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Background: Mutations in the coding region of FOXP2 are known to cause speech and language impairment.
However, it is not clear how dysregulation of the gene contributes to language deficit. Interestingly, microdeletions
of the region downstream the gene have been associated with cognitive deficits.

Methods: Here, we investigate changes in FOXP2 expression in the SK-N-MC neuroblastoma human cell line after
deletion by CRISPR-Cas9 of two enhancers located downstream of the gene.

Results: Deletion of any of these two functional enhancers downregulates FOXP2, but also upregulates the closest
3" gene MDFIC. Because this effect is not statistically significant in a HEK 293 cell line, derived from the human
kidney, both enhancers might confer a tissue specific regulation to both genes. We have also found that the
deletion of any of these enhancers downregulates six well-known FOXP2 target genes in the SK-N-MC cell line.

Conclusions: We expect these findings contribute to a deeper understanding of how FOXP2 and MDFIC are
regulated to pace neuronal development supporting cognition, speech and language.
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Background

Mutations in the coding region of the FOXP2 gene, en-
coding a forkhead transcription factor, are known to
cause speech and language impairment [1-6]. Polymor-
phisms of the gene have also been associated with
schizophrenia [7](Tolosa et al, 2010) and frontotem-
poral lobar degeneration [8]. FOXP2 has been hypothe-
sised to regulate the development and function of brain
areas involved in language processing [1, 9, 10], because
of its known role in neurogenesis, neuron differentiation,
and neuron migration in the developing telencephalon
of mice [11-13]. Pathogenic mutations in humans have
proven to impair auditory-motor association learning
when mimicked in mice [14]. Nonetheless, the exact role
of FOXP2 in normal development of the human brain
and cognition is unknown. Common variants of the gene

* Correspondence: abenitez8@us.es

Sandra Rodriguez-Perales and Paloma Garcia-Bellido contributed equally to
this work.

’Department of Spanish, Linguistics, and Theory of Literature (Linguistics),
University of Seville, Seville, Spain

Full list of author information is available at the end of the article

K BMC

do not contribute appreciably to individual differences
in language development [15], nor in brain structure
[16], although a FOXP2 polymorphism has been recently
associated with enhanced procedural learning of
non-native speech sound categories [17]. Less is known
about how the expression of the gene is modulated. The
promoter of FOXP2 contains four transcription start
sites [18], with multiple alternative splicing sites [19].
FOXP2 also contains six ultraconserved regions in its in-
trons [18], as well as six predicted enhancers for lefl
[20], a transcription factor that drives expression of
foxP2 in the central nervous system during zebrafish em-
bryogenesis [21]. Interestingly, several microRNAs bind
the 3'UTR of the FOXP2 gene and regulate the expres-
sion of the gene [22].

Pathogenic microdeletions involving the FOXP2-MD-
FIC region resulting in language or cognitive impairment
have been reported (Additional file 1: Figure S1). Most
microdeletions have removed partially the 3" end of the
FOXP2 gene, likely resulting in altered expression levels
of FOXP2 and/or shorter aberrant FOXP2 proteins. It
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has been recently reported on a young female, harbouring
a de novo balanced complex rearrangement involving one
copy of chromosomes 7 and 11, who presents with a se-
vere developmental expressive and receptive speech and
language impairment in two language modalities: Castilian
Spanish and Valencian [23]. The rearrangement of this
clinical case does not interrupt any protein-coding se-
quence in derivative chromosomes 7 or 11, and no other
protein-coding gene, close to the regions interrupted by
the rearrangement except FOXP2, is considered to be a
strongly suspected candidate for the phenotype observed
[23]. Although the FOXP2 coding region is intact, the
breakpoint in 7q31.1 is located 205.5 kb downstream the
3" end of FOXP2, suggesting that it might have affected
some regulatory region of the gene. Based on FISH results
from the RP11-243D16 BAC, it has been proven that in
this proband FOXP2 is de novo rearranged to derivative
chromosome 11p [23]. Becker and collaborators [24] iden-
tified and characterized in a luciferase assay a functional
enhancer located 2.5 kb downstream the breakpoint, here
FOXP2-E***! and hypothesized that separating this puta-
tive regulatory element from the coding region of FOXP2
would have contributed to the observed language pheno-
type by disturbing FOXP2 gene expression. The putative
gene-specific regulatory role of this characterised element
needed to be tested.

The development of nuclease mediated genome edit-
ing tools, specially, of those based on clustering regularly
interspaced short palindromic repeats (CRISPR) [25-27],
has emerged as an efficient way of inducing targeted
chromosomal deletions and an accurate method to valid-
ate the functionality of enhancers [28, 29]. Here we re-
port a detailed functional study of the intergenic region
between FOXP2 and MDFIC genes. It has been found
that this region contains, apart from the enhancer found
in Becker’s report [24], another functional enhancer, here
FOXP2-E Pximal e performed a targeted deletion of
one regulatory element per cell by CRISPR-Cas9 and
found that whereas FOXP2’s mRNA and protein levels
decreased, MDFIC's mRNA and protein levels increased.
We hypothesise that the breakpoint in chromosome
7q31.1 of the proband [23] may have disrupted this
intergenic regulatory region causing, anomalously,
FOXP2 to be downregulated and MDFIC upregulated.
Changes in the expression levels of these two adjacent
protein-coding genes in particular brain circuits during
development may have led to the observed language def-
icits in the proband. We expect these findings contribute
to a better understanding of how FOXP2 is regulated.

Methods

Cell culture and electroporation

HEK293 (CRL-1573, ATCC, USA) and SK-N-MC
(HTB-10, ATCC, USA) cells were cultured in Dulbecco’s
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modified Eagle’s medium (DMEM) (Lonza) using stand-
ard conditions: DMEM medium was supplemented with
10% foetal bovine serum (FBS) (Life Tech), 1% Gluta-
MAX (Life Tech) and 100 units/ml penicillin/strepto-
mycin (Life Tech). Cells were cultured at 37°C in a
humidified atmosphere of 5% CO, +20% O,. Cells were
passed when they reached at 80% of confluence.

SK-N-MC and HEK293 cells were electroporated with
2ug of either pLV-U6™-C9G, pLV-U6"™H1"-C9G or
with an empty plasmid. For electroporation, we used the
Neon Transfection System (Life Technologies) as previ-
ously described [30]. The manufacturer’s protocols for
HEK293 and SK-N-MC cells were modified as follows.
Cells were trypsinized and resuspended in R solution
(Life Technologies). For SK-N-MC 10-pl tips were used
to electroporate 2.5 x 10° cells with a single 50-ms pulse
of 900 V. For HEK293 cells, 4 x 10° cells were electropo-
rated with 10-ul tips using three 10-ms pulses of 1245 V.
After electroporation, cells were seeded in a 24-well
plate containing pre-warmed medium. When required,
cells were sorted 72 h post-transfection.

sgRNA design and construction of single- and double-
guide Cas9-encoding plasmids

The CRISPR sgRNAs were designed using the http://
crispr.mit.edu/ and https://benchling.com/ online tools
that were also used to evaluate their off-target scores.
The parental pLV-U"*-C9G and pLV-U6"*H1"-C9G vec-
tor has been described elsewhere [31]. Eight gBlocks
gene fragments (IDT) were synthesized to clone the
sgRNAs separately or in the following combinations
sgEp#1-sgEp#3, sgEp#1-sgEp#4, sgEp#2-sgEp#3, sgEp#2-
sgEp#4, sgEd#1-sgEd#3, sgEd#1-sgEd#4, sgEd#2-sgEd#3
or sgEd#2-sgEd#4 (Additional file 7: Table S1), flanking
the FOXP2-EP™™ and FOXP2-E***! enhancer regions
in the backbone vector using BsrGI and Spel target sites.

TIDE assay

72h post-electroporation genomic DNA was extracted
using DNeasy blood and tissue kit (QIAGEN) following
manufacturer’s instructions. 300-500 bp PCR amplicons
spanning the sgRNA genomic target sites were generated
using the primers shown in Additional file 7: Table SI.
PCR products were purified with QIAquick PCR purifi-
cation kit (QIAGEN) and Sanger-sequenced using both
PCR primers and each sequence chromatogram was
analysed with the online TIDE software available at
http:// tide.nki.nl. Analyses were performed using a ref-
erence sequence from a control cell sample electropo-
rated with the pLV-U6H1-C9G empty vector.
Parameters were set to the default maximum indel
size of 10 nucleotides and the decomposition window
to cover the largest possible window with high quality
traces. All TIDE analyses below the detection
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sensitivity of 3.5% were considered as non-significant
targeted [32, 33].

Flow cytometry and cell sorting

72h after electroporation, cells were trypsinized,
counted, and resuspended at the concentration of 3-5 x
10° cells/ml in an appropriate volume of sorting buffer
(phosphate-buffered saline (PBS)/0.5% bovine serum al-
bumin (BSA)/2mM EDTA and 100 units/ml penicillin/
streptomycin (Life Technologies)) for flow cytometry
analysis. Immediately before cell sorting, samples were
filtered through a 70-um filter (Miltenyi Biotec) to re-
move any clumps or aggregates. Sorting was performed
in sterile conditions throughout the experiments in the
sorting buffer described above recovering at least 0.5 x
10° cells per experimental condition. Cell sorting was
carried out in a Synergy 2L instrument (Sony Biotech-
nology Inc.); flow cytometry was performed in a BD LSR
Fortessa analyzer (BD Biosciences) and FACSDiva soft-
ware was used. Proper electronic gates of side scatter
and forward scatter parameters were set in order to ex-
clude cell debris and dead cells. The SK-N-MC or
HEK293 GFP negative control cells were analysed in
order to assess the minimal fluorescein isothiocyanate
baseline. Sorting was performed in sterile conditions
throughout the experiment. Sorted cells were seeded in-
dividually per well in a 96 well-plate containing DMEM
supplemented medium.

Genomic DNA extraction and PCR analysis

Standard procedures were used for genomic DNA ex-
traction 72h post-electroporation [31]. Briefly, 10 x 10°
cells were lysed in 100 mM NaCl, Tris (pH 8.0) 50 mM,
EDTA 100 mM, and 1% SDS followed by overnight di-
gestion with 0.5 mg/ml of proteinase K (Roche Diagnos-
tics) at 56 °C. Afterward, the DNA was cleaned by NaCl
precipitation, precipitated with isopropanol and resus-
pended in 1xTE buffer. NanoDrop ND 1000 Spectropho-
tometer (NanoDrop Technologies) was wused to
quantified DNA.

For deletion analysis and homozygous versus heterozy-
gous representation standard PCR and three primer
strategy analysis were performed in a Veriti 96-well
Thermal Cycler (Applied Biosystems) under the follow-
ing conditions: 95 °C denaturation for 1 min followed by
30 cycles of denaturation at 94 °C, annealing at 62.5°C,
extension at 72°C, and a final extension at 72°C.
Primers used are described in Additional file 7: Table S1.

RNA extraction and gRT-PCR

Trizol (Sigma-Aldrich) protocol followed by RNase-free
DNAse (Roche Applied Science) treatment was used to
extract total RNA from cell cultures. 500 ng of total
RNA was used for cDNA synthesis using the Superscript
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III First Strand ¢cDNA Synthesis Kit (Life Tech). Quanti-
tative real-time PCR was performed on an ABI Prism
7900 HT Detection System (Applied Biosystems) with
SDS 2.1 software. The reaction mix contained TagMan
master mix (Thermo Fisher) and 0.3 uM of each primer
(Additional file 7: Table S1). Cycling conditions were 50
°C for 2min and 95°C for 3 min, followed by 40 cycles
at 95°C for 15s and 58 °C for 45 s, and, finally, 95 °C for
155, 60 °C for 20 s, and 95 °C for 15s.

PCR was performed in 96-well plate microtest plates.
In all experiments, hGAPDH (internal reference control)
was used to normalize mRNA amounts to the total
amount of cDNA. Each sample was determined in tripli-
cate, and three independent samples were analysed for
each experimental assay.

Western blot

Proteins were extracted by standard procedures as previ-
ously described [34] in the presence of Complete Prote-
ase Inhibitor Cocktail Tables (Roche Applied Science).
Control cells are SK-N-MC electroporated with the
pLV-U6"H1%-C9G plasmid. Proteins were
wet-transferred with TransFi (Invitrogen; Life Technolo-
gies) to polyvinyl difluoride (PVDF) membranes
(Hybond-P, Amersham Biosciences) for 90 min. The
protein-bound membranes were blocked with non-fat
dry milk in Tris-buffered saline with Tween-20 at
room-temperature and then incubated overnight at 4 °C
with monoclonal mouse anti-human FOXP2 or MDFIC
antibodies (1/1000 or 1/500; BD Pharmigen) or with
rabbit anti-human GAPDH antibody (1/500; AbCam).
After several PBS-T washes the membranes were incu-
bated for 1h at room temperature with secondary anti-
bodies horseradish peroxidase (HRP)-conjugated with
goat anti-mouse (1/1000) and goat anti-Rabbit (1/500;
Dako, Barcelona, Spain) diluted in PBS-T. After several
PBS-T washes the membranes were developed with en-
hanced chemiluminiscence (ECL) (GE Healthcare). The
ECL signals were visualized on X-ray films. The FOXP2
and MDFIC proteins were normalized with the GAPDH
internal control in the same lane.

Statistical analysis

Data from three independent experiments were analysed
by two-tailed Student’s t-test using Excel (Microsoft). All
data are expressed as means + s.e.m. P<0.05 was con-
sidered statistically significant. * p < 0.05; ** p <0.01; ***
p <0.001; and **** p < 0.0001.

Results

In silico search of enhancer regions

We first hypothesised that the breakpoint in 7q31.1
(chr7:114,888,284 hg38 equivalent to 114,539,340 hgl9)
affected the expression of FOXP2 by physically
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disrupting a regulatory region downstream the coding
region of the gene containing cis-acting distant elements
with an enhancer role (Fig. 1a). Accordingly, we used
the Encyclopedia of DNA Elements (ENCODE, https://
genome.ucsc.edu/ENCODE/) to perform in silico
searching for putative enhancers in the intergenic region
between FOXP2 and MDFIC. We looked for the follow-
ing hallmarks from ENCODE: DNase I hypersensitive
sites,  presence  of  histones  with  specific
post-translational modifications (in particular, histone
H3, lysine 4 monomethylation (H3K4Mel) and H3 ly-
sine 27 acetylation (H3K27Ac)), and regions recruiting
co-activators and co-repressors as revealed by chromatin
immunoprecipitation followed by deep sequencing
(ChIP-seq) (Fig. 1b). The ENCODE data, derived from a
large collection of different cell types, including hippo-
campal cells, cerebellar cells, and cells from the spinal
cord, showed two putative enhancers located at 120 kb
and 208 kb downstream the stop codon of FOXP2, re-
spectively (Fig. 1b). These putative enhancers (referred
as FOXP2-EP™™a and FOXP2-E“*™) span 6263 bp

(chr7:114,817,431-114,823,694 hg38 equivalent to
114,456,873-114,463,136 hg19) and 2313 bp
(chr7:114,900,989-114,903,302 hg38 equivalent to
114,541,370-114,543,683 hg19), respectively.

FOXP2-E**! is the one previously validated by lucifer-
ase assay [24]; FOXP2-EP™! j5 3 new putative regula-
tory element.

CRISPR-Cas9 deletion of FOXP2-EP">*™?! and FOXP2-E“"**!

Deletion of an enhancer motif provides direct evidence
for enhancer activity, CRISPR-Cas9 being the gold
standard to study its role in the regulation of endogen-
ous gene transcription. To investigate the regulatory role
of FOXP2-EP™™2! and FOXP2-E**!, we specifically de-
leted the entire predicted sequence of one or another of
the two putative enhancers in a cell line of neuroecto-
dermal human origin. Previous attempts to measure
FOXP2 expression in primary skin fibroblasts from the
proband failed because mRNA levels were too low for
significant statistical analysis [23]. Expression levels of
MDFIC mRNA, obtained by Affymetrix gene expression
arrays from primary skin fibroblast from the proband,
were found to be higher than those of FOXP2, but were
not independently validated ([23], Additional file 5:
Table S5). SK-N-MC neuroblastoma cells derive from
the supraorbital area and express FOXP2 and MDFIC
constitutively. To generate a specific deletion we relied
on a CRISPR-Cas9 genome editing approach. In our
strategy, two independent pairs of sgRNAs are used to
target the flanking regions of either FOXP2-EP™X™ op
FOXP2-E¥*™ to induce repair of the resultant two
double strand breaks (DSBs) by non-homologous
end-joining (NHE]) with deletion of the intervening
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segment (Fig. 1c). First, two sgRNAs were designed per
flanking region (eight in total, Additional file 7: Table
S1) and cloned them separately in the pLV-U6™-C9G
vector [31] in order to analyse their specificity and effi-
ciency of cleavage. SK-N-MC cells were electroporated
with one of the pLV-U6™-C9G single sgRNA expression
vectors to precisely determine the on-target (efficiency)
and off-target (specificity) DNA modification frequencies
in the pooled edited cell population by tracking of indels
by decomposition (TIDE) assay [32]. As shown in Add-
itional file 2: Figure S2 the on-target cleavage efficien-
cies, measured by INDEL frequency, ranged from 3.9 to
17.1% whereas no significant off-target activity was ob-
served at the predicted top off-target sites (Add-
itional file 3: Figure S3). The four flanking sgRNAs, two
for each deletion, with the highest cleavage efficiencies
were selected and cloned by pairs in the
pLV-U6™*H1"7-C9G [31] in order to couple its expres-
sion with Cas9 nuclease and GFP reporter generating
the pLV-U6""H1"*-C9G-EProximal and
pLV-U6"H1"*-C9G- pistal vectors. 72h
post-nucleofection with the double-guide or empty
pLV-U6"H17-C9G control vector PCR analyses of the
SK-N-MC bulk cell populations confirmed the deletion
of the 6.2kb or the 2.3 kb expected fragments (Figs. 1c
and 2a-left panel). Sanger sequence analysis confirmed
the presence of the deletions (Fig. 2b). We then gener-
ated five FOXP2-EP™ and three FOXP2-E***! de-
leted clonal cell lines, by sorting GFP positive cells into
96-well plates and allowing for single cell colony expan-
sion. A three primer PCR approach confirmed higher
rates of homozygous compared to heterozygous clones.
The five FOXP2-EP™™ deleted clones harboured a
homozygous deletion, whereas only one of three
FOXP2-E¥**™ deleted clones harboured a heterozygous
deletion (Additional file 4: Figure S4 bottom panels).
PCR analysis revealed that two out of the five
FOXP2-EP™™! clonal cell lines having harboured the
deletion also contained small insertion/deletions pro-
duced at CRISPR recognition sites and consequently
were excluded from our study (Data not shown). Inter-
estingly, clones with homozygous deletion could readily
be isolated, but only one heterozygous clone could be
obtained. This is potentially due to the efficiency of the
Cas9 to perform genome engineering which results
mostly in bi-allelic edition [28, 35-38]. SK-EP"*-1,
SK-EP™*-2 and SK-EP"-3 homozygous clones, SK-E**-1
heterozygous and SK-E**-2 and SK-E%*-3 homozygous
clones were selected for further analysis.

To test whether the FOXP2-EP™™! and/or
FOXP2-E¥** regions play a functional role in other cell
types, we deleted one predicted enhancer per
non-neuronal HEK293 cell. HEK293 cells have been
used previously to show functionality of the
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labelled in red

Fig. 1 Identification of enhancer regions downstream FOXP2 and upstream MDFIC. a. Genomic location of human FOXP2 and MDFIC genes
(GRCh38/hg38). The red asterisk shows the intergenic position of the 7g31.1 breakpoint in the proband harbouring a genomic complex
rearrangement of intact FOXP2 and with severe expressive and receptive speech and language impairment. b. Detailed view of an ENCODE UCSC
genome-browser snapshot showing bar graphs with a detailed representation of the locations of H3K4Me1 and H3K27Ac histone marks and DNA
clusters in human cell lines. The squared regions in red show the locations of FOXP2-EP"™a! and FOXP2-E¥*®®!. The red asterisk shows the
position of the 7q breakpoint in the proband harbouring a genomic complex rearrangement and with severe expressive and receptive speech
and language impairment. The transcription factor track shows transcription factor binding sites obtained from a collection of ChIP-seq
experiments. A grey horizontal box (32 for FOXP2-E proximal 504 25 for FOXP2-E9@) encloses each transcription factor cluster, with the darkness
of the box being proportional to the maximum signal strength. The transcription factor name is shown to the left of each box. As seen in the
figure the majority of transcription factors bind to both enhancers. ¢. Schematic representation of the location of the four sgRNA pairs flanking
the 6.2 kb region including FOXP2-EP™ ™ and the 2.3 kb region including FOXP2-E¥%**!. sgRNAs with the highest cleavage efficiencies are

FOXP2-E¥™ by a luciferase assay [24]. These
easy-to-transfect cells, have been extensively used as a
quick and straightforward system to characterize gene
function and enhancer prediction [39-41]. HEK293 cells
were nucleofected with either pLV-U6""H1**-C9G-EP**"
mal 5 LV-U6"*H1"*-C9G-E¥**! vectors or with an empty
pLV-U6"H17-C9G control plasmid. 72h post-transfec-
tion PCR analysis revealed targeted deletion of the 6.2
kb or the 2.3 kb regions, which contain the entire se-
quence of FOXP2-EPX™ or FOXP2-E¥*, respectively
(Fig. 2a right panel). Accordingly, we were able to gener-
ate 8 homozygous and 6 heterozygous clonal
FOXP2-EP™™ and 15 homozygous FOXP2-E¥= de-
leted cell lines by sorting GFP positive cells and single
cell colony expansion (Additional file 4: Figure S4 upper
panels). PCR analysis confirmed the deletion of either
the FOXP2-EP*¥™al o the FOXP2-E¥*® elements (Fig.
2a-right panel). A three-primer PCR approach was used
to analyse the homo or heterozygous deletion status
(Additional file 4: Figure S4 upper panels) and the
HEK-EP***-1 homozygous, HEK-EP'*-2 heterozygous
and HEK-EP™*-3 heterozygous, HEK-E%*-1, HEK-E®*-2
and HEK-E?*-3 homozygous clones were selected for
further analysis.

FOXP2 and MDFIC expression analyses

We next aimed to characterize in more detail the regula-
tory expression pattern of FOXP2-EP¥mal  and
FOXP2-E¥*, Since both putative enhancers are located
in an intergenic region, we aimed at characterizing that
each of them is functional with respect to their flanking
genes, FOXP2 or MDFIC. We used Western blot ana-
lysis to test the amount of FOXP2 and MDFIC proteins
in the SK-N-MC pooled cell clones harbouring either
the FOXP2-EP*™? or FOXP2-E*** deletions, and also
in  control  cells  electroporated  with  the
pLV-U6"H17-C9G empty plasmid (Fig. 2c). The deletion
of FOXP2-EP™™2! or FOXP2-E¥**! was found to reduce
the amount of the FOXP2 protein (Fig. 2c top) and to
increase the amount of MDFIC (Fig. 2c bottom). A de-
creasing FOXP2 protein effect was found to be more

pronounced in the SKN-M-C cells with a FOXP2-E P™*
imal jeletion than with a FOXP2-E % removal.

We used qRT-PCR to determine the amount of
FOXP2 mRNA in the SK-N-MC cells harbouring either
FOXP2-EP*™al or FOXP2-E¥ deletions, or a control
empty pLV-U6"H1"-C9G line with a wild type genotype.
The analysis of three independent homozygous clones
showed a significant reduction (up to 2 fold change) in
the mRNA expression of FOXP2 compared to that of
the control cells when FOXP2-EP™ was deleted (Fig.
2d, up). Likewise, FOXP2 mRNA expression was de-
creased (up to 2 fold change) in three SK-N-MC clones
when FOXP2-E%! was deleted either in homozygous
or in heterozygous clones (Fig. 2d up). We then mea-
sured the expression levels of MDFIC in SK-N-MC
clones after the deletion of each enhancer. As shown in
Fig. 2d-down, the expression of MDFIC was significantly
increased when either FOXP2-EP*™3 or FOXP2-E%st!
were deleted (up to 9.5 and 11 fold change, respectively).

To further investigate the neuronal specificity of
FOXP2-EP™™3 o1 the FOXP2-EY**! enhancers, we repli-
cated the experiment in randomly selected control
HEK?293 cell clones harbouring either the FOXP2-EPrxmal
or the FOXP2-E¥*®! deletions or in a control cell line elec-
troporated with the pLV-U6"H1%-C9G vectors. The engi-
neered HEK293 cells do not exhibit significant alteration
of the FOXP2 or MDFIC mRNA expression, compared to
the parental HEK293 cells (Additional file 5: Figure S5).
We noted that SK-N-MC cells are derived from a neuro-
logic origin whereas HEK293 cells are derived from the
kidney. Therefore, MDFIC and FOXP2 regulation of ex-
pression and post-transcriptional processes are likely to be
different in the two cell types; as expected the changes in
the expression of both genes in the SK-N-MC and
HEK293 cells upon deletion of FOXP2-EP™¥™ and
FOXP2-E¥*® were different. While in a SK-N-MC cell
line deletion of each enhancer has a statistically significant
effect by decreasing mRNA transcription levels of FOXP2
and increasing the levels of MDFIC, this effect is of no
statistical significance in a HEK 293 cell line (Fig. 2d and
Additional file 5: Figure S5). These results indicate that
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Fig. 2 Molecular characterization of FOXP2—E"’OX‘f“a‘ and FOXP2-Edistal a. PCR analysis. Two oligos flanking the deleted regions were used to
amplify the genomic DNA from two FOXP2-EP" ™2 and two FOXP2-E¥*®' deleted representative SK-N-MC and HEK293 cells. Black triangles show
the size of the PCR products. b. Representative Sanger sequencing chromatogram showing the sequences of the junctions of the FOXP2-EProximal
(top)v and FOXp2-gdista! (bottom)v genomic deleted regions in a SK-N-MC cells. c¢. Western blot analysis of cell lysates of SK-N-MC with FOXP2-
EPomal Jeleted, with FOXP2-E¥® deleted, and of SK-N-MC control cells electroporated with pLV-U6*H1%-C9G plasmid for FOXP2 (top) or MDFIC
(bottom) proteins analysis. d. gRT-PCR analysis in triplicate as technical replicates of six SK-N-MC cell clones with FOXP2-EP™>Mal o FOXp2-E9iste!
deletions, control cells are SK-N-MC cells electroporated with the pLV-U6*H1%-C9G plasmid. Both deleted and control values are normalized to
those of the internal reference gene hGUSB. Levels of expression of FOXP2 (up) and MDFIC (down) are represented by the fold change relative to
that of empty vector control cell line, which was normalized to 1. Data from three or more independent experiments were analysed by two-
tailed unpaired t-test. NS, non-significant; * p < 0.05; ** p < 0.01; *** p <0.001; and **** p < 0.0001
.

the interacting promoters are, potentially, significantly
co-expressed in a tissue-specific manner.

Knowing that FOXP2 is a transcription factor that
leads to significant changes in the transcription of

specific target genes, we tested whether the downregula-
tion of FOXP2 expression after FOXP2-EPXmal op
FOXP2-E¥%! was coupled with alterations in the ex-
pression level of six well-known FOXP2 target genes:
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CALCRL, CRH, EPOR, MAPKS8IP1, PM5, and SYK [42,
43]. Cells transfected with empty pLV-U6"H1"-C9G
plasmid were used as a baseline control for comparison.
Real-time quantitative RT-PCR (qRT-PCR) on total RNA
extracted from the six SK-N-MC cellular clones de-
scribed above demonstrated that the six FOXP2 target
genes have a significant downregulation in mRNA ex-
pression (Fig. 3). These results reinforce the view that
each, FOXP2-EP¥™al and FOXP2-E¥*%! significantly
regulates the expression of FOXP2 and that of six
FOXP?2 target genes in a human neuronal cell line.

Discussion

In this paper we have characterised in detail the role of
two functional regulatory elements located downstream
FOXP2 employing a CRISPR-Cas9 approach in a neur-
onal cell line. ENCODE Encyclopedia data suggested
that two putative enhancers are localized in the inter-
genic region between FOXP2 and MDFIC, located at
120kb and 208 kb downstream the stop codon of
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FOXP2. FOXP2-E**®! had been previously found to be
functional in an overexpression luciferase assay [24],
whereas FOXP2-EP™™! was previously uncharacter-
ized. Using CRISPR-Cas9 approach we could readily iso-
late clones with homozygous deletion, but, interestingly,
only a very low number of heterozygous clones could be
isolated, possibly due to the efficiency of Cas9 nuclease
[44]. We have now proved that if FOXP2-E4*%! s de-
leted, FOXP2 becomes downregulated and the levels of
FOXP2 protein are reduced in the SK-N-MC neuroblast-
oma cells. We have further proved that, if FOXP2-E4st!
is deleted, it also affects the expression of the adjacent
downstream gene, MDFIC, by increasing its mRNA and
protein levels. We have found that FOXP2-E P™mal de-
letion, as that of FOXP2-E**, downregulates FOXP2
and upregulates MDFIC, decreasing protein levels of
FOXP2 and increasing those of MDFIC. Although each
element deletion induces a significant decrease in the
levels of mRNA expression of FOXP2, this reduction
seems to be higher at the protein level for

14

1.2

1.0

0.8

0.6

Relative expression levels

0.4

0.2

= SYK
= MAPKS8IP1
= PM5

= CRH
= CALCRL
EPOR

Fig. 3 Graphical representation of gRT-PCR analysis of SYK, MAPK8IP1, PM5, CRH, CALCRL and EPOR FOXP2 target genes in SK-N-MC FOXP2-
gPreximal or FOXP2-E9 enhancers deleted cells and control SK-N-MC cell electroporated with the pLV-U6™H1%-C9G empty vector. n = 3. mean +
se.m. *P=0.01-0.05, **P=0.001-0.01, ***P = 0.001-0.0001, unpaired two-tailed Student’s t-test
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FOXP2-EP™™a! cells, We speculate that some protein
regulatory mechanisms would be involved but what
exactly these mechanisms are is poorly understood. Our
results, in line with recent massive data derived from
next-generation DNA sequencing and proteomics, show
a variation between mRNA and protein abundances. The
observed variations between the FOXP2 protein
amounts with its associated mRNA are probably due to
the effect of post-transcriptional regulatory processes oc-
curring after mRNA synthesis, translational and protein
degradation regulations, controlling steady-state protein
abundances [45]. We have demonstrated that the dele-
tion of any one of the two enhancers, FOXP2-EProximal
or FOXP2-E**%! Jeads to significant changes of FOXP2
expression and, interestingly, also in the transcription of
six well-known FOXP2 target genes. These data support
the hypothesis that each of the deleted regions functions
as an expression regulator in a specific regulatory net-
work of FOXP2 in a human cell line.

In the widely used HEK293 human cell line the ex-
pression of FOXP2 and MDFIC is also altered, but in a
different manner, suggesting that each enhancer might
confer a tissue specific regulation to each gene. Based on
the results derived from HEK293 and SK-N-MC cell
lines, FOXP2-EP™* and FOXP2-E¥* elements appeared
to affect FOXP2 and MDFIC promoters’ activity in a
cell-specific manner. This possibility is also reinforced
by our finding that in the SK-N-MC line the six FOXP2
targets we have assessed are all downregulated after the
deletion of any of these two enhancers, which suggests
that FOXP2 is acting as an activator of gene expression.
In other cell lines, like SH-SY5Y, some of these target
genes (e.g. PMS5) have been found to be downregulated
by FOXP2 [42, 43].

One of the key processes in the enhancer—promoter
interaction is mediated by transcription factors and their
binding to enhancer and/or promoter regions, but chro-
matin structure and transcribed enhancer RNAs
(eRNAs) from active enhancers also regulate enhancer—
promoter looping and the release of paused RNAPII,
and it is well established that these elements vary be-
tween cell types [46]. SK-N-MC is a neuroblastoma cell
line derived from the supraorbital area, whereas HEK293
cells are derived from the kidney, therefore, chromatin
structure regulatory element accessibility, signalling
pathways, gene expression profiles and many other cell
components are likely to be quite different in the two
cell types. The exact causes of enhancer-promoter
cell-type activity differences and their specific regulation
in human cells are poorly understood and remain yet to
be fully elucidated [47]. That said, because the cell lines
we have selected for our study are known to have a long
track of chromosomal aberrations, an induced pluripo-
tent stem (iPS)-based replication of our findings should
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help to confirm this cell-specific effect we have
uncovered.

The effect on FOXP2 and MDFIC gene expression
regulation is coherent with previous studies reporting
pairs of genes being governed by the same regulatory el-
ements [48-50]. In some cases, these elements have
proven to supercoil the DNA and to alter chromatin
topology to facilitate or to hinder the assembly of the
transcriptional machinery [51, 52]. Our results indicate
that whereas each enhancer deletion induced a downreg-
ulation on FOXP2 expression, MDFIC expression was
significantly upregulated. One possible explanation for
this phenomenon is that the deletion of FOXP2-EP™ or
FOXP2-E***! regulatory element could have removed or
interfered with an inhibitory regulation process of
MDFIC expression, maybe through an indirect modifica-
tion of the chromatin structure. These data suggest that
removal of any one of these two intergenic enhancers
likely disables intricate inter-enhancer interactions [53—
56] which may be required to stabilize, within specific
gene regulatory networks, gene-specific expression pat-
terns in tissue-specific cell lines [47, 57].

FOXP2 is a well-known gene, important for speech
and language [6, 58]. Less is known about the role of
MDFIC in cognitive development and disease. This gene
encodes a MyoD family inhibitor domain containing
protein that acts as an activator or repressor of tran-
scription [59, 60]. Similarly to FOXP2, it interacts with
LEF1, as part of beta-catenin regulation [61]. MDFIC is
highly expressed in the cerebellum during human em-
bryonic development and in the thalamus after birth
(Human Brain Transcriptome http://hbatlas.org/). These
two brain regions, interacting with others in a dopamin-
ergic cortico-striato-thalamic loop, seem to play an im-
portant role in timing sensorimotor control, needed for
auditory-motor language processing [1, 3, 10, 62].

Microdeletions affecting the FOXP2-MDFIC intergenic
region have been reported to be associated with speech
or cognitive impairment (Additional file 1: Figure SI).
Most of these reported deletions encompass part of the
coding region of FOXP2, and are confirmed or expected
to involve some developmental language deficit. Interest-
ingly, in one case entailing the deletion of FOXP2-E%s%!
only, coordination problems and learning disability have
been reported (Additional file 1: Figure S1). Although
this deletion encompasses the MDFIC gene, the reported
phenotype recapitulates aspects of FOXP2 mutation or
deletion. Because we have proven that the deletion of
FOXP2-E* downregulates FOXP2 in a human neur-
onal cell line, we hypothesise that the speech and lan-
guage deficits exhibited by our patient might result from
the downregulation of FOXP2 [23]. Nonetheless, because
the breakpoint also separated MDFIC from
FOXP2-EP™™ e also expect the expression of
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MDFIC to be upregulated in our proband’s brain cells.
Additional studies should be conducted to prove or dis-
prove our hypothesis. Interestingly, genomic rearrange-
ments affecting topologically associating domains
(TADs) can result in gene miss-expression and disease
[50]. Genome engineering experiments aimed at deleting
these two enhancers in other animal species could pro-
vide further support for their functionality. Bats seem a
natural target, since they exhibit a learned vocal behav-
iour [63], these enhancer regions are conserved in most
species (ENCODE data, Additional file 6: Figure S6), and
gene delivery systems in the bat brain have been recently
improved and tested with the FoxP2 gene [64]. The
study of a specific neuronal brain cell line differentiated
from iPS cells, obtained from our proband and a rele-
vant control to implement genome editing, could con-
tribute as well to give additional support to our
hypothesis.

Conclusions

In summary, we expect that our findings, together with
new available data about seed sequences of miRs in the
3'UTR region of FOXP2 [22, 65], contribute to a deeper
understanding of how FOXP2 is regulated, and ultim-
ately, of its role in the development of the biological ma-
chinery underlying language.

Additional files

Additional file 1: Figure S1. Genomic map of FOXP2 and MDFIC
region. A. Chromosome 7 ideogram representation. Red box shows the
region displayed below in Mb. B. Localization of FOXP2 (red track), MDFIC
(yellow track), FOXP2-Eproximal and FOXP2-Edistal enhancers (green
circles) and breakpoint locus (red asterisk). C. Deletions within the region
of interest with a clinical significance as provided by DECIPHER (red
tracks), showing the patients” identification number (red). The genomic
coordinates according to the hg19 (black), and the most relevant clinical
features (blue). ID, intellectual disability. (JPG 71 kb)

Additional file 2: Figure S2. Indel spectrum determined by TIDE of the
on-target sites compared with indel frequencies of the control sample.
Each module represents the TIDE analysis of one sgRNA in a bulk cell
population electroporated with each of the single-guide-Cas9 encoded
plasmids. Each bar graph represents an indel event with an estimation of
the percentage of the population exhibiting this particular event. Light-red
bars represent the wild type control DNA sequence, bright-red bars
represent significant indel events and black bars represent non-significant
differences. P-values according to Pearson’s chi-squared test. Decomposition
was limited to indels of size 0-10, hence larger indels could not be
detected. R2 represent a quality measurement of the sequence reads. Indel
% is represented at the top left site each module. (JPG 1103 kb)

Additional file 3: Figure S3. Indel spectrum determined by TIDE of the
off-target sites compared with indel frequencies of the control sample.
Each module represents the TIDE analysis of one sgRNA in a bulk cell
population electroporated with each of the single-guide-Cas9 encoded
plasmids. Each bar graph represents an indel event with an estimation of
the percentage of the population exhibiting this particular event. On-
target and potential off-target sequences are represented on top of each
module and mismatched bases are shown in red. Light-red bars
represent the wild type situation, bright-red bars represent significant
indel events and black bars represent non-significant differences. P-values
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according to Pearson’s chi-squared test. Decomposition was limited to
indels of size 0-10, hence larger indels could not be detected. R2
represent a quality measurement of the sequence reads. Indel % is
represented at the top left site each module. (JPG 1041 kb)

Additional file 4: Figure S4. PCR analysis. Two oligos flanking the
deleted regions were used to amplify the genomic DNA from several
mutant representative HEK293 and SK-N-MC clones. Black triangles show
the size of the PCR products. Black or white asterisks show respectively
the clones harbouring a homozygous or heterozygous deletion included
in this study. M: molecular weight marker, WT/WT: wild type, A/A:
homozygous deletion, WT/A: heterozygous deletion. JPG 1181 kb)

Additional file 5: Figure S5. RT-gPCR analysis of six HEK293 cell clones
with FOXP2-Eproximal or FOXP2-Edistal deletions. Samples are normalized
to the average FOXP2 (left) or MDFIC (right) signal between three
HEK293 replicates transfected with the pLV-U6™H1%-C9G empty vector.
Levels of expression of FOXP2 and MDFIC are represented by the fold
change relative to that of empty vector control cell line, which were
normalized to 1. WT/WT: wild type, A/A: homozygous deletion, WT/A:
heterozygous deletion. (JPG 373 kb)

Additional file 6: Figure S6. Detailed view of an ENCODE UCSC
genome-browser snapshot showing bar graphs with a detailed
representation of the locations of FOXP2 and MDFIC genes, H3K27Ac and
DNA clusters in human cell lines. The squared regions in black show the
locations of FOXP2-Eproximal and FOXP2-Edistal. The red squared tracks
show the alignment result between humans and bats. (JPG 761 kb)

Additional file 7: Table S1. Oligonucleotide and sgRNA sequences
used in this study. (DOCX 15 kb)
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CRISPR: Clustered regularly interspaced short palindromic repeats;

eRNAs: enhancer RNAs; GFP: Green fluorescent protein; INDEL: Insertion or
deletion; iPS: induced pluripotent stem (cells); gRT-PCR: real-time quantitative
RT-PCR; TAD: Topologically associating domain; UTR: Untranslated region
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