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COL5A1 rs12722 polymorphism is not
associated with passive muscle stiffness
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Abstract

Background: Poor joint flexibility has been repeatedly proposed as a risk factor for muscle injury. The C-to-T
polymorphism (rs12722) in the 3′-untranslated region of the collagen type V α1 chain gene (COL5A1) is reportedly
associated with joint flexibility. Flexibility of a normal joint is largely determined by passive muscle stiffness, which is
influenced by intramuscular collagenous connective tissues including type V collagen. The present study aimed to
test the hypothesis that the COL5A1 rs12722 polymorphism influences joint flexibility via passive muscle stiffness,
and is accordingly associated with the incidence of muscle injury.

Methods: In Study 1, we examined whether the rs12722 polymorphism is associated with joint flexibility and
passive muscle stiffness in 363 healthy young adults. Joint flexibility was evaluated by passive straight-leg-raise and
sit-and-reach tests, and passive muscle stiffness was measured using ultrasound shear wave elastography. In Study
2, the association of the rs12722 polymorphism with sports-related muscle injury was assessed in 1559 Japanese
athletes. Muscle injury history and severity were assessed by a questionnaire. In both Study 1 and Study 2, the
rs12722 C-to-T polymorphism in the COL5A1 was determined using the TaqMan SNP Genotyping Assay.

Results: Study 1 revealed that the rs12722 polymorphism had no significant effect on range of motion in passive
straight-leg-raise and sit-and-reach tests. Furthermore, there was no significant difference in passive muscle stiffness
of the hamstring among the rs12722 genotypes. In Study 2, rs12722 genotype frequencies did not differ between
the muscle injury and no muscle injury groups. Moreover, no association was observed between rs12722
polymorphism and severity of muscle injury.

Conclusions: The present study does not support the view that COL5A1 rs12722 polymorphism has a role as a risk
factor for sports-related muscle injury, or that it is a determinant for passive muscle stiffness in a Japanese
population.
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Background
Despite preventive efforts, muscle injury is increasingly
common in sports involving sprinting and jumping [1].
Muscle injury results in considerable losses such as
missed training time and unavailability for competition
and thereby negatively influences the athletes’ sport suc-
cess. Thus, it is essential to elucidate the etiology of
sports-related muscle injury in order to develop a more
effective prevention modality.
Poor joint flexibility has been well documented as a

modifiable risk factor for muscle injury. A prospective
study [2] indicated a direct link between pre-season joint
flexibility and muscle injury in soccer players; with in-
jured players having a significantly smaller joint range of
motion (ROM) measured pre-season than uninjured
players. Joint flexibility is influenced by environmental
factors such as stretching [3, 4] and resistance training
[5]. In contrast, a meta-analysis showed that genetic fac-
tors explain 50% of joint flexibility variance [6]. Thus,
the influences of genetic and environmental factors on
joint flexibility are comparable.
Other than the commonly accepted extrinsic factor,

genetic factors play an important role in the risk of
muscle injury [7, 8]. The collagen type V α1 chain gene
(COL5A1) has been proposed as a candidate gene whose
variants affect not only muscle injury per se but also
passive muscle stiffness and joint flexibility [9]. Several
studies examining the association of the C-to-T poly-
morphism (rs12722) in the 3′-untranslated region
(UTR) of the COL5A1 with ROM in sit-and-reach (SR)
or passive straight-leg-raise (PSLR) tests [10–12] suggest
that this polymorphism could be a factor affecting ROM.
Although the ROMs in SR and PSLR tests are multifac-
torial, passive muscle stiffness has been proposed to be a
major contributor to the ROM of normal joints [13, 14].
Passive muscle stiffness is influenced by intramuscular
collagenous connective tissues, such as perimysium and
endomysium [15], which contain type V collagen [16].
COL5A1 is reportedly expressed in skeletal muscle tissue
[17]. Given this, it is assumed that the COL5A1 rs12722
polymorphism influences ROM via passive muscle stiff-
ness, and is accordingly associated with muscle injury.
To date, two studies suggest that the COL5A1 rs12722
polymorphism is associated with severity of muscle in-
jury in Caucasian professional soccer players [18, 19].
However, the association of the COL5A1 rs12722 poly-
morphism with passive muscle stiffness and incidence of
muscle injury remains unclear.
The C-to-T rs12722 polymorphism is reported to be

associated with altered stability of COL5A1 mRNA [20].
The COL5A1 3′-UTR with the rs12722 polymorphism T
allele exhibited enhanced mRNA stability compared to
the 3′-UTR of the C allele, suggesting that more type V
collagen α1 chain is synthesized from the T allele.

Although type V collagen is a quantitatively minor frac-
tion fibrillar collagen, it plays a critical role in the regula-
tion of collagen fibril assembly and is an important
structural component of tendons, ligaments, and other
connective tissues [9]. As suggested by Collins and Post-
humus [9], it is reasonable to assume that the T allele of
the COL5A1 rs12722 polymorphism leads to higher type
V collagen production and accordingly alters collagen fi-
bril architecture, resulting in changes in the mechanical
properties of the connective tissues. Based on these con-
siderations, we hypothesized that the T allele of the
COL5A1 rs12722 polymorphism is associated with high
muscle stiffness, and accordingly poor joint flexibility
and a high incidence of muscle injury. To test this hy-
pothesis, we examined the association of COL5A1
rs12722 polymorphism with passive muscle stiffness,
ROM, and muscle injury.

Methods
Study design
We performed two studies to fulfill the goals of this
paper. The first study (Study 1) was designed to examine
the association between COL5A1 rs12722 polymorphism
and joint ROM and passive muscle stiffness. In the sec-
ond study (Study 2), we investigated whether COL5A1
rs12722 polymorphism was associated with sports-
related muscle injury. Study 2 was a part of the Japanese
Human Athlome Project (J-HAP) in “Athlome Project
Consortium” [21].

Study 1
A total of 363 healthy young adults (men, n = 231;
women, n = 132) participated in Study 1. None of the
participants had apparent neurological, orthopedic, or
neuromuscular problems. None of the participants re-
ported muscle soreness or fatigue in the lower limbs at
the time of testing. Written consent was obtained from
each participant. The procedure was approved by the
ethics committee of the Juntendo University and Na-
tional Institute of Fitness and Sports in Kanoya, and per-
formed in accordance with the Declaration of Helsinki.
The PSLR (right leg) test, SR test, and passive muscle

stiffness measurements were performed on each partici-
pant in a randomized order. Room temperature for all
measurements was kept at 24 ± 2 °C to minimize poten-
tial effects of temperature-induced changes in tissue
mechanical properties and participants’ sensation to
muscle stretch. Prior to the measurements the partici-
pants were not allowed to warm-up or stretch. The pro-
cedures have been described in detail previously [14].
Briefly, in the PSLR test, participants lay supine with
their legs straight on an examining bed. The pelvis and
non-testing (left) leg were secured to the bed. The right
hip joint was passively flexed, with the knee straight, by
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an examiner until each participant felt pain in the ham-
string. The PSLR ROM (i.e., hip flexion angle from the
resting position) was measured using a digital inclinom-
eter (MLT-100, Sakai Medical, Japan) attached to the
right shank. In the SR test, participants sat on the floor
with their head, back, and hip against a wall, knee fully
extended, and soles of the foot positioned flat against an
SR box (T.K.K.5111, Takei Scientific Instruments, Japan).
They were then asked to bend forward slowly and reach
forward as far as possible while keeping the knees ex-
tended and slid their hands along a digital measuring
scale which was placed on the box to measure SR ROM.
In accordance with a previous study, passive shear

modulus (a measure of stiffness, expressed in kPa) of the
biceps femoris long head (BF), semitendinosus (ST), and
semimembranosus (SM) of the right leg were measured
using an ultrasound shear wave elastography scanner
(Aixplorer, Supersonic Imagine, France). During the meas-
urement of passive muscle stiffness, participants sat on a
bench with their hip flexed 70° and the right knee fully ex-
tended. This hip joint angle was chosen based on a recent
study [14], which aimed to define an angle where the
hamstring could be stretched to a tensioned state without
pain for all participants and the shear modulus could be
quantified at a given joint angle in all participants. An
ultrasound linear probe was positioned at 50% level of the
thigh length (the distance between the greater trochanter
and the lateral epicondyle of the femur). For each muscle,
the probe orientation was adjusted to visualize the fasci-
cles within the B-mode image. Care was taken not to press
and deform the muscles while scanning. The subjects were
instructed to fully relax the leg throughout the measure-
ments. The images were acquired after ensuring a stable
color distribution of shear modulus mapping for a few
seconds. The measurements were performed three times
for each muscle. To evaluate the stiffness of the overall
hamstring, the shear modulus of three muscles were aver-
aged. All measurements and analyses of the elastographic
data were performed by experienced examiners (>3 years
of practice). For each variable (i.e., SR test, PSLR test, and
passive muscle stiffness), the average values of three mea-
surements were used for subsequent analyses. All partici-
pants then completed a questionnaire that included
information on regular stretching of the hamstring.

Study 2
Participants of study 2 were Japanese athletes of various
sports (not limited to a specific discipline), recruited
from March 2015 to November 2017. A total of 2181
participants were recruited. Written consent was ob-
tained from each participant. The procedure was ap-
proved by the Ethics Committees of Juntendo
University, Nippon Sport Science University, Tenri Uni-
versity, and the National Institute of Fitness and Sports

in Kanoya, and performed in accordance with the Dec-
laration of Helsinki.
In J-HAP, the history of sports-related injuries was

assessed by questionnaire [8]. In the present paper, we
focused on non-contact muscle injury diagnosed by
medical practitioners. The number of days that elapsed
from the date of injury to the date of the athlete’s return
to usual training was asked to evaluate the severity of in-
jury via the questionnaire. Injury severity was catego-
rized into one of four levels based on the number of
days until return: minimal (1–3 days), mild (4–7 days),
moderate (8–28 days), and severe (>28 days) [22]. If a
participant had a history of multiple muscle injuries,
data on the most severe injury was used. In addition,
precise information on the primary sport, playing years,
and competition level was obtained using the question-
naire. Participants who had [1] no Japanese ancestry [2],
missing or invalid questionnaire data, or [3] less than 3
years playing experience in their primary sport were ex-
cluded. The final sample size in the analyses of history
of muscle injury and severity of muscle injury were 1559
and 186, respectively.

Genotyping analysis
Total DNA was isolated from the saliva of all partici-
pants in both Study 1 and 2 with an Oragene® DNA Col-
lection Kit (DNA Genotek, ON, Canada) and quantified
using a NanoDrop 8000 UV-Vis Spectrophotometer
(Thermo Fisher Scientific, DE, USA) or Eppendorf Bio
Photometer Plus (Eppendorf, Tokyo, Japan). DNA sam-
ples were stored at 4 °C until use. The samples were ana-
lyzed for the rs12722 polymorphism in the 3′-UTR of
COL5A1 using a TaqMan SNP Genotyping Assay (Assay
ID: C____370252_20) and LightCycler® 480 System
(Roche Molecular Systems, Mannheim, Germany) or
StepOne™ Real-Time PCR System (Thermo Fisher Scien-
tific). Five microliters of the genotyping mixture con-
tained 2.5 μL TaqMan® GTXpressTM Master Mix (2×)
or TaqMan® Universal Master Mix II (2×), 0.0625 μL
TaqMan® SNP Genotyping Assay mix (40×), 1.4375 μL
sterilized water, and 1 μL genomic DNA (10 ng/μL).
Two to four negative controls were included on each
plate. Genotypes were called based on TaqMan® assays
results using LightCycler® 480 SW (version 1.5, Roche
Molecular Systems) or StepOne™ software (version 2.3,
Thermo Fisher Scientific). Three hundred eighty ran-
domly selected samples were genotyped in duplicate for
the rs12722 polymorphism, and we confirmed that the
genotyping results perfectly agreed between duplicates.

Statistical analysis
Data are expressed as mean ± standard deviation (SD).
Statistical significance was set at P < 0.05. Statistical ana-
lyses were performed using JMP Pro version 12 (SAS
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Institute, USA). The Hardy-Weinberg equilibrium of the
rs12722 polymorphism was assessed using χ2 test. For
the data of study 1, comparisons between two groups
(sex, regular stretching habit, genotype [T-dominant and
T-recessive models]) were conducted using χ2 test or
unpaired Student’s t-test as appropriate. For compari-
sons under an additive model, the Cochran-Amitage
trend test or Spearman correlation test was used as ap-
propriate. Additionally, in order to examine whether the
genotypes are associated with the phenotype variables
independently of sex and regular stretching, analysis of
covariance (ANCOVA) and multiple regression analysis
were employed for T-dominant and T-recessive models
and for an additive model, respectively. For the data of
study 2, comparisons between the muscle injury and no
muscle injury groups were conducted by χ2 test or un-
paired Student’s t-test. Logistic regression analysis was
applied to investigate the associations between rs12722
polymorphism and history of muscle injury with adjust-
ment for playing years and main sport (track & field or
the others). Odds ratios (OR) and 95% confidence inter-
vals (CI) were calculated under the T-dominant genetic
model. Association of the rs12722 polymorphism with
severity of muscle injury was assessed by ordinal regres-
sion analysis. When the sample size of the TT genotype
of the rs12722 polymorphism was less than five, statis-
tical analyses were not conducted for T-recessive and
additive models. Using the data of our previous study
[8], we calculated the necessary samples size to detect
the expected difference in passive muscle stiffness be-
tween the T allele carriers and CC genotype carriers
(α = 0.05, power = 0.8, difference in group means = 3.5,
within group SD = 7.4, and the ratio of CC genotype car-
riers to T allele carriers = 2.3) and to detect the associ-
ation between the T allele of the rs12722 polymorphism
and a history of muscle injury with an OR of 2.0 (α =

0.05, power = 0.8, probability of T allele carriers = 0.317,
and the ratio of control to case subjects = 8.9). The crit-
ical sample sizes were estimated to be 168 and 733,
respectively.

Results
The COL5A1 rs12722 genotype frequencies in studies 1
and 2 did not deviate from Hardy-Weinberg equilibrium
(P = 0.975 and P = 0.183).

Study 1
Table 1 shows descriptive data on the characteristics of
the participants in study 1. There were significant sex
differences in height, body mass, PSLR ROM, SR ROM,
and muscle shear modulus of the ST and SM (Table 1).
When the participants were divided by stretching habit,
participants conducting regular stretching showed sig-
nificantly higher PSLR (84.4 ± 17.5 degree vs. 75.6 ± 14.9
degree, P < 0.001) and SR (11.5 ± 9.0 cm vs. 6.5 ± 10.1
cm, P < 0.001) ROMs and lower shear modulus of SM
(38.6 ± 15.3 kPa vs. 46.4 ± 19.7 kPa, P < 0.001) than those
without a stretching habit. The χ2 test revealed no sig-
nificant difference in sex ratio and regular stretching
among those with the various rs12722 genotypes
(Table 2). PSLR and SR ROMs did not differ among the
genotypes (Table 2). Similarly, no significant effect of
genotype on PSLR and SR ROMs was observed after ad-
justment for sex ratio and regular stretching (Table 2).
Figure 1 shows the muscle shear modulus for each

rs12722 genotype. There was no significant difference in
the shear modulus of all three muscles under three gen-
etic models, regardless of the adjustment for sex ratio
and regular stretching (unadjusted: P ≥ 0.268, adjusted:
P ≥ 0.276, Fig. 1). When the shear moduli of the overall
hamstring were compared among the rs12722 genotypes,
no significant difference was observed either before (T-

Table 1 Participant characteristics in Study 1 (n = 363)

All Men Women P value
Men vs. Women

n 363 231 132

Age, year 20.5 ± 2.0 20.7 ± 2.0 20.2 ± 1.9 0.043

Height, cm 169.3 ± 9.0 174.0 ± 6.6 161.2 ± 6.5 <0.001

Body mass, kg 64.2 ± 11.6 68.4 ± 11.5 56.8 ± 7.2 <0.001

PSLR ROM, degree 82.3 ± 17.3 77.1 ± 14.4 91.5 ± 18.1 <0.001

SR ROM, cm 10.43 ± 9.5 8.3 ± 9.6 13.9 ± 8.2 <0.001

Shear modulus (kPa)a

Biceps femoris 19.9 ± 7.0 19.8 ± 7.3 20.1 ± 6.4 0.652

Semitendinosus 25.8 ± 8.6 27.3 ± 9.1 22.9 ± 6.4 <0.001

Semimembranosus 40.4 ± 16.7 42.5 ± 17.4 36.2 ± 14.5 0.001

Stretch, % yes 78.2 73.9 81.1 0.123

Values are presented as the mean ± SD unless noted otherwise. Bold emphasis: P < 0.05
aData are available 353, 353, 331 participants for the biceps femoris, semitendinosus, and semimembranosus, respectively
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dominant: P = 0.650, T-recessive: P = 0.747, Additive:
P = 0.618) or after adjustment for sex ratio and regular
stretching (T-dominant: P = 0.958, T-recessive: P = 0.835,
Additive: P = 0.987). In addition, when the participants
were divided by sex, genotype had no significant effect
on PSLR/SR ROMs or the shear modulus for any of the
three muscles in either sex group (Additional file 1:
Table S1).

Study 2
Table 3 shows the participant characteristics in study 2.
There were no significant differences in sex ratio, age,
height, body mass, and competitive level between the
muscle injury and no muscle injury groups. The muscle
injury group had fewer playing years and a higher

proportion of track and field athletes than the no muscle
injury group. Logistic regression analyses of the rs12722
polymorphism (as a whole or for males and females sep-
arately) revealed that the genotype frequencies did not
differ between the muscle injury and no muscle injury
groups (Table 4).
Figure 2 shows the distribution of muscle injury sever-

ity in each rs12722 genotype. There was no significant
difference in the distribution of injury severity between
participants with TT + TC genotype and those with the
CC genotype at the rs12722 polymorphism (P = 0.717).

Discussion
The main finding obtained here is that the COL5A1
rs12722 polymorphism is not associated with joint

Table 2 Participant characteristics by COL5A1 genotype in Study 1 (n = 363)

CC TC TT Unadjusted/adjusteda P value

T-dominant (TT + TC vs. CC) T-recessive (TT vs. TC + CC) Additive (TT vs. TC vs. CC)

n 253 100 10

Sex, % men 60.8 71.0 60.0 0.097 0.809 0.169

Age, year 20.5 ± 1.9 20.7 ± 2.3 19.5 ± 1.5 0.597 0.105 0.828

Height, cm 169.0 ± 9.2 170.6 ± 8.7 166.4 ± 7.7 0.227 0.289 0.320

Body mass, kg 63.5 ± 10.6 66.2 ± 13.8 61.3 ± 7.2 0.084 0.420 0.404

PSLR ROM, degree 83.4 ± 18.0 81.0 ± 17.2 83.4 ± 12.2 0.274/0.761 0.907/0.986 0.528/0.786

SR ROM, cm 10.4 ± 9.3 9.8 ± 10.2 13.4 ± 7.1 0.781/0.645 0.298/0.323 0.993/0.477

Stretch, % yes 78.2 72.0 80.0 0.261 0.792 0.368

Values are presented as the mean ± SD unless noted otherwise
aFor PSLR and SR, adjusted for sex and regular stretching

Fig. 1 Stiffness of the biceps femoris long head (n = 353), semitendinosus (n = 353), and semimembranosus (n = 331) muscles by the COL5A1
rs12722 genotype. Data are expressed as the mean ± SD
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ROM, passive muscle stiffness, or a history of muscle in-
jury. These results rule out our hypothesis and suggest
that at least in a Japanese population, passive muscle
stiffness and muscle injury risk is not affected by
rs12722 polymorphism.
In recent years, a growing number of studies have paid

attention to genetic susceptibilities to musculoskeletal
soft tissue injuries such as tendon and ligament injuries

[23–29]. However, limited evidence is available on the
genetic component of muscle injury. In the present
paper, we focused on the COL5A1 rs12722 polymorph-
ism and hypothesized that the COL5A1 rs12722 T allele
would be associated with greater susceptibility to muscle
injury. To test this hypothesis, we conducted a case-
control association analysis in 1559 Japanese athletes,
which was much larger than the sample size required to
detect the potential association with enough statistical
power (n = 733). However, contrary to our hypothesis,
no association was found between the COL5A1 rs12722
polymorphism and muscle injury. Additionally, previous
studies reported that the COL5A1 rs12722 polymorph-
ism was associated with the severity of muscle injury in
professional soccer players [18, 19] whereas no associ-
ation was found between the COL5A1 rs12722 poly-
morphism and the injury severity in the present study.
Participants in the present study were athletes from vari-
ous sports (not limited to a specific discipline) and with
various competitive levels. The polymorphism was not
associated with muscle injury history/severity even when
examining each sports discipline (i.e., soccer, track &
field, etc.) and competitive level (i.e., international, na-
tional, and regional) individually (data not shown). The
reasons for the discrepancy between the hypothesis and
the results are unclear at this time, but we will discuss
some possible explanations.
Assuming that intramuscular connective tissues such

as the perimysium and endomysium contain type V col-
lagen [16] and contribute largely to passive muscle stiff-
ness [15], we expected that passive muscle stiffness

Table 3 Characteristics of subjects in muscle injury and no muscle injury group in Study 2

Muscle injury (n = 190) No muscle injury (n = 1369) P value

Sex 0.457

Men, n (%) 134 (70.5) 929 (67.9)

Women, n (%) 56 (29.5) 440 (32.1)

Age, years 20.1 ± 1.7 20.5 ± 2.8 0.096

Height, cm 169.9 ± 7.9 169.5 ± 8.3 0.552

Body mass, kg 64.4 ± 10.4 63.4 ± 10.1 0.229

Playing years, years 10.4 ± 3.8 11.2 ± 3.9 0.008

Competitive level 0.168

International n (%) 17 (9.0) 153 (11.2)

National n (%) 112 (59.0) 756 (55.2)

Regional n (%) 30 (15.8) 286 (20.9)

Other n (%) 31 (16.3) 174 (12.7)

Main sport <0.001

Track & field 91 (47.9) 341 (24.9)

Soccer 62 (32.6) 599 (43.8)

Other 37 (19.5) 429 (31.3)

Values are presented as the mean ± SD unless noted otherwise. Bold emphasis: P < 0.05

Table 4 Associations of COL5A1 rs12722 genotype with muscle
injury

Genotype n (%) Dominant
TT + TC vs. CC

Muscle injury No muscle injury OR [95% CI] P value

All

CC 135 (71.1) 935 (68.6) 0.87 [0.62–1.22] 0.428

TC 52 (27.4) 400 (29.2)

TT 3 (1.6) 34 (2.5)

Men

CC 95 (70.9) 628 (67.6) 0.88 [0.57–1.30] 0.513

TC 37 (27.6) 277 (29.8)

TT 2 (1.5) 24 (2.6)

Women

CC 40 (71.4) 307 (69.8) 0.86 [0.45–1.59] 0.642

TC 15 (26.8) 123 (28.0)

TT 1 (1.8) 10 (2.3)

CI Confidence intervals, OR Odds ratio. Values were adjusted by playing years
and main sport
CC genotype was considered as the reference (OR = 1.00)
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would be influenced by the rs12722 polymorphism.
However, the present study found no association be-
tween the rs12722 polymorphism and passive muscle
stiffness. Passive muscle stiffness is reportedly influenced
by not only the connective tissue but also the presence
of titin, a giant sarcomeric protein with a wide range of
functions [30]. In cardiac muscle, at shorter sarcomere
lengths, passive tension development of muscle fibers
mainly depends on titin, while at longer sarcomere
lengths it is determined by extracellular collagen fibers
[31]. Muscle shear modulus measured in a sitting pos-
ition in the present study were approximately 54% (BF),
43% (ST), and 31% (SM) of those measured at maximal
ROM [32]. Taking these aspects into account, it seems
that the contribution of intramuscular connective tissues
to passive muscle stiffness might be small in the experi-
mental design used here to determine passive muscle
stiffness. In other words, we cannot eliminate possibility
that passive muscle stiffness would be influenced by the
rs12722 polymorphism when measured in more
stretched and therefore tensioned hamstring positions.
Further studies will be required to clarify these points.
To the best of our knowledge, four studies have

attempted to identify the association between the
COL5A1 rs12722 polymorphism and joint flexibility
[10–12, 33]. Of these, three have indicated a potential
association [10–12], which seems to be inconsistent with
the present results. However, careful attention should be
paid when interpreting the previous findings. For

example, Collins et al. [11] and Brown et al. [10] in-
cluded participants with a wide age range (although its
effect was statistically adjusted). Especially in the latter
study, a significant association between the COL5A1
rs12722 polymorphism and SR ROM was observed in
the old age (≥ 35 years) group but not in the young age
group (< 35 years) or combined group (i.e., all partici-
pants) [10]. The present study examined only young
populations (≤ 32 years) and found no association be-
tween the rs12722 polymorphism and joint flexibility.
There remains a possibility that the influence of the
rs12722 polymorphism on joint flexibility is age-
dependent. Another possible explanation for not only
this inconsistency regarding joint flexibility but also the
aforementioned discrepancy in the association of the
COL5A1 rs12722 polymorphism with injury severity is
the difference in participant ethnicity: Caucasian [10, 11,
18, 19] vs. East Asian. A recent meta-analysis indicated
that the COL5A1 rs12722 polymorphism was associated
with tendon and ligament injuries in Caucasians but not
in Asians [25]. The T allele frequency of the rs12722
polymorphism is lower in East Asian [0.220 in East
Asian population of the 1000 Genomes [34], 0.162 in
Japanese population of the Integrative Japanese Genome
Variation Database [35]] than in Caucasian [0.585 in
European population of the 1000 Genomes [34]] popula-
tions. If the optimum model in the association of the
rs12722 polymorphism with joint flexibility and muscle
injury is T-recessive or additive, the potential association

Fig. 2 Proportion of severity of muscle injury by the COL5A1 rs12722 genotype
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may not be found due to the low frequency of the TT
genotype in East Asian populations ( [33] and the
present study). In the present study, however, joint
ROMs and passive muscle stiffness in TT genotype car-
riers were comparable to those in TC + CC genotype
carriers. All in all, these facts suggest that the COL5A1
rs12722 polymorphism plays a minimal or negligible role
in sports-related muscle injury risk.
A limitation of the present study is the cross-sectional

design, which does not permit a mechanistic explan-
ation. Thus, large-scale follow-up studies would be desir-
able to conclude whether the COL5A1 rs12722
polymorphism is associated with muscle injury. Another
limitation is that we have tested only the COL5A1
rs12722 polymorphism. It is possible that other poly-
morphisms within the COL5A1 as well as the genes for
other types of collagen are associated with the joint flexi-
bility, passive muscle stiffness, and muscle injury. Fur-
ther investigations are warranted to identify these.

Conclusions
The present study does not support a role for the
COL5A1 rs12722 polymorphism in sports-related muscle
injury in a Japanese population. Furthermore, we provide
evidence suggesting that the polymorphism is not related
to passive muscle stiffness or joint flexibility.
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