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Clinical diagnostic exome evaluation for an
infant with a lethal disorder: genetic
diagnosis of TARP syndrome and expansion
of the phenotype in a patient with a newly
reported RBM10 alteration
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Abstract

Background: Diagnostic Exome Sequencing (DES) has been shown to be an effective tool for diagnosis individuals
with suspected genetic conditions.

Case Presentation: We report a male infant born with multiple anomalies including bilateral dysplastic kidneys,
cleft palate, bilateral talipes, and bilateral absence of thumbs and first toes. Prenatal testing including chromosome
analysis and microarray did not identify a cause for the multiple congenital anomalies. Postnatal diagnostic exome
studies (DES) were utilized to find a molecular diagnosis for the patient.
Exome sequencing of the proband, mother, and father showed a previously unreported maternally inherited RNA
binding motif protein 10 (RBM10) c.1352_1353delAG (p.E451Vfs*66) alteration. Mutations in RBM10 are associated
with TARP syndrome, an X-linked recessive disorder originally described with cardinal features of talipes
equinovarus, atrial septal defect, Robin sequence, and persistent left superior vena cava.

Conclusion: DES established a molecular genetic diagnosis of TARP syndrome for a neonatal patient with a poor
prognosis in whom traditional testing methods were uninformative and allowed for efficient diagnosis and future
reproductive options for the parents. Other reported cases of TARP syndrome demonstrate significant variability in
clinical phenotype. The reported features in this infant including multiple hemivertebrae, imperforate anus, aplasia
of thumbs and first toes have not been reported in previous patients, thus expanding the clinical phenotype for
this rare disorder.
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Background
Since 2011, Diagnostic Exome Sequencing (DES) has
proven to be cost effective and beneficial in providing a
broad spectrum of previously undiagnosed patients with
molecular genetic diagnoses while broadening the pheno-
type of known genetic diseases. The American College of
Medical Genetics and Genomics recommends proper
utilization of DES in the clinical assessment of individuals
with a suspected genetic condition in which prior genetic

testing fails to lead to a diagnosis [1]. The application of
DES has allowed many undiagnosed patients who have
endured an extensive diagnostic odyssey to receive a de-
finitive genetic diagnosis [2–11].
Fetal and neonatal DES is being used more frequently in

cases of infant demise, with or without congenital anomal-
ies [4, 12]. Several studies have shown the clinical utility of
DES for prenatal and neonatal patients due to increasing
ease of DES and knowledge of the human genome [13–15].
Herein, we report a previously undiagnosed neonatal pa-

tient with a poor prognosis, who was identified to have a* Correspondence: zpowis@ambrygen.com
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hemizygous RBM10 alteration detected by DES establish-
ing a molecular genetic diagnosis of TARP syndrome.

Case presentation
Clinical description
The male proband was born after a prenatal course
complicated by anhydramnios and multiple fetal
anomalies. Prenatal ultrasound identified bilateral
renal aplasia, bilateral talipes, intrauterine growth re-
striction, and oligohydramnios that progressed to
anhydramnios. Amniocentesis was performed during
the pregnancy with normal karyotype and microarray.
He was delivered at 35 weeks with a birth weight of
1.320 kg (<2%), length 40 cm (<3%) and head circum-
ference 27 cm (<3%) to non-consanguineous parents
of Mexican descent. Additional anomalies noted after
birth included multiple hemivertebrae, imperforate
anus, bilateral undescended testes, aplasia of thumbs
and first toes, cleft palate, pulmonary hypoplasia, bra-
chycephaly, and low-set ears (Fig. 1). A renal ultra-
sound demonstrated atrophic, dysplastic kidneys with
scattered parenchymal cysts suggestive of cystic renal
dysplasia. No other renal anomalies, such as hydrone-
phrosis were seen. Multiple cardiac anomalies were
identified at autopsy including atrial septal defect,
unicuspid aortic valve, bicuspid pulmonic valve, and
coarctation of the aorta. A head ultrasound showed
an unusual head shape with flattening of the posterior
calvarium, potentially related to brachycephaly with
no other anomalies noted. An MRI was not per-
formed. The patient's family history is unremarkable.
The infant’s prognosis was poor due to severe pulmon-

ary hypoplasia. Whole exome testing was sent shortly
after birth with a trio of the infant and parental samples.
The infant died at day two of life from respiratory
failure.

Methods
Exome library preparation, sequencing, bioinformatics,
and data analysis were performed as previously de-
scribed [4, 16–18]. Briefly, samples were prepared using
IDT xGen Exome Research Panel V1.0 and sequenced
using paired-end, 150-cycle chemistry on the Illumina
HiSeq 2500 (Illumina, San Diego, CA). Approximately
92% of characterized Mendelian disease genes are fully
covered (100%) at > 20X (Farwell et al. [17]). The se-
quence data were aligned to the reference human gen-
ome (GRCh37) and variant calls were generated using
CASAVA and Pindel [19]. Stepwise filtering included
the removal of common SNPs, intergenic and 3’/5’
UTR variants, non-splice-related intronic variants, and
lastly synonymous variants. Variants were then filtered
further based on family history and possible inheritance
models. Data are annotated with the Ambry Variant

Fig. 1 Clinical features. a. Features including brachycephaly, low set
ears consistent with previous patients reported with TARP syndrome.
b. Absent thumb. c. Aplasia of first toes
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Analyzer tool (AVA) [20]. Identified candidate alter-
ations were confirmed using automated fluorescence
dideoxy sequencing.

Results
Exome sequencing of the family trio (proband, mother,
and father) resulted in a mean fold-coverage of captured
regions of 135.04x per sample, with >98% covered with
at least 10x coverage, and an average mean quality score
of 34.56. (Additional file 1: Table S1). Family history in-
heritance model filtering based on autosomal and X-
linked dominant and recessive and Y-linked inheritance
models of the proband, mother, and father revealed 24
unique alterations in 17 candidate genes. Manual review
of each alteration to rule out sequencing artifacts and
polymorphisms along with medical interpretation to rule
out genes lacking clinical overlap with the patient's evalu-
ated phenotype (Additional file 2: Table S2) resulted in 1
gene (1 unique alteration) being considered as a candidate
(Additional file 3: Table S3). A hemizygous alteration with
potential clinical relevance, maternally inherited (RBM10)
c.1352_1353delAG (p.E451Vfs*66) (Chr X:47040717-
47040718), was confirmed by using automated fluores-
cence dideoxy sequencing (Additional file 4: Figure S1).
To our knowledge, the c.1352_1353delAG alteration has
not been previously reported in dbSNP, the NHLBI Exome
Sequencing Project (ESP) [21], the ExAC database [22] or
the 1000 Genomes database. [10].
The full length protein spans 930 residues and consists

of six identified domains (Fig. 2). This alteration results
in loss of over half of the native protein sequence, in-
cluding the octamer repeat (OCRE) [23], C2H2-Zinc,
and G-patch domains. These domains have been shown,
by truncation and domain deletion in the closely related
protein RBM5, to be important for spliceosome assem-
bly and recruitment to pre-mRNA [24] In particular, it
has been shown that the OCRE domain binds to the C-
terminal tail of snRNP core proteins [25]. Therefore, this
alteration is predicted to cause loss of function either
through nonsense-mediated decay or loss of functionally
important protein domains and is interpreted as a
pathogenic mutation.

Discussion and conclusions
Whole exome sequencing and bioinformatics analysis of
a male neonate of Mexican ancestry with multiple

congenital anomalies was performed prior to his death
at 2 days of age. Testing identified a maternally inherited
hemizygous RBM10 mutation. While rapid exome test-
ing would not have benefitted this particular case, it is
possible that rapid testing could aid additional patients
with RBM10 alterations in prognosis and knowledge to
expand the clinical phenotype.
While previous testing had failed to provide a diagnosis

for the proband, exome sequencing was able to determine
a cause post-mortem based on the features evident before
his death. This unique case highlights the power of whole
exome sequencing as a diagnostic tool even after the pa-
tient is deceased. Post-mortem discovery of the cause of
this patient’s disease may help the parents with future re-
productive decision making. The family has the option of
preimplantation genetic diagnosis, early prenatal diagnosis
in a future pregnancy, adoption, or to avoid future preg-
nancies. In addition, carrier testing is available for at-risk
maternal relatives including three maternal aunts to our
proband. When an infant is born with multiple anomalies,
identifying a cause is essential for the family to determine
recurrence risk in a future pregnancy.
The RBM10 gene is located on chromosome Xp11.23

and encodes the RNA binding motif protein 10 (OMIM
300080), originally called RNA binding protein S1-1,
which participates in alternative splicing of apoptosis-
related genes [26, 27]. Hemizygous alterations in RBM10
cause the X-linked recessive disorder TARP (Talipes
equinovarus, Atrial septal defect, Robin sequence, and
Persistent left superior vena cava) syndrome. TARP syn-
drome is a disorder originally described by Gorlin et al.
as lethal in males associated with talipes equinovarus,
congenital heart defects, and Robin sequence (micro-
gnathia, glossoptosis, and cleft palate) [28]. Additional
findings reported in patients with pathogenic variants in
RBM10 include dysmorphic features (hypertelorism, ear
abnormalities, wide mouth with downturned corners,
upturned nose, supraorbital ridges), airway abnormal-
ities, high arched palate, cryptorchidism, oligohydram-
nios, intrauterine growth restriction, failure to thrive,
rocker bottom feet, hypotonia, cranial nervous system
abnormalities, postaxial pes polydactyly, cutaneous syn-
dactyly, sensorineural hearing loss, developmental delay,
and seizures [26, 28, 29].
Our patient has the overlapping features of intrauterine

growth restriction, complications of oligohydramnios,

Fig. 2 Domain structure diagram of RBM10 showing locations of domains (grey rectangles) and sequence biased regions (grey squares). Position
of alteration shown with teal arrow, native sequence lost due to this alteration outlined in red, and the alternative 66 amino acid C-terminal
sequence gained is depicted as a teal line. No structure or function was identified for this gained sequence

Powis et al. BMC Medical Genetics  (2017) 18:60 Page 3 of 5



small size, cleft palate, pulmonary hypoplasia, a wide an-
terior fontanelle, cryptorchidism renal anomaly seen in
other patients with TARP syndrome. His other features in-
cluding multiple hemivertebrae, imperforate anus, aplasia
of thumbs and first toes have not been reported in previ-
ous patients. While these additional features are present
in other additional genetic conditions, due to the age of
death, additional clinical diagnoses could not be made and
a second pathogenic alteration was not found to explain
these features.
The majority of cases reported have resulted in pre- or

post-natal male lethality with the exception of two re-
ported patients, one alive at 20 months and one alive at
age 3 years and 7 months [26, 29]. Gripp et al. postu-
lated that neonatal lethality was due to cardiac conduc-
tion defects, a finding not seen in our patient. To date,
there have been no symptoms reported in carrier fe-
males and pathogenic variants reported in RBM10 have
been limited to loss of function alleles [26]. Therefore
knowledge of the maternally inherited alteration may in-
crease anxiety to due the recurrence risk, but can pro-
vide reassurance as additional health surveillance of the
mother would not be necessary.
Previous reported cases of TARP syndrome demon-

strate significant variability in clinical phenotype. Here,
we report an additional patient with a pathogenic
RBM10 alteration demonstrating expansion of the clin-
ical phenotype for this rare disorder. Diagnosis by DES
is indispensable as the known phenotype of TARP ex-
pands and as limited time is often available to perform
genetic testing in affected infants.
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