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Abstract

Background: Primary cutaneous malignant melanoma is a cancer of the pigment cells of the skin, some of which
are accompanied by BRAF mutation. Melanoma incidence and mortality rates have been rising around the world.
As the current knowledge about pathogenesis, clinical and genetic features of cutaneous melanoma is not very
clear, we aim to use bioinformatics to identify the potential key genes involved in the expression and mutation
status of BRAF.

Methods: Firstly, we used UCSC public hub datasets of melanoma (Lin et al., Cancer Res 68(3):664, 2008) to perform
weighted genes co-expression network analysis (WGCNA) and differentially expressed genes analysis (DEGs),
respectively. Secondly, overlapping genes between significant gene modules and DEGs were screened and
validated at transcriptional levels and overall survival in TCGA and GTEx datasets. Lastly, the functional enrichment
analysis was accomplished to find biological functions on the web-server database.

Results: We performed weighted correlation network and differential expression analyses, using gene expression
data in melanoma samples. We identified 20 genes whose expression was correlated with the mutation status of
BRAF. For further validation, three of these genes (CYR61, DUSP1, and RNASE4) were found to have similar expression
patterns in skin tumors from TCGA compared with normal skin samples from GTEx. We also found that weak
expression of these three genes was associated with worse overall survival in the TCGA data. These three genes
were involved in the nucleic acid metabolic process.

Conclusion: In this study, CYR61, DUSP1, and RNASE4 were identified as potential genes of interest for future
molecular studies in melanoma, which would improve our understanding of its causes and underlying molecular
events. These candidate genes may provide a promising avenue of future research for therapeutic targets in
melanoma.
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Background
Skin cutaneous melanoma (SKCM) is a malignant cancer
that originates from melanocytes and exists in different
forms. The main types are basal cell cancer (BCC), squa-
mous cell cancer (SCC) and melanoma [1, 2]. Melanoma
is the most dangerous type of skin cancer. The primary
cause of melanoma is ultraviolet light (UV) exposure in
those with low levels of skin pigment [1, 2]. The UV
light may come from the sun or other sources, such as
artificial light devices. Besides, about 25 % of melanoma
derives from moles. Those with many moles, a history of
affected family members, and who have poor immune
function were at greater risk [2]. A number of rare gen-
etic defects such as xeroderma pigmentosum also
increase risk [3]. Diagnosis can be finished by biopsy of
any concerning skin lesion [2].
At least 50 % of melanomas harbor a V600E mutation

in the BRAF gene. Tumors with BRAF mutations could
respond to BRAF kinase inhibitor vemurafenib that was
approved by the FDA in 2011 for therapy of patients
with advanced melanoma and late-stage (metastatic)
melanoma [4, 5]. Recently, the FDA approved the other
two drugs named dabrafenib and ipilimumab as therapy
for patients with BRAF V600E mutation-positive in
melanoma [6].
Existing research has revealed that cancer cannot be

caused by only one gene or factor. It must be a network
of different genes and pathways working together.
Weighted gene co-expression network analysis
(WGCNA) [7] is a methodology used to analyze novel
gene modules co-expressing in gene expression data.
Many studies have shown that WGCNA can be used to
explore genes, a network of genes and correlation of
genes in different cancers [8, 9]. Moreover, differentially
expressed genes (DEGs) analysis method has been
applied in gene expression data [10].
In this paper, the study was designed to find potential

genes and correlated pathways associated with the ex-
pression level and mutation status of BRAF in melanoma
samples. By analyzing gene expression data [11] from
UCSC public hub with the WGCNA algorithm and
DEGs analysis, significant gene modules associated with
the expression level of BRAF were identified and differ-
entially expressed genes associated with the mutation
status of BRAF were screened, then overlapping genes
were validated in TCGA and GTEx database.

Materials and methods
Data collection
A dataset containing the gene expression and basic
phenotypes information of 95 melanoma samples was
downloaded from the Cancer Browser website (https://
xenabrowser.net/datapages/?cohort=Melanoma%20
(Lin%202,008)). The gene expression information was

experimentally collected through GeneChip Fluidics
Station (Affymetrix), and the matrix values were log2
ratio transformed. Genes were mapped onto Affymetrix
HT-HGU133A probeMAP.

Study population
Melanoma samples that had both expression data and
BRAF mutation status were included for further analysis.
According to this criterion, there were 67 melanoma
samples (30 BRAF wild-type and 37 BRAF mutation)
corresponding to our analysis requirement.

Data processing
After the dataset was downloaded, probe identification
numbers (IDs) were transformed into gene symbols. For
multiple probes corresponding to one gene, the probe
with the most significant p-value from the downstream
differential analysis was retained as the gene expression
value. As for DEGs analysis, we divided 67 samples into
two groups (BRAF wild-type and BRAF mutation group)
for screening differentially expressed genes. As for
WGCNA analysis, we used BRAF gene expression values
as clinical trait data. Figure 1 shows the paths of the data
analysis.

Weighted gene co-expression network construction
The full set of genes with available expression data
(10,994 genes) was applied to find the scale-free gene
modules of co-expression and highly correlated genes
constructed by WGCNA [7]. To construct a weighted
gene network, the soft threshold power β was set to 3,
which was the lowest power based on scale-free topology
[12]. We set the parameter maxBlockSize = 11,000, and
TOMType = “unsigned”. Topological overlap matrix
(TOM) was calculated by adjacency transformation, and
the value (1-TOM) was designated to the distance for
identification of hierarchical clustering genes and mod-
ules. The minimum module size was set to 30.

Module clinical feature associations
In order to identify modules that were significantly asso-
ciated with the designated clinical trait (the expression
level of BRAF), we plotted the heat map of modules-trait
relationship according to the tutorial of the WGCNA
package for R.

Identification of DEGs
Linear models for microarray data (limma package) is a
library used for analyzing gene expression microarray
data [13], especially for the assessment of differential
expression and the analysis of designed experiments
[14, 15]. limma package in R has been applied to identify
the DEGs between BRAF mutation and wild-type (marked
as control group) samples. Genes with |log2 fold change
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(FC)| ≥ 1 and adjusted p-value < 0.05 as the cut-off criter-
ion were selected for subsequent analysis.

Validation of candidate genes
The overlapping genes between significant modules and
DEGs were chosen as the potential genes for deep analysis
and validation. GEPIA [16] (website: http://gepia.cancer-
pku.cn/) is a web server for analyzing the RNA sequencing
expression data of 9736 tumors and 8587 normal samples
from the TCGA and the GTEx projects, using a standard
processing pipeline. Survival analysis and expression
consistency evaluation of potential genes were carried out
in GEPIA built-in SKCM and GTEx datasets, which con-
tain 461TCGA-SKCM tumor patients, 1TCGA-SKCM
normal control, and 557 GTEx normal skin samples. For
the transcriptional level validation, the criteria of signifi-
cant results was set to |log2 fold change| ≥ 1 and p-value
< 0.01. For the overall survival analysis in TCGA datasets,
the 458 samples with available overall survival data were
divided into high and low expression groups using the me-
dian TPM as a breakpoint, and significance was deter-
mined using a logrank test with p < 0.05.

Functional enrichment analysis
GenCLiP 2.0 [17] is a web-based text-mining server, which
can analyze human genes associated with biological

functions and molecular networks. We uploaded filtered
genes to online analysis tool GenCLiP 2.0 (http://ci.smu.
edu.cn/GenCLiP2/ analysis.php) to find correlated signifi-
cant pathways.

Results
Expression value analysis of microarray data
We chose 10,994 genes and 67 samples to construct the
gene co-expression network by WGCNA. Figure 2a
showed the relationship between the expression level of
BRAF and melanoma samples.

Weighted gene co-expression network construction
Choosing a proper soft-thresholding power is a critical
step when constructing a WGCNA network. As shown
in Fig. 2b, power value 3(β = 3) was selected to produce
a hierarchical clustering tree (Fig. 3) with different colors
representing different modules.

Module clinical feature associations
Since we had a summary profile (eigengene) for each
module, we simply correlated eigengenes with external
traits (marked BRAF expression) and looked for the
most significant associations. It was clear that the
MEbrown (1021 genes) was most positive associated
with the expression of BRAF (Fig. 4a). The results also

Fig. 1 Data analysis workflow
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Fig. 2 The clustering of samples and selection of soft-thresholding power. a The clustering dendrogram of samples based on their Euclidean
distance. b Analysis of the scale-free fit index for various soft-thresholding powers

Fig. 3 The clustering dendrogram of genes in melanoma, every color below represents one co-expression gene module
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demonstrated that the MEturquoise (1858 genes) was
most negative associated with the expression of BRAF
(Fig. 4a).
As shown in Fig. 4b, there were 27 eigengenes. The

upper panels presented hierarchical clustering dendro-
grams of the eigengenes, in which the dissimilarity of
eigengenes had been visualized. The bottle heatmaps
presented the eigengene adjacencies for the expression
of BRAF. The dendrogram indicated that brown and
black modules were highly related and their correlations
were stronger than their individual correlations with the
expression BRAF (Fig. 4b).

Identification of DEGs
Compared with BRAF wild type group, a total of 36
genes were identified in BRAF mutation group by the
threshold of |log2 fold change (FC)| ≥ 1 and adjusted
p-value < 0.05, of which 9 were up-regulated genes and
27 were down-regulated genes (Table 1).

Validation of candidate genes
There were 1021 genes in the brown module, 1858 genes
in the turquoise module and 36 genes in the DEGs
(Fig. 5). As shown in Venn diagram, it had 5 genes
(ANG, RNASE4, FOS, WSB1, ZSCAN18) between MEb-
rown and DEGs, and 15 genes (FHOD3, FERMT2,
TNFAIP3, ANGPTL4, NCRNA00312, MYL9, ID3,

CYR61, TXNIP, MFAP2, DACT1, DUSP1, COX7A1,
FXYD3, NID2) between MEturquoise and DEGs (Fig. 5).
In order to verify these 20 overlapping candidate

genes, we validated on online web server GEPIA, which
contained the TCGA and GTEx melanoma samples.
Figure 6a-b demonstrated the expression level of 3 genes
in BRAF wild-type and BRAF mutation samples of melan-
oma, which was in accordance with its expression level in
normal and tumor patients of SKCM. It was also revealed
that low expression of these three genes has a worse
overall survival in SKCM patients (Fig. 6c). Besides, we
had discarded the other 17 genes that did not exhibit
significant differential expression in the TCGA/GTEx data
concordant with that observed in the Lin et al. data, and

Fig. 4 a Heatmap of module-trait relationships. The brown module was the most positive module (correlation coefficients: 0.35, and p-value:
0.004) correlated with the expression of BRAF, and the turquoise was the most negative module (correlation coefficients: −0.32, and p-value:
0.008). b Hierarchical clustering of module and heatmap plot of the eigengene adjacencies

Table 1 Thirty-six differentially expressed genes (DEGs) were
identified from melanoma, including 9 up-regulated genes and
27 down-regulated genes. (The up-regulated genes were listed
from the largest to the smallest of fold changes, and down-
regulated genes were listed from the smallest to largest)

DEGs Genes

Up-regulated MGP, ASB9, FCDH7, FXYD3, SORL1, PCSK6, MGST2,
ITGB3, CORO2B

Down-regulated MME, CYR61, CXCL1, MYL9, FOS, MICAL2, MFAP2,
ID3, TXNIP, TNFAIP3, COX7A1, DUSP1, RNASE4,
GALC, ANGPTL4, IFI6, NCRNA00312, FHOD3,
ZSCAN18, PTEN, WSB1, SOD2, NID2, ANG, FERMT2,
DACT1, FAM69A
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were not associated with significantly worse overall sur-
vival compared high expression group with low expression
group in the TCGA/GTEx data (Additional file 1: Figure
S1, S2 and S3).

Functional enrichment analysis
We used online website GenCLiP 2.0 tools to perform
the functional and signaling pathway enrichment
analysis of the above three genes (CYR61, DUSP1, and
RNASE4). As shown in Table 2, the potential candidate
genes (CYR61, DUSP1, and RNASE4) were involved in
the nucleic acid metabolic process, while CYR61 and
DUSP1 were most significantly enriched in the growth
factor binding, ERK1 and ERK2 cascade, and regulation
of ERK1 and ERK2 cascade.

Discussion
Melanoma is the most fatal form of skin cancer and
strikes tens of thousands of people worldwide each year.
The amount of cases is increasing faster than any other
type of malignant cancer [18].
Many patients with BRAF mutation have received tar-

get treatments and therapies which activate their body’s
own immune system. There is BRAF mutation in melan-
oma. Besides, mutation also exists in NRAS gene and
PTEN gene. Some scientists have struggled to find drugs

targeting the mutated NRAS protein or NRAS protein
[19], while others have uncovered a mechanism of resist-
ance of targeted therapies for melanoma and identified
compounds that inhibit eIF4F and enhance the effective-
ness of vemurafenib in mice with melanomas [20].
In this study, firstly we applied WGCNA to identify

the two key modules in melanoma that were associated
with the expression of BRAF gene (the brown module
was positive, and the turquoise was negative). At the
same time, we identified the DEGs in the BRAF muta-
tion group compared with BRAF wild-type group. Then,
we chose the overlapping genes between modules and
DEGs. Finally, as to the gene expression level and overall
survival validation, we expand the scope of comparison
range to the tumor group versus the normal group in
TCGA/GTEx datasets.
We found that CYR61, DUSP1, and RNASE4 were

significantly related to gene expression level and survival
analysis results. CYR61 (Cysteine-rich angiogenic in-
ducer 61) is a secreted, matricellular protein [21], which
is associated with a range of cellular activities, such as
cell adhesion, migration, differentiation, proliferation,
apoptosis [21, 22]. Beak et al. suggested that CYR61 was
highly expressed in colorectal carcinomas (CRC) and
CYR61 might play a role as meaningful targets for thera-
peutic intervention of patients with CRC [23]. D’

Fig. 5 A Venn diagram showing the overlapping genes between modules and DEGs. Genes marked in red met the screening criteria and were
chosen as the final set of candidate genes
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Antonio et al. also found that decreased expression level
of CRY61 was associated with prostate cancer recurrence
after surgical treatment [24]. DUSP1 (Dual specificity
protein phosphatase 1) is an oncogene that is associated
with cancer progression in gastric cancer as well as a
negative regulator of the mitogen-activated protein kin-
ase (MAPK) signaling pathway, has anti-inflammatory
properties [25–27]. Xiaoyi et al. also found that DUSP1
phosphatase regulated the pro-inflammatory milieu in
head and neck squamous cell carcinoma [28], in
addition to promoting angiogenesis, invasion, and me-
tastasis in non-small-cell lung cancer (NSCLC) [29].
RNASE4 (Ribonuclease 4) is an RNase that belongs to
the pancreatic ribonuclease family and has marked

specificity towards the 3′ side of uridine nucleotides
[30]. Unfortunately, to date there has been no research
focused on the relationship between these several genes
with melanoma.
The primary purpose of the study focuses on the

prediction of key potential genes in cancers via data
mining and data analysis. Though we have validated re-
sults in the TCGA and GTEx datasets, results need to be
confirmed through molecular and cellular experiments.

Conclusions
Firstly, we have identified overlapping genes associated
with the expression and the mutation status of BRAF in
melanoma through WGCNA and DEGs analysis,

Fig. 6 a The gene expression (log2 ratio value) of CYR61, DUSP1, and RNASE4 in melanoma samples (unpaired t test, * indicates p < 0.01). b
Validation of the gene expression of CYR61, DUSP1, and RNASE4 in TCGA-SKCM (including 461 tumor patients and 1 normal control) and GTEx
(including 557 normal control). The cutoff was set to |log2 fold change (FC)|≥ 1, and p < 0.01. * indicates p < 0.01. c Overall survival analysis of the
expression level of CYR61, DUSP1, and RNASE4 in TCGA-SKCM on GEPIA website
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Table 2 The gene ontology analysis of potential key genes in melanomas

ID Term Count p-value Genes

GO:0016788 hydrolase activity, acting on ester bonds 2 0.00465 CYR61, RNASE4

GO:0090304 nucleic acid metabolic process 3 0.02260 CYR61, DUSP1, RNASE4

GO:0008219 cell death 2 0.03509 CYR61, DUSP1

GO:0071495 cellular response to endogenous stimulus 2 0.01713 CYR61, DUSP1

GO:0071310 cellular response to organic substance 2 0.04895 CYR61, DUSP1

GO:0009790 embryo development 2 0.008327 CYR61, DUSP1

GO:0048598 embryonic morphogenesis 2 0.00303 CYR61, DUSP1

GO:0019838 growth factor binding 2 0.00014 CYR61, DUSP1

GO:0006915 apoptotic process 2 0.03095 CYR61, DUSP1

GO:0043066 negative regulation of apoptotic process 2 0.00673 CYR61, DUSP1

GO:0060548 negative regulation of cell death 2 0.007915 CYR61, DUSP1

GO:0043069 negative regulation of programmed cell death 2 0.00688 CYR61, DUSP1

GO:0048646 anatomical structure formation involved in morphogenesis 2 0.01169 CYR61, DUSP1

GO:0016310 phosphorylation 2 0.04169 CYR61, DUSP1

GO:0043065 positive regulation of apoptotic process 2 0.00311 CYR61, DUSP1

GO:0010942 positive regulation of cell death 2 0.00354 CYR61, DUSP1

GO:0043068 positive regulation of programmed cell death 2 0.00316 CYR61, DUSP1

GO:0012501 programmed cell death 2 0.03166 CYR61, DUSP1

GO:0006468 protein phosphorylation 2 0.02993 CYR61, DUSP1

GO:0006508 proteolysis 2 0.02311 CYR61, DUSP1

GO:0070372 regulation of ERK1 and ERK2 cascade 2 0.00054 CYR61, DUSP1

GO:0043408 regulation of MAPK cascade 2 0.00578 CYR61, DUSP1

GO:0042981 regulation of apoptotic process 2 0.01902 CYR61, DUSP1

GO:0050790 regulation of catalytic activity 2 0.04813 CYR61, DUSP1

GO:0010941 regulation of cell death 2 0.02167 CYR61, DUSP1

GO:0051128 regulation of cellular component organization 2 0.04404 CYR61, DUSP1

GO:1902531 regulation of intracellular signal transduction 2 0.02427 CYR61, DUSP1

GO:0043549 regulation of kinase activity 2 0.00783 CYR61, DUSP1

GO:0019220 regulation of phosphate metabolic process 2 0.02663 CYR61, DUSP1

GO:0051174 regulation of phosphorus metabolic process 2 0.02702 CYR61, DUSP1

GO:0042325 regulation of phosphorylation 2 0.02016 CYR61, DUSP1

GO:0043067 regulation of programmed cell death 2 0.01933 CYR61, DUSP1

GO:0070371 ERK1 and ERK2 cascade 2 0.00060 CYR61, DUSP1

GO:0000165 MAPK cascade 2 0.00687 CYR61, DUSP1

GO:0009888 tissue development 2 0.02669 CYR61, DUSP1

GO:0044702 single organism reproductive process 2 0.01329 CYR61, DUSP1

GO:0023014 signal transduction by protein phosphorylation 2 0.00735 CYR61, DUSP1

GO:0009719 response to endogenous stimulus 2 0.02830 CYR61, DUSP1

GO:0022414 reproductive process 2 0.01641 CYR61, DUSP1

GO:0000003 reproduction 2 0.01646 CYR61, DUSP1

GO:0051338 regulation of transferase activity 2 0.01001 CYR61, DUSP1

GO:0030162 regulation of proteolysis 2 0.00476 CYR61, DUSP1

GO:0001932 regulation of protein phosphorylation 2 0.01783 CYR61, DUSP1

GO:0031399 regulation of protein modification process 2 0.02839 CYR61, DUSP1

GO:0045859 regulation of protein kinase activity 2 0.00701 CYR61, DUSP1
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respectively. Then, validation was applied to these
overlapping genes, and three genes (CYR61, DUSP1, and
RNASE4) were screened. However, more direct evidence
is needed to confirm their association with melanoma.
The study may be helpful for future studies concerning
melanoma with the aim of finding potential key mol-
ecule targets of melanoma.

Additional file

Additional file 1: Figures S1-S3. Rows represent expression of 17
genes in melanoma samples (first), TCGA/GTEx (second), and TCGA
(third), where genes were aligned by column. As the NCRNA00312 gene
could not be retrieved, expression and survival results could not be
obtained in GEPIA. Significance was determined as described in the
caption of Fig. 6. (ZIP 3130 kb)
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