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Abstract

Background: Deafness, autosomal recessive 77 (DFNB77) is a rare non-syndromic hearing loss (NSHL) worldwide,
which is caused by deleterious variants within lipoxygenase homology domains 1 (LOXHD1). Here we identified that
a novel missense variant of LOXHD1 was associated with NSHL in a Chinese family under consanguineous marriage.

Case presentation: A 28-year-old woman suffered a bilateral profound NSHL. Impedance audiometry, temporal
bone computerized tomography (TBCT) scans and magnetic resonance imaging-inner ear hydrography (MRI-IEH)
did not find any obvious abnormality of middle or inner ear. Routine genetic detection did not find pathogenic
variants in common HL-associated genes. Therefore, we performed a whole-exome sequencing (WES) in this family.
By trio-WES, co-segregation validation and bioinformatics analysis, we revealed that a novel homozygous variant in
this patient, LOXHD1: c.5948C > T (p.S1983F), might be the pathogenic factor. Her parents (heterozygotes) and
brother (wild-type) were asymptomatic.

Conclusions: We successfully identified a novel variant of LOXHD1 associated with a rare NSHL from a Chinese family.
Our finds highlight the effectiveness of trio-WES for molecular diagnosis of rare NHSL, and expand the genotypic
spectrum of DFNB77.

Keywords: Deafness, autosomal recessive 77 (DFNB77), Non-syndromic hearing loss (NSHL), Lipoxygenase homology
domains 1 (LOXHD1), Genetic variant, Whole-exome sequencing (WES)

Background
Hearing loss (HL) is the most common sensory deficit that
affects 466 million people in the world (Available at http://
www.who.int/pbd/deafness/estimates/en/). At least 60% of
HL cases are accounted for genetic causes [1, 2].
Non-syndromic HL (NSHL) is the predominant type
(~ 80%) of hereditary HL [3]. Nowadays, more than
100 genes have been related to NSHL (Available at
https://hereditaryhearingloss.org/). However, except
for several genes, many genes are insufficiently de-
scribed due to low mutated frequencies, thus handi-
capping evidence-based genetic counseling on HL
patients. Currently, the introduction of whole-exome

sequencing (WES) makes it possible to screen all po-
tential disease-causing genes for hereditary HL [4–6].
Benefiting from this technology, many HL patients
could have molecular diagnosis when conventional
methods identify no pathogenic variants within
common HL-associated genes, thus helping to deter-
mine novel and more detailed genotype-phenotype
correlations.
Deafness, autosomal recessive 77 (DFNB77, MIM #

613079) is a typical example of rare NSHL, which is
caused by deleterious variants within lipoxygenase hom-
ology domains 1 (LOXHD1) located at chromosome
18q21.1 (MIM #613072) [7]. LOXHD1 is a highly con-
served stereociliary protein consisting of 15 polycystin-1/
lipoxygenase/alpha-toxin (PLAT) domains, which facili-
tates proteins interacting with the plasma membrane [8].
Loxhd1 in mice is mainly expressed in hair cell stereocilia
and plays a crucial role in maintaining normal function of
cochlear hair cells [7]. Mutations within LOXHD1 are rare
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that only 33 pedigrees have been reported worldwide, har-
boring less than 50 different HL-causing variants to date
[2, 7, 9–22]. Specially, these variants are extremely rare in
East Asian population and only reported once in China
[2, 14]. According to the HGMD database (http://
www.hgmd.cf.ac.uk/docs/login.html, professional 2018.3
version), there are 47 missenses/nonsenses, 5 splicing vari-
ants, 5 small deletions, 1 small insertion, 1 small indel and
1 gross deletion identified in the LOXHD1 gene. In these
variants, 47 variants are associated with hearing loss and
16 variants are associated with late-onset Fuchs corneal
dystrophy (FCD, MIM #136800). More studies are neces-
sary to uncover potential genotype-phenotype correlations
between LOXHD1 variants and HL.
Here, we examined a Chinese family by trio-WES ana-

lyses and identified a novel missense variant, c.5948C >
T (p.S1983F) within LOXHD1 gene. This variant results
in a bilateral NSHL.

Case presentation
The pedigree was shown in Fig. 1a. The proband (II-1)
was a 28-year-old woman, who suffered a profound HL
without any syndromic phenotype. She demonstrated a
bilateral hearing loss at all frequencies and predomin-
antly at middle to high frequencies, based on pure tone
audiometry (PTA) test. The pure tone averages of 500
Hz, 1000 Hz and 2000 Hz were 97 dB HL in her both
ears (see Fig. 1b). Impedance audiometry exhibited a
typical A-type tympanogram for each ear. Temporal

bone computerized tomography (TBCT) scans and mag-
netic resonance imaging-inner ear hydrography (MRI-
IEH) did not find any obvious abnormality of middle or
inner ear. Other associated symptoms were also not ob-
served in the proband (II-1), including vestibular disorders
(dizziness, vertigo, etc.), optic problems (blurred or dis-
torted vision, eye pain, etc.), mal-development and intel-
lectual disability. According to information provided by
the family, II-1 had congenital HL but did not find obvi-
ous progression these years. No hearing or associated
symptoms were found in the proband’s parents (I-1 and
I-2) or brother (II-2). Her parents had consanguineous
marriage. No deafness history was found in the last three
generations of their family.
To identify the genetic cause of NSHL in this pro-

band, we routinely applied a Sanger sequencing of four
common HL-associated genes, including gap junction
protein beta-2 (GJB2), gap junction protein beta-3
(GJB3), solute carrier family 26 member 4 (SLC26A4)
and mitochondrially encoded 12S RNA (MT-RNR1).
DNA preparation, PCR conditions and Sanger sequen-
cing process were described previously [23]. The coding
regions of GJB2 and GJB3, hotspot region (exon7–8
and exon19) of SLC26A4, and the full-length region of
MT-RNR1 were carefully screened, only a homozygous
variant, m.827A > G within MT-RNR1, was identified.
However, previous studies reported conflicting inter-
pretations of pathogenicity for this variant [24–26],
which was insufficient to result in hearing impairment.

Fig. 1 Pedigree, audiological evaluation and Sanger sequencing validation. a. Pedigree of this Chinese family under consanguineous marriage. The
proband was indicated by arrows. “+” indicates wild type. b. Pure-tone audiometry evaluation of this proband. c. LOXHD1: c.5948C > T variants were
validated by Sanger sequencing
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Therefore, we further performed a WES analysis for
the trio (I-1, I-2 and II-1) by using the Illumina HiSeq
platforms. Details of the process of WES analysis are
shown in Additional file 1: Supplementary materials.
The target mean depths in the trio were all greater than
128X and > 97.8% of the target regions were covered by
at least 20X. More than 77 thousands of variants were
annotated for each person, and we summarize these re-
sults in Additional file 1: Table S1. Two analyses were
applied in the trio data. One was de novo variants ana-
lysis, but we found no deleterious HL-associated variant.
The other was shared variants analysis. A promising
variant within LOXHD1 (c. c.5948C > T; p.S1983F) was
identified after rigorous filters (see Additional file 1:
Tables S1 and S2). It was co-segregated and validated in
this family by Sanger sequencing (see Fig. 1c). The pri-
mer sequences (5′→ 3′) were: forward-p, ATCG
TGGTGCTTTTAACCTGC; reverse-p, GGGTGCTTG
CACAGGATTG. Although homogeneous MT-RNR1:
m.827A > G was identified in the proband, but her
asymptomatic brother and mother also carrier this
variant, implying that MT-RNR1: m.827A > G cont-
ributed little to the pathogenesis of the proband
(Additional file 1: Table S3). LOXHD1: c.5948C > T was a
missense variant, which was not found in all public data-
bases (dbSNP, 1000 Genomes, ExAC and gnomAD), and
predicted as damaging by multiple bioinformatics tools
(SIFT, Polyphen2, and Mutation Taster, etc.). Evolution
analysis also indicated that this variant was located at the
well conserved region (Additional file 1: Table S2). Now-
adays there have been 47 variants within LOXHD1 associ-
ated with hearing impairment according to HGMD
database, but c.5948C > T (p.S1983F) was not reported
previously.

Discussion and conclusions
NSHL is a complex disorder with highly genetic and
clinical heterogeneity. Routinely, hotspot regions of
four common HL-associated genes, such as GJB2,
GJB3, SLC26A4 and MT-RNR1, are recommended to
be initially detected for molecular diagnosis for
NSHL. If results are negative, gene-panel sequencing
or WES are applied for further detection. Specially, a
trio-WES is quite suitable for those rare NSHL.
DFNB77 is a rare NSHL with autosomal recessive in-
heritance, caused by homozygous mutations within
LOXHD1 gene, firstly described in 2009 [7]. In the
past ten years, about 60 variants within this gene
were identified in NSHL cases. They showed different
auditory characteristics, varying from stable to pro-
gressive and from mild to profound HL. The limited
variant spectrum of LOXHD1 strongly requires more
studies to fill in gaps in the genotype-phenotype cor-
relations of DFNB77. In this study, we used a

trio-WES to successfully identify a novel homozygous
variant, c.5948C > T (p.S1983F), within LOXHD1 gene
in a Chinese family. To the best of our knowledge,
this is the second pedigree report of LOXHD1-related
NSHL in China.
LOXHD1 encodes an important protein consisting of 15

PLAT domains, which mediates protein interactions to
maintain normal hair cell function [7]. Deleterious variants
within LOXHD1 could lead to various severities and various
types of NSHL including progressive and non-progressive
congenital HL [2, 7, 9–22]. Table 1 summarizes the pub-
lished genotype-phenotype correlations of DFNB77 con-
firmed by segregation analysis. HL-associated variants
within LOXHD1 could occur in various races. Homozy-
gotes (c.71delT/c.71delT, c.1588G >T/c.1588G >T, c.4212
+ 1G >A/c.4212 + 1G >A, etc.) appeared to show a trend
toward severe or profound HL, and compound heterozy-
gotes showed different HL phenotypes. No overlapping
genotype was reported by these studies performing segrega-
tion analysis. The quite limited information hindered to ex-
plore more genotype-phenotype correlations, requiring
more studies to uncover variant spectrum of LOXHD1 and
related HL phenotype. Here, we identified a novel missense
variant, LOXHD1: c.5948C >T, was associated with
non-progressive NSHL in a family under consanguineous
marriage. The proband carried homozygous c.5948C >T,
her parents carried heterozygous c.5948C >T, and her
brother did not carry this variant, which was compatible
with the autosomal recessive inheritance of DFNB77. Com-
prehensive analyses, including family history, trio-WES,
co-segregation validation, rarity in control population, and
bioinformatics prediction, strongly support that LOXHD1:
c.5948C >T could be a pathogenic factor. It makes effect
on all the transcript isoforms of LOXHD1 gene: NM_1446
12:exon38:c.5948C >T: p.S1983F, NM_001145473:exon
7:c.851C >T:p.S284F, NM_001173129:exon7:c.851C >T:p.S
284F, NM_001308013:exon19:c.2513C >T:p.S838F, and N
M_001145472:exon21:c.2801C >T:p.S934F. Variants within
LOXHD1 are quite rare and recently, Hu et al. reported a
first affected Chinese pedigree with progressive NSHL [2].
Compared to the compound heterozygotes (c.1751C >T/
c.5815G >A) found by Hu et al., we identified a novel
homozygote, c.5948C >T/ c.5948C >T, was associated with
non-progressive NSHL. In addition, c.5948C >T is located
in the 14th PLAT domain of LOXHD1 protein, which har-
bors the most published variants to date, compared with
other PLAT domains [20]. Another five published variants
(c.5869G >T, c.5885C >T, c.5934C >T, c.5944C >T and
c.6162_6164delCCT) from different races are also concen-
trated in here [14, 18, 20], indicating that the 14th PLAT
domain could be a hotspot mutated region of LOXHD1.
Variants within LOXHD1 were also linked to late-on-

set FCD, a genetic degenerative disease of corneal endo-
thelium towards blindness. In 2012, Riazuddin, et al. first
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reported a heterozygous damaging variant within
LOXHD1 in a multiplex family with dominant-inherited
late-onset FCD [27]. However, subsequent studies failed
to provide a strong association between LOXHD1 vari-
ants and FCD [20, 28–30]. Specially, results from a
Chinese multi-generational FCD pedigree demonstrated
that no pathogenic variants were identified in LOXHD1
[28]. In line with these previous studies, our work also
did not observed any symptoms of FCD in the proband
and her blood relatives within three generations. How-
ever, a limitation of our study is that the identified mis-
sense variant is lacking in animal models or in the
verification of other HL patients. More functional and
population studies are required to further verify our
results.
In summary, we demonstrated that a novel missense

variant, LOXHD1: c.5948C > T, was associated with
non-progressive NSHL in a Chinese family under con-
sanguineous marriage. Our work highlights the effective-
ness of trio-WES for molecular diagnosis of rare NHSL

and expands the variant spectrum of LOXHD1 in hear-
ing impairment.

Additional file

Additional file 1: Supplementary Materials and Tables. (a) The process
of whole-exome sequencing (WES) analysis. (b) Table S1. Filtering
process of WES analysis in our study. (c) Table S2. Candidate gene and
variant identified by trio-WES. (d) Table S3. Variants validated by Sanger
sequencing. (DOC 59 kb)
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Table 1 Genotype-phenotype correlation of DFNB77 confirmed by segregation analysis

Genotype Ethnicity Severity of HL Progression of HL Reference

c.71delT/c.71delT Turkish Severe or profound NA [13]

c.442A > T/c.4217C > T NA NA NA [19]

c.1588G > T/c.1588G > T Qatary Severe to profound Progressive [12]

c.1618dup/c.1730 T > G Dutch Moderate to severe Stable to progressive [20]

c.1751C > T/c.5815G > A Chinese Severe Progressive [2]

c.1828G > T/c.2641G > A Dutch Mild Stable [20]

c.1904 T > C/c.4678 T > C Dutch Mild Stable to progressive [20]

c.2008C > T/c.2008C > T Iranian Mild to profound Progressive [7]

c.2696G > C/c.3834G > C Dutch Moderate Stable [20]

c.2696G > C/c.5934C > T Dutch Mild NA [20]

c.2863G > T/c.2863G > T Turkish NA NA [10]

c.3061C > T/c.5885C > T Indian Severe Stable [20]

c.3061 + 1G > A/c.6353G > A Dutch Moderate NA [20]

c.3076G > T/c.4375 + 1G > T Japanese Profound Stable [17]

c.3169C > T/c.6353G > A Dutch Severe Stable [20]

c.3371G > A/c.3979 T > A Cameroonian Profound NA [15]

c.3748 + 1G > C/c.6353G > A Dutch Moderate to severe Stable to progressive [20]

c.4212 + 1G > A/c.4212 + 1G > A Japanese Profound Stable [14]

c.4212 + 1G > A/c.5674G > T Japanese Mild to profound Progressive [16]

c.4480C > T/c.4480C > T Turkish NA NA [10]

c.4480C > T/c.5869G > T Japanese Moderate to severe Stable [14]

c.4623C > G/c.5545G > A Czech Severe NA [22]

c.4714C > T/c.4714C > T Ashkenazi Jewish Severe to profound NA [9]

c.5894dupG/c.5894dupG Arab Profound NA [21]

c.5948C > T/c.5948C > T Chinese Profound Stable This study

Abbreviation: NA not available
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