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Abstract

Background: Although statins deteriorate glucose metabolism, their glucose-lowering effects have emerged in
some situations. Here, we assessed whether these effects are a consequence of statins’ interaction with paraoxonase
(PON)1 enzyme polymorphism.

Methods: Adult Japanese type 2 diabetes patients (n = 3798) were enrolled in a cross-sectional study. We used Q192R
polymorphism of the PONT gene as a representative single-nucleotide polymorphism and focused on the effects of the
wild-type Q allele, in an additive manner. For patients with and without statin therapy, the associations of this allele with
fasting plasma glucose (FPG), HbA, ., C-peptide, HOMA2-9%3, and HOMA2-IR were investigated separately using a linear
regression model, and were compared between groups by testing interactions. Sensitivity analyses were performed
using propensity score to further control the imbalance of characteristics between groups.

Results: Among patients with statin therapy, there were linear associations of the number of Q alleles with decreased
FPG and HbA,, and with increased serum C peptide and HOMA2-%f3 (all P < 0.01 for trends), while such associations
were not observed among those without statin therapy. These differences were statistically significant only for serum C
peptide and HOMA2-%(3 (P < 0.01 for interactions). These associations remained significant after multiple explanatory
variable adjustment. Sensitivity analyses using propensity score showed broad consistency of these associations.

Conclusions: Patients with the Q allele of the PONT Q192R polymorphism who were treated with statins exhibited
improvement in glucose metabolism, especially in insulin secretion, suggesting the importance of genotyping PON1
Q192R to identify those who could benefit from statin therapy.
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Background

Hypercholesterolemia is a common comorbidity with dia-
betes and contributes to the increased risk of cardiovascu-
lar disease among affected people [1]. Lipid-lowering with
3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibi-
tors (statins) is an important and recommended therapy to
reduce cardiovascular risk and to treat atherosclerosis asso-
ciated with hypercholesterolemia [1]. Recently, however,
several studies have reported adverse effects of statins on
glucose metabolism because statins reduce both insulin se-
cretion and insulin sensitivity, and, as a result, deteriorate
glycemic control [2-5], although glucose-lowering effects
of statins have emerged in some situations [6]. For the im-
proved management of diabetes and lipids, there is a need
for a deeper understanding of the glucose-raising effects of
statins and the ability to prevent such effects.

Gene—treatment/environment interaction analysis inves-
tigates whether the magnitude of the genetic effect estimate
differs across the range of treatments or environmental fac-
tors [7], and could contribute to revealing the pharmaco-
logical mechanism of the enzyme by investigating the
association of common genetic variants in the gene encod-
ing that enzyme and treatment factors. 3-Hydroxy-3-meth-
ylglutaryl-coenzyme A reductase (HMGCR) is the main
enzyme inhibited by statins; its genetic variants have been
shown to be associated with increased body weight and the
risk of type 2 diabetes among nondiabetic subjects, inde-
pendently of statin therapy [8]. Paraoxonase (PON) 1 is an-
other enzyme potentially affected by statins [9], which
possesses the properties of an antioxidant and an insulin se-
cretagogue [10, 11]. Since the glucose-lowering effects of
statins are most pronounced in patients with an improve-
ment in HDL-C upon statin therapy [6] and this improve-
ment was shown to be dependent on the genotype of
PONI [12], it could be hypothesized that the interaction of
the PON1I genotype with statins could play a role in chan-
ging glucose metabolism in patients treated with statins.
However, at present, there is a lack of evidence for such an
interaction in patients with type 2 diabetes.

Therefore, in the present study, we performed a quan-
titative trait interaction analysis testing modifiable effects
of statins on the association between PON1 Q192R poly-
morphism and glycemia, such as fasting plasma glucose,
HbA,. insulin secretion measured by serum C-peptide
and HOMAZ2-%p, and insulin resistance measured by
HOMAZ2-IR, in Japanese patients with type 2 diabetes.

Methods

Study participants

The Fukuoka Diabetes Registry is a multicenter, prospect-
ive study designed to investigate the influence of modern
therapy on the prognosis of patients with diabetes mellitus
in Japan. Patients who regularly attended teaching hospi-
tals authorized by the Japan Diabetes Society or certified
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diabetes clinics in Fukuoka Prefecture (UMIN Clinical
Trial Registry 000002627) [13] were registered between
April 2008 and October 2010 if aged >20 years. Exclusion
criteria were as follows: 1) patients with drug-induced dia-
betes mellitus or receiving corticosteroid therapy; 2) pa-
tients who had undergone renal replacement therapy; 3)
patients with serious diseases other than diabetes, such as
advanced malignancy or decompensated liver cirrhosis;
and 4) patients unable to visit diabetologists regularly.
Among the 5131 patients registered, after excluding those
with type 1 diabetes defined by serum C-peptide level <
0.03 nmol/l and being on insulin therapy, those who had
already eaten breakfast, those with unacceptable levels of
plasma glucose (<3 mmol/l or >25 mmol/l) or C-peptide
(<0.2 nmol/l or >3.5 nmol/l) for HOMA2-%p [14], and
those who had not been genotyped for the PONI gene,
the remaining 3798 patients were enrolled in the present
cross-sectional study. The present study was conducted
with the approval of Kyushu University Institutional Re-
view Board, and written informed consent was obtained
from all of the participants.

Clinical evaluation and laboratory measurements

The participants completed a self-administered ques-
tionnaire to provide data on their smoking habits, dur-
ation of diabetes mellitus, alcohol intake, physical
activity, family history of diabetes, and past history of
cardiovascular disease. Smoking habits and alcohol in-
take were classified as either current use or not. Meta-
bolic equivalent (MET) hours per week values were
calculated using Ainsworth’s methods [15]. The partici-
pants’ medical records were reviewed for all medications,
including statin therapy, oral hypoglycemic agents (OHA),
and insulin therapy. Body weight and height were mea-
sured, and body mass index (BMI) was calculated as weight
(kg) divided by height squared (m?®). Blood pressure was
measured with the participants in a sitting position. Hyper-
tension was defined as blood pressure > 140/90 mmHg
and/or current use of antihypertensive agents. Blood sam-
ples were collected via venipuncture under fasting condi-
tions. Hemoglobin A;. (HbA;.) level was determined by
high-performance liquid chromatography (Tosoh Corp.,
Tokyo, Japan), plasma glucose by the glucose oxidase
method, serum C-peptide by a chemiluminescent im-
munoassay (Kyowa Medex, Tokyo, Japan), and lipid pro-
files, such as serum total cholesterol, LDL-C, HDL-C, and
triglyceride, by enzymatic methods. Beta-cell function and
insulin resistance were estimated based on fasting glucose
and C-peptide concentrations using the homeostasis model
assessment (HOMA) calculator, version 2.2.2 (http://
www.dtu.ox.ac.uk, accessed June 2012), and are expressed
as the homeostasis model assessment of p-cell function
(HOMA2-%p) and the homeostasis model assessment of
insulin resistance (HOMAZ2-IR), respectively.
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Genotyping of PON1 Q192R polymorphism

The gene encoding the paraoxonase (PON) 1 enzyme
has a polymorphism with a reference single-nucleotide
polymorphism (SNP) ID number of rs662; this SNP
changes amino acid 192 of the PON1 protein. The wild-
type, rs662(A), encodes a glutamine (Q), while the vari-
ant, rs662(G), encodes an arginine (R).The genotypes of
the PON1 Q192R SNP were determined as QQ, QR, or
RR using multiplex polymerase chain reaction-based in-
vader assays (Third Wave Technologies, Madison, W1,
USA) [16]. In the present analyses, we focused on the ef-
fect of the Q-allele, the wild type, compared with the R-
allele, as the former confers the high antioxidative effect
of the enzyme [9].

Statistical analysis

The data on C-peptide, HOMA2-%p, HOMA2-IR, and
triglyceride were log-transformed for the statistical ana-
lysis due to their skewed distribution. The chi-square test
was used to test the divergence from Hardy—Weinberg
equilibrium by determining the difference between ob-
served and expected genotype frequencies from the allele
frequencies. The clinical and biochemical characteristics
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of the participants were compared between those using
and not using statins, and between PON1 Q192R geno-
types using analysis of variance (ANOVA), chi-square ana-
lyses, and Fisher’s exact tests.

To investigate a gene—treatment interaction on gly-
cemic parameters, the associations of PONI Q192R ge-
notypes with fasting plasma glucose (FPG), HbA;., C-
peptide, HOMA2-%p, and HOMAZ2-IR were estimated
separately using linear regression models in patients
with and without statin therapy, wherein the effects of
PON1 QI192R genotypes were assumed to be additive,
namely, the number of Q alleles was counted. These as-
sociations were compared using the interaction term of
genotypes and use of statins in the relevant statistical
model. In multiple explanatory variable analyses, adjust-
ments were made for gender, age, BMI, HbA;., OHA,
insulin therapy, current smoking, current drinking,
leisure-time physical activity, and duration of diabetes.

In a nonrandomized study, patients with specific medi-
cation might be at higher risk than those without, since
there could be a bias in administering medication to se-
vere patients. Such imbalance of background risk might
affect the results. Therefore, we performed sensitivity

Table 1 Clinical characteristics in statin-treated or untreated patients with type 2 diabetes mellitus according to PON1 genotype

Statin (-) Statin (+)
PON1 Q192R genotype QQ QR RR Pvalue QQ QR RR P value

N=249,11.7% N=887,418% N=984, 46.4% N=179,107% N=767,457% N=732,43.6%
Male, n (%) 167 (67.1) 573 (64.6) 648 (65.9) 0.73 78 (43.6) 371 (484) 333 (45.5) 037
Age, years 652+106 648+ 108 64.7 £ 106 0.83 66.1+96 66.1+94 659+9.7 091
BMI, kg/m2 238+35 238+35 240£39 0.28 245+41 243+£38 244+£35 0.84
Duration of diabetes, years 13.8+10.7 144+102 144+103 0.68 143 £10.1 146+97 154+99 0.17
Current smoker, n (%) 52 (20.9) 182 (20.5) 212 (21.5) 0.86 27 (15.1) 96 (12.5) 113 (154) 0.24
Current drinker, n (%) 118 (47.4) 398 (44.9) 430 (43.7) 0.57 57 (31.8) 244 (31.8) 247 (33.7) 071
Leisure-time physical activity, 189+ 17.5 192+19.2 186179 0.81 164+185 184+175 189+187 0.25
METs-h/w
Fa(mi)ly history of diabetes, 132 (53.0) 491 (554) 525 (534) 0.64 98 (54.8) 446 (58.2) 400 (54.6) 0.36
n (%
Past history of CVD, n (%) 47 (18.9) 169 (19.1) 187 (19.0) 1.00 58 (324) 232 (30.3) 223 (30.5) 0.85
HDL cholesterol, mmol/I 141+037 143+037 414038 0.55 149+036 146+038 145+0.36 040
LDL cholesterol, mmol/I 299+0.75 3.03+0.71 3.02+075 0.77 2.75+068 2.70+061 269+062 052
OHA, n (%) 144 (57.8) 587 (66.2) 645 (65.6) 0.043 124 (69.3) 540 (70.4) 525 (71.7) 0.76
Sulfonylurea, n (%) 1 (36.6) 397 (44.8) 423 (43.0) 0.07 7 (43.0) 390 (50.9) 362 (49.5) 0.17
Biguanide, n (%) 9 (27.7) 291 (32.8) 346 (35.2) 0.08 3 (40.8) 287 (374) 291 (39.8) 0.55
a-Gl, n (%) 2 (129) 105 (11.8) 91 (9.3) 0.10 25 (14.0) 9 (14.2) 91 (124) 0.58
Thiazolidine, n (%) 0 (8.0) 111 (12.5) 114 (11.6) 0.15 6 (20.1) 8 (19.3) 112 (15.3) 0.08
Glinide, n (%) 6 (6:4) 60 (6.8) 58 (5.9) 0.74 7 (39) 47 (6.1) 41 (5.6) 051
DPP4-I, n (%) 0(0) 4(0.5) 6 (0.6) 045 1(0.56) 2 (0.26) 2(027) 0.64
Insulin, n (%) 57 (229) 178 (20.1) 200 (20.3) 0.61 39 (21.8) 145 (18.9) 154 (21.0) 0.50

Data are expressed as mean + SD and n (percentage)
CVD cardiovascular disease, OHA oral hypoglycemic agents, a-Gl alpha-glucosidase inhibitor, DPP4-I inhibitors of type 4 dipeptidyl peptidase
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Table 2 Association of PONT Q192R polymorphism with glycemia, insulin secretion, and sensitivity after stratified analysis by statin

therapy
FPG, mmol/I HbA, ¢, % (mmol/mol) Logarithm of C-peptide Logarithm of HOMA2-%f3 Logarithm of HOMA2-IR

Statin () QQ 7.75+202 7234095 (555+104) 0194039 3.69+045 0.02+043
QR 7.66+ 2.04 7284103 (561+112)  016+038 3.69+048 ~0.02 + 041
RR 7734206 7354105 (568+115) 0194039 369+0.50 0.01+041
Pvalue 082 0.07 047 08 047

Statin (+)  QQ 7514179 7344092 (567 +100)"  027+040" 3.80 £ 049" 0.09+ 041
QR 753+188%  743+099 (57.7+108) 0224038 376 +047* 0.04+040
RR 7814198 7564107 (59.1+11.7) 0194039 367 +048 0.02+042
Pvalue 00052 0.0022 0016 0.0001 0.082

P for interaction® 0.059 0.26 0.022 0.0022 0.074

Data are expressed as mean + SD; P value refers to simple regression analysis
#P < 0.05 vs. RR genotype
“Interaction of statin therapy with PON1 genotype

analyses using propensity score (PS) to further control
the difference of characteristics between patients with
and without statins. The PS for the probability of receiv-
ing statins was estimated by a multiple explanatory vari-
able logistic regression model using the following
clinical variables that might influence the intention to
prescribe statins: gender; age; BMI; current smoking and
drinking; duration of diabetes; hypertension; past history
of stroke, ischemic heart disease, and arteriosclerosis
obliterans; antiplatelet therapy; family history of diabetes
and hyperlipidemia; leisure-time physical activity; FPG;
HbA;; LDL-C; HDL-C; logarithm of triglyceride; OHA
(sulfonylurea, glinide, DPP4-1, a-GI, biguanide, thiazoli-
dine); insulin therapy; fibrate therapy; ezetimibe therapy;
ethyl eicosapentate therapy; and the method for control-
ling blood glucose (diet, OHA, insulin, combination of
OHA and insulin). We performed three PS application
analyses: one adjusting for PS, one matching patients with
and without statin therapy using PS (1:1), and one using
the inverse probability of treatment weights (IPTW).
Matching for PS was performed in accordance with an
optimization protocol using an SAS macro (PSMatch_-
Multi macro in SAS 9.4) [17], whereby cases and controls
were matched if the difference of their scores was equal to
or less than 0.01. All analyses were performed using the
SAS software package version 9.3 (SAS Institute Inc.,
Cary, NC, USA). Values of P < 0.05 were considered to be
statistically significant in all analyses.

Results

Overall, 3798 patients were enrolled in the present study
(Additional file 1: Table S1). Their mean age was 65 years
and about half of the patients were male. Mean duration of
diabetes was 14.6 years. Among the patients, 1678 were be-
ing treated with statins (atorvastatin 27.4%, pravastatin
26.1%, pitavastatin 19.6%, rosuvastatin 17.5%, simvastatin
6.6%, fluvastatin 2.8%), and they were older, with a longer

duration of diabetes, higher values of HbA;,, and a greater
frequency of being on oral hypoglycemic therapy than
those who were not being treated with statins. The geno-
type proportions were 0.112 for QQ, 0436 for QR, and
0.452 for RR (Additional file 2: Table S2), which indicated
no divergence from Hardy—Weinberg equilibrium (P
=0.33). The distributions of genotypes were similar
tendency in patients with and without statin therapy
(P =0.055 for the overall difference) (Table 1). Among all
patients (Additional file 2: Table S2) and patients with and
without statins (Table 1), the clinical and biochemical
characteristics were almost all similar among the PONI
genotypes, except for the rates of use of OHA and
sulfonylurea.

In the patients with statin therapy, the number of
Q alleles was associated with decreased values of FPG
and HbA;,, and with increased C-peptide and
HOMA2-%p (P =0.0052, 0.0022, 0.016, and 0.0001 for
the trends, respectively), and there was a tendency for
a positive association with HOMA2-IR (P =0.082 for
trend) (Table 2). In patients without statin therapy,
however, no such associations of the number of Q
alleles with any of the glycemic parameters were
observed. The difference in such associations between
those with and without statins was significant for
C-peptide and HOMA2-%p, and was marginally insig-
nificant for FPG and HOMAZ2-IR (Table 2). In the
multiple explanatory variable analyses (Fig. 1), there
was consistency of these associations, but the hetero-
geneity in the association of Q alleles with C-peptide
and HOMAZ2-%p remained statistically significant.

As there was a significant difference in back-
ground risk between those using and not using statins
(Additional file 1: Table S1), we performed sensitivity ana-
lyses using PS. The PS estimated here showed acceptable
goodness of fit for the discrimination of patients with and
without statin therapy (c statistic: 0.747). The distributions
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Fig. 1 Association of PONT Q192R polymorphism with FPG (a), HoA1c (b), serum C-peptide (c), and HOMA2-%f3 (d) after stratified analysis by
statin therapy. Data are expressed as adjusted mean (95% Cl) referring to ANCOVA; P value refers to multiple regression analysis. FPG and HbA,
adjusted for gender, age, BMI, smoking, alcohol, leisure-time physical activity, duration of diabetes, SU, glinide, thiazolidine, a-Gl, biguanide, insulin.
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thiazolidine, a-Gl, biguanide, insulin. * P < 0.05 for trend in the group with statins
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of the PS in the groups using and not using statins
almost overlapped (Additional file 3: Figure S1), and
the adjustment for and matching with PS could be re-
liably performed. In the matched design analyses, patients’
characteristics at baseline were almost balanced between the
groups with and without statins (Additional file 4: Table S3).
All of the three sensitivity analyses showed similar re-
sults, with positive linear associations of the number
of Q alleles with C-peptide and HOMA2-%[3 being consist-
ently found across the analyses (Additional file 5: Figure S2,
Additional file 6: Figure S3 and Additional file 7: Figure S4).

Discussion

This is the first study to report the gene—treatment
interaction of the PONI Q192R polymorphism and sta-
tin therapy on insulin secretion among patients with
type 2 diabetes. We demonstrated that, when diabetic
patients were treated with statins, the number of Q al-
leles of the PON1 Q192R polymorphism, the wild-type
allele, was associated with increased insulin secretion,
while no such association was found among those who
were not treated with statins. There were similar favor-
able influences of the Q allele on fasting plasma glucose
and HbA,, although the differences of such effects be-
tween the groups with and without statins were not sta-
tistically significant.

The underlying mechanism of how PONI Q192R
polymorphism and statins interact on insulin secretion
in patients with type 2 diabetes remains unclear. One
possible explanation is as follows. The PON1 enzyme
has the ability to reduce oxidative stress [9] and to in-
crease insulin secretion [10], and the PON1 Q192R poly-
morphism has the most significant impact on the
enzyme’s activity, with the Q allele being associated with
greater enzymatic efficiency [18]. Among patients with
type 2 diabetes [19] and with diseases associated with
oxidative stress [8], PON1 activity was found to be low,
probably due to increased oxidative stress inactivating
the PON1 enzyme [20]. Since statins have antioxidant
effects and activate the biosynthesis and secretion of the
PON1 enzyme in the liver, they may contribute to pro-
tecting the PON1 enzyme against inactivation and main-
taining its functions [8]. It was also reported that QQ
homozygotes showed greater loss of enzyme activity [21]
with aging. The enzyme in subjects with this genotype
might thus be more vulnerable to such deterioration
than that in those with other genotypes and the use of
statins could confer their protective effects in this geno-
type. This possible mechanism is illustrated in Fig. 2.
Statins may increase the biosynthesis and secretion of
the PON1 enzyme in the liver, and protect the PON1
enzyme from being inactivated by increased oxidative
stress. Consequently, insulin secretion may increase in
the Q allele carriers.
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Some limitations of this study are a lack of the genotyp-
ing of other polymorphisms of the PONI gene and the
lack of availability of data on the serum concentrations
and activities of PON1. However, among the major PON1
polymorphisms, only the Q192R polymorphism has been
reported to determine the antioxidant potential of PON1
[9], so the influence of this limitation might be small.

Conclusions

To the best of our knowledge, this is the first study to
investigate the possible glucose-lowering effects of
PONI1 Q192R genotypes associated with statin therapy.
These findings could partly delineate the complex influ-
ence of statins on glucose metabolism. We suggest that
PONI Q192R genotyping could identify individuals who
would benefit from statin therapy for both lipid- and
glucose-lowering. Research considering other types of
polymorphism in the PONI gene, and serum concentra-
tions and activities of PON1 would be helpful in pursuit
of the mutual effects of statins and PONI polymorphism
on glucose metabolism.
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Additional file 1: Table S1. Clinical characteristics according to statin
therapy. Data are expressed as mean + SD, median (interquartile), and n
(percentage). CVD: cardiovascular disease, OHA: oral hypoglycemic agents,
a-Gl: alpha-glucosidase inhibitor, DPP4-I: inhibitors of type 4 dipeptidy!
peptidase* log-transformed for the statistical analysis. (DOCX 15 kb)

Additional file 2: Table S2. Clinical characteristics according to PON1
genotype. Data are expressed as mean + SD, median (interquartile), and n
(percentage). CVD: cardiovascular disease, OHA: oral hypoglycemic agents,
a-Gl: alpha-glucosidase inhibitor, DPP4-I: inhibitors of type 4 dipeptidy!
peptidase* log-transformed for the statistical analysis. (DOCX 14 kb)

Additional file 3: Figure S1. Overlap of the distributions of the PS in
the groups with and without statins. The band and cross marks inside
the boxes represent the median and mean values, respectively. The lower
and upper edges of the boxes represent the 25th and 75th percentiles,
respectively. The upper and lower lines outside the boxes represent
minimum and maximum values. (DOCX 77 kb)

Additional file 4: Table S3. Clinical characteristics according to statin
therapy (after 1:1 matching). Data are expressed as mean + SD, median
(interquartile), and n (percentage). CVD: cardiovascular disease, OHA: oral
hypoglycemic agents, a-Gl: alpha-glucosidase inhibitor, DPP4-I: inhibitors
of type 4 dipeptidyl peptidase.* log-transformed for the statistical analysis.
(DOCX 14 kb)

Additional file 5: Figure S2. Association of PONT Q192R
polymorphism with FPG, HbA1c, C peptide, and HOMA2-%f3 after
stratified analysis by statin therapy (PS as a covariate). Data are expressed
as adjusted mean (95% Cl) referring to ANCOVA; P value refers to
multiple regression analysis. * P < 0.05 for trend. (DOCX 67 kb)

Additional file 6: Figure S3. Association of PONT Q192R
polymorphism with FPG, HbA1c, C peptide, and HOMA2-%(3 after
stratified analysis by statin therapy (after 1:1 matching). Data are
expressed as mean (SD) referring to ANCOVA; P value refers to multiple
regression analysis. * P < 0.05 for trend. (DOCX 72 kb)

Additional file 7: Figure S4. Association of PONT Q192R polymorphism
with FPG, HbA1c, C peptide, and HOMA2-%3 after stratified analysis by
statin therapy (IPTW). Data are expressed as adjusted mean (95% Cl)
referring to ANCOVA; P value refers to multiple regression analysis. * P < 0.05
for trend. (DOCX 68 kb)
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