari-
son of p.Phe508del allele frequency with that reported
from the West shows that Indians have a low frequency
(19–44%) of the p.Phe508del pathogenic variant [61–63].
Cystic fibrosis was thought to be extremely rare in India.
However, a growing number of publications in the last
two decades have suggested a higher prevalence [28, 63,
64]. This indicates that CF may be much more common
in the Indian population with majority of cases being
missed or undiagnosed. CFTR related pathogenic vari-
ants may be rarely recognized in Indians in view of the
different phenotypes (including cystic fibrosis and con-
genital absence of vas deferens), variable clinical severity
and lack of availability of sweat testing, and absence of
new born screening.

GJB2 c.231G > A, p.Trp77Ter and c.71G > A, p.Trp24Ter
Biallelic variants in the GJB2 gene or deletion in the
gene cause congenital nonprogressive mild to profound
sensorineural hearing impairment. The pathogenic vari-
ants identified in GJB2 represent have been previously
reported in Indian subjects. Ram Shankar et al. studied
the pathogenic variants in GJB2 gene in Indian patients
with deafness and found p.Trp24Ter to be the most
common pathogenic variant India [22]. In addition, they
documented two other common pathogenic variants
p.Trp77Ter and IVS1 + 1G > A. These differ from the
common pathogenic variants identified in the Western
(c.35delG) [65] and Japanese (c.235delC) and Korean
(p.Val37Ile) populations [66, 67].

SLC26A4 related hearing loss
Hearing loss due to SLC26A4 has been reported as third
most common cause of hearing loss in a study in a pan-
ethnic population [68]. This occurs due to an enlarged
vestibular aqueduct and temporal bone abnormalities
which can be appreciated on imaging. In addition to
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hearing loss, these individuals may have euthyroid goitre
(Pendred syndrome). In this study, two out of the four
disease - causing variants reported have been previously
described in individuals of Indian ethnic origin:
p.Arg409Pro [69, 70] and p.Ile490Leu [71]. Other vari-
ants found in our study include p.Gly334Val, that has
been described chiefly in people of Mediterranean origin
[72] and p.Phe335Leu which is a common variant re-
ported worldwide [73].
Carrier screening and prenatal diagnosis for a disorder

like hearing loss which impairs quality of life can have
differing perceptions among families in different coun-
tries. The parental perceptions in Indian culture where
resources are scarce towards congenital hearing loss
have been pointed out by Nahar et al. previously [74].
While some families are interested in using the informa-
tion to help in the management, planning and emotional
adjustment to the birth of a child with deafness others
opt for discontinuing an affected fetus especially if finan-
cial resources are scarce.

GBA c.1448 T > C, and c.866G > C, p.Gly289Ala
Biallelic variants in the GBA gene causing a deficiency of
acid β-glucosidase and cause Gaucher disease, the most
common lysosomal storage disorder in the world [75].
The variant p.Gly289Ala and p.Leu483Pro were observed
in one individual in the present cohort. Ankleshwari
et al. studied 33 Indian patients with Gaucher disease,
and identified p.Leu483Pro as the most common patho-
genic variant 60.6% (n = 20/33). In addition, they re-
ported p.Gly289Ala as a novel pathogenic variant in a
patient with type I disease [76]. Homozygosity for the
p.Leu483Pro variant is associated with neuronopathic in-
volvement (type III) ranging from mild oculomotor
apraxia to more severe involvement as well as lethal
cases of collodion skin baby phenotype [77, 78]. The
variant most commonly observed in Western population
(p.Asn370Ser) and associated with type I Gaucher dis-
ease is observed less commonly in India [77, 79].

GAA c.1933G > A, p.Asp645Asn variant
Biallelic pathogenic variants in the GAA gene cause
deficiency of acid α-glucosidase resulting in Pompe
disease. We observed three individuals to be carriers
for p.Asp645Asn variant in the GAA gene. This vari-
ant was reported for the first time in 1998 by Huie
et al. and demonstrated low enzyme activity with this
pathogenic variant in vitro and in vivo [80]. Subse-
quently this pathogenic variant has been reported in
patients affected with infantile onset Pompe disease in
several studies [81]. This variant lies in exon 14 of
the gene, reported to be a hot spot for this gene [81].
However a study done on Indian ethnic patients re-
ported no hot spots for this gene [82].

OCA2 c.1580 T > G, p.Leu527Arg variant
Oculocutaneous albinism type II (tyrosinase positive)
is caused by biallelic pathogenic variants in the OCA2
gene. These individuals acquire small amounts of pig-
ment with age and tend to have less severe visual ab-
normalities. The p.Leu527Arg variant was observed in
heterozygous in two individuals in our cohort. It was
reported for the first time by Jowerek et al. in a Paki-
stani family with some pigmentation of hair [83].
They reported that this pathogenic variant lies in
highly conserved residue of amino acids in the trans-
membrane 8 domain of the protein and segregated
with affected member.

AGXT c.302 T > C, p.Leu101Pro variant
Primary hyperoxaluria occurs due to deficiency of the
liver peroxisomal enzyme alanine:glyoxylate-amino-
transferase encoded by the AGXT gene. We observed
one carrier (belonging to Punjabi community) for
p.Leu101Pro variant in our cohort. This variant was
reported for the first time by Williams et al. [84],
who demonstrated that the mutant gene protein had
less than 1% of normal activity in vitro. Subsequently,
Chanchlani et al. documented three patients with pri-
mary hyperoxaluria type 1 to have the p.Leu101Pro
variant in homozygous state [85]. All the three pa-
tients belonged to north India or Pakistan. They sug-
gested a possibility of this being a founder pathogenic
variant in India although larger studies and haplotype
analysis are required.

ASPA c.902 T > C, p.Leu301Pro
The ASPA gene encodes for aspartoacylase enzyme,
deficiency of which results in Canavan disease. One
individual was found to be carrier for the p.Leu301-
Pro variant. This variant has been reported by our
group previously in a patient of Indian ethnicity with
classical Canavan disease and raised urine N-acetyl
aspartate [86]. On the basis of the reported literature
this variant has classified using ACMG criteria as
likely pathogenic.

ACADM c.811G > A, p.Gly271Arg
Biallelic pathogenic variants in ACADM affect mito-
chondrial fatty acid β-oxidation due to deficiency of the
enzyme medium-chain acyl-coenzyme A dehydrogenase.
The p.Gly271Arg is a well reported pathogenic variant
in the ACADM gene worldwide. It was observed in one
individual in this study. The c.985A > G pathogenic vari-
ant commonly seen in the West, believed to be a
founder pathogenic variant in Caucasians originating
from an ancient Germanic tribe was not observed in the
present cohort [87].
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Disorders like AR polycystic kidney disease, methyl
malonic acidemia, galactosemia, Smith-Lemli Opitz
syndrome, oculocutaneous albinism type II, cystic
megalencephalic leukoencephalopathy, phenylketonuria
and junctional epidermolysis bullosa can be expected
to be common in the Indian population as at least
two cases were detected among the 200 individuals
screened.
Other investigators and our group have identified a

number of disorders with founder mutations among the
Agarwal community [88, 89]. Carriers for only two of
these were identified in the current panel of genes - cal-
painopathy and megalencephalic leukodystrophy with
cysts. The mutations detected are not the common ones
noted in the Agarwal community. However there were
only 28 individuals in the cohort belonging to the Agar-
wal community and larger studies are indicated to deter-
mine their carrier frequency.

Conclusions
Carrier screening has been widely offered in the precon-
ception period in the West. However, in India it has
mostly been offered to those who have a family history
or consanguinity. With decreasing costs of NGS panels,
carrier screening is being increasingly utilised in recent
times in India. It is likely to become the method of
choice to decrease the burden of genetic diseases in
India, as treatment is not funded by state agencies and
family’s financial resources are scarce. This study also
brings out the differences in common pathogenic vari-
ants between the West and in Asian Indians, an ethnic-
ally distinct population. The variant filtration and
interpretation strategies in a healthy population are chal-
lenging and literature review is essential before assigning
pathogenic status to a variant. With the availability of
NGS based testing in India and growing amount of lit-
erature on Indian pathogenic variants and their repre-
sentation in databases, the sensitivity of carrier screening
is likely to improve. Targeted genotyping panels like the
‘23 pathogenic variant panel’ developed by ACMG for
cystic fibrosis are not suitable and will miss many
carriers.
This study highlights the importance of an Indian

database in improving the classification of variants. It
is creditable that many genetic centres are pooling
their data to develop such a database. The high car-
rier frequency of cystic fibrosis, if substantiated in lar-
ger population studies, would be sufficient ground to
initiate new-born screening in the Indian population.
One major limitation of this study is the small sample
size, and a larger studies would be justified to serve
as a valuable tool for reducing the burden of genetic
disorders.
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