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Abstract

Background: Constitutive activation of the PI3K-AKT-mTOR pathway (mTOR pathway) underlies megalencephaly in
many patients. Yet, prevalence of the involvement of the PI3K-AKT-mTOR pathway in patients with megalencephaly
remains to be elucidated, and molecular diagnosis is challenging. Here, we have successfully established a combination
of genetic and biochemical methods for diagnosis of mTOR pathway-associated megalencephaly, and have attempted
to delineate the clinical characteristics of the disorder.

Methods: Thirteen patients with an increased head circumference and neurological symptoms participated in the
study. To evaluate the activation of the mTOR pathway, we performed western blot analysis to determine the
expression levels of phosphorylated S6 ribosomal protein (phospho-S6 protein) in lymphoblastoid cell lines from 12
patients. Multiplex targeted sequencing analysis for 15 genes involved in the mTOR pathway was performed on 12
patients, and whole-exome sequencing was performed on one additional patient. Clinical features and MRI findings
were also investigated.

Results: We identified pathogenic mutations in six (AKT3, 1 patient; PIK3R2, 2 patients; PTEN, 3 patients) of the 13
patients. Increased expression of phospho-S6 protein was demonstrated in all five mutation-positive patients in whom
western blotting was performed, as well as in three mutation-negative patients. Developmental delay, dysmorphic
facial features were observed in almost all patients. Syndactyly/polydactyly and capillary malformations were not
observed, even in patients with AKT3 or PIK3R2 mutations. There were no common phenotypes or MRI findings among
these patients.

Conclusions: A combination of genetic and biochemical methods successfully identified mTOR pathway involvement
in nine of 13 (approximately 70%) patients with megalencephaly, indicating a major contribution of the pathway to the
pathogenesis of megalencephaly. Our combined approach could be useful to identify patients who are suitable for
future clinical trials using an mTOR inhibitor.
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Background
Megalencephaly is accompanied by hyperplasia of the
brain parenchyma, and is defined by a head circumfer-
ence greater than +2 SD from the mean of the general
population. Various diseases involve development of the
condition, including metabolic diseases, such as
Alexander disease and Canavan disease, and syndromes,
such as Sotos syndrome and Noonan syndrome [1].
In recent years, both megalencephaly-capillary malfor-

mation syndrome (MCAP, OMIM 602501) and
megalencephaly-polymicrogyria-polydactyly-hydroceph-
alus syndrome (MPPH, OMIM 603387) have been
shown to result from gain-of-function mutations in the
PI3K-AKT-mTOR pathway (mTOR-pathway) [2]. MCAP
and MPPH show very similar symptoms; the main symp-
toms are progressive megalencephaly, polymicrogyria,
capillary malformations, syndactyly, and connective
tissue dysplasia in the former [3–5], and progressive
megalencephaly, polymicrogyria, and polydactyly in the
latter [5–7]. Riviere et al. performed whole exome se-
quencing (WES) with a next-generation sequencer and
identified germline mutations in AKT3 and PIK3R2 and
a postzygotic mutation in PIK3CA in patients with
MCAP, MPPH, and overlapping phenotypes of MCAP
and MPPH [2]. Thereafter, Mirzaa et al. identified a
germline mutation in CCND2 in patients with MPPH
[8]. Moreover, a loss-of-function mutation in PTEN,
which suppresses the mTOR pathway, has been identi-
fied in autistic patients with macrocephaly [9, 10]. How-
ever, the prevalence of mTOR pathway involvement in
patients with megalencephaly remains to be elucidated.
The mTOR pathway is involved in various functions

including protein synthesis, lipid synthesis, autophagy,
and energy metabolism, and is fundamental to essential
biological functions. mTOR was originally discovered as
a target protein for the immunosuppressant rapamycin
[11, 12]. Rapamycin is used to treat tuberous sclerosis, a
disease caused by mutations in either of the genes TSC1
or TSC2, both of which are involved in the regulation of
the mTOR pathway [13, 14]. Elucidation of the molecu-
lar mechanisms underlying megalencephaly is crucial to
determine the value of investigating therapeutic agents,
such as rapamycin, in the context of mTOR pathway-
associated megalencephaly.
In this study, we conducted genetic and biochemical

analyses in 13 patients with increased head circumfer-
ence and neurological symptoms such as developmental
delay and epilepsy, and investigated clinical features and
imaging of mTOR pathway-associated megalencephaly.

Methods
Study subjects
We analyzed 13 patients with increased head circumfer-
ence (>2 SD) and neurological symptoms such as

developmental delay or epilepsy. These patients were in-
cluded in this study, with a possibility of mTOR involve-
ment after other diseases had been ruled out. All patients’
disease was sporadic. Clinical examination failed to make a
specific diagnosis for each patient. Experimental protocols
were approved by the Ethical Committee for the Study of
Human Gene Analysis at Nagoya City University Graduate
School of Medical Sciences (approval number 164). Writ-
ten informed consent was obtained from all patients or
their parents.

Whole-exome sequencing
We performed WES in one parent-patient (Patient 1)
trio because she had participated in another study of
WES on brain malformation. To do this, genomic DNA
was extracted from peripheral blood using the QIAamp
DNA Blood Midi Kit according to the manufacturer’s in-
structions (Qiagen, Hilden, Germany). Genomic DNA
was captured using the SureSelect XT Human All Exon
V5 capture library (Agilent Technologies, Santa Clara,
CA, USA), and sequenced using the Illumina HiSeq
2000 (Illumina, San Diego, CA, USA) with 100 bp
paired-end reads. Exome data processing, variant calling
and variant annotation were performed as described pre-
viously [15].

Multiplex targeted sequencing
We performed multiplex targeted sequencing in 12 pa-
tients. Amplicon libraries of the target gene exons from
15 genes involved in the mTOR pathway were prepared
with an Ion AmpliSeq Custom Panel (Thermo Fisher
Scientific, Waltham, MA, USA). The number of exons,
amplicons, and total targeted bases were 300, 412, and
43216 bases, respectively. This panel allowed theoretical
coverage of 97.4% of the targeted sequences (Table 1).
The library was prepared using the Ion AmpliSeq Li-
brary Kit 2.0 (Thermo Fisher Scientific), according to
the manufacturer’s instructions. Emulsion PCR was
performed using the Ion OneTouch system (Thermo
Fisher Scientific) with the Ion OneTouch 200 Template
Kit (Thermo Fisher Scientific), according to the manu-
facturer’s instructions. Multiplex targeted sequencing
was performed with an Ion Torrent Personal Genome
Machine (PGM) system using an Ion PGM 200 Sequen-
cing Kit and an Ion 316 or 318 Chip (Thermo Fisher
Scientific) according to the manufacturer’s instructions.
Sequence data was analyzed using a CLC Genomic
Workbench 7.0 (CLC bio, Aarhus, Denmark) and de-
fault settings.

Validation analysis by Sanger sequencing
We performed conventional Sanger sequencing to validate
candidate mutations. We amplified the genomic regions
by PCR (primer sequences are available on request), and
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directly sequenced using an ABI 310 Genetic Analyzer
(Thermo Fisher Scientific), according to the manufac-
turer’s instructions.

Mutation analysis of CCND2
We further sequenced the final exon of CCND2 in pa-
tients with no candidate mutation by Sanger sequencing.

Lymphoblastoid cell lines
Epstein-Barr virus (EBV)-transformed lymphoblastoid
cell lines (LCLs) were established from patients’ periph-
eral blood using a standard method. LCLs were cultured
at 5% CO2 in RPMI medium (Sigma-Aldrich, Tokyo,
Japan) with 10% FCS, L-glutamine and an antibiotic.

Western blot analysis
Equal amounts of protein were boiled with SDS sample
buffer (45 mmol/L Tris–HCl, pH 6.8, 10% glycerol, 1%
SDS, 0.01% bromophenol blue, 50 mmol/L DTT).
Proteins in the lysates were separated by SDS-PAGE and
transferred to polyvinylidene difluoride (PVDF) mem-
branes (Millipore, Billerica, MA, Japan). Membranes were
blocked for 1 h with 5% dried skimmed milk in PBS with
0.1% Tween-20 (Sigma-Aldrich). Membranes were then
incubated overnight with primary antibodies against phos-
phorylated S6 ribosomal protein (phospho-S6) (Ser240/
244; diluted 1:1,000; Cell Signaling Technology, Danvers,
MA, USA), and GAPDH (diluted 1:10,000; Cell Signaling
Technology), followed by 1 h incubation with horseradish

peroxidase–conjugated secondary antibody (GE Healthcare,
Little Chalfont, UK). Bands were quantified using ImageJ,
and the intensity of phospho-S6 was normalized with that
of GAPDH. We obtained ratios to the normal control
values. Five normal controls showed the ratio of 1.02 ±
0.17. Thus, we adopted 5xSD as cut-off and considered
those of 2 or greater to be significantly increased and posi-
tive in this study.

Results
WES of patient 1 generated 5.86 giga bases of nucleotide
sequence. The average read depth of on-target regions
was 69.3. This analysis identified a de novo AKT3 het-
erozygous mutation [c.686A > G; p.(N229S)] (Table 2)
that has been reported previously [2, 16–18], and is con-
sidered pathogenic.
Multiplex target next-generation sequencing was per-

formed for another 12 patients. The median number of
total sequenced bases per patient, of mapped reads, and
of mean read length were 84.6 mega bases, 527 k reads,
and 160 bases, respectively. The average read depth of
the on-target regions was 1002-fold; 93.6% of the target
regions had above 100-fold coverage. Using this multi-
plex targeted sequencing, a de novo PIK3R2 heterozy-
gous mutation [c.1117G > A; p.(G373R)] was identified
in two patients, and PTEN heterozygous mutations
[c.640C > T; p.(Q214*), c.740 T > C; p.(L247S), c.1006C >
G; p.(Y336*)] were identified in three patients (Table 2).
Five mutations in patients for whom both parents DNA

Table 1 The panel of targeted genes involved in mTOR pathway

Gene Chr Number of exons Number of amplicons Total Bases Overall coverage (%)

PIK3CA 3 20 34 3407 98.3

PIK3CB 3 22 30 3433 98.7

PIK3CD 1 22 37 3355 97.6

PIK3R1 5 18 23 2506 100

PIK3R2 19 15 19 2337 79.2

PIK3R3 1 10 14 1486 100

PTEN 10 9 12 1302 97.6

PDPK1 16 14 19 1811 95.3

AKT1 14 13 22 1573 97.5

AKT2 19 14 18 1687 98.9

AKT3 1 14 17 1624 98.8

RHEB 7 8 8 635 95.1

MTOR 1 57 69 8220 99.7

TSC1 9 22 29 3834 100

TSC2 6 42 61 6006 96.5

Total 300 412 43216 97.4

Chr chromosome
Overall coverage means percent of coverage in target sequence
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were available for testing were confirmed to be de novo.
Only a mother was available for testing one of the PTEN
mutations [c.640C > T; p.(Q214*)], and was found to be
negative (Table 2). The missense mutation in PTEN
[c.740 T > C; p.(L247S)] was not reported previously. This
de novo mutation was located in the C2 domain that is in-
volved in binding to phospholipids in biological mem-
branes [19], and was indicated to be “deleterious” and
“possibly damaging” by in silico analysis with SIFT and
PolyPhen-2, respectively [20, 21]. Thus, we considered it
pathogenic according to the American College of Medical
Genetics and Genomics interpretation guidelines [22].
Other mutations were identical to previously reported
mutations, and were considered pathogenic [2, 23–25]. As
shown in Table 3, the allelic frequency of the mutated al-
lele detected by multiplex target next-generation sequen-
cing was approximately 50%. Hence, all mutations were
considered to be germline mutations.
For the remaining seven patients in whom we did not

detect any mutations by multiplex targeted sequencing,
the last exon of CCND2 was analyzed in addition, but
no mutations were detected. CCND2 is a recently de-
scribed new MPPH gene [8], and the last exon corre-
sponds to a mutational hotspot. CCND2 was not
included in the original targeted sequencing panel be-
cause it was reported after our panel was created. It is
true that Sanger sequencing has limitations in the identi-
fication of somatic mutations. However, all previous
CCND2 mutations are considered to be heterozygous
germline mutations, and thus at least major germline
mutations in CCND2 were excluded in our patients.
Next, we analyzed the expression level of phospho-S6

protein in LCLs available from 12 patients by western
blot analysis. Phospho-S6 protein lies downstream of the
mTOR pathway, and is a marker of pathway activation
[26, 27]. Of six patients for whom pathogenic mutations
were identified, LCLs were established from five (LCL
was not established for patient 5). All five patients
showed an apparent increase in phospho-S6 protein ex-
pression. In addition, the expression level was also ele-
vated in three of seven patients for whom no pathogenic

mutations were identified (Fig. 1). Patients’ phenotypes
are shown in Table 2. While all patients showed +2 SD
or larger in head circumference, the head circumference at
birth was not necessarily significantly large. Developmental
delay, dysmorphic facial features including prominent fore-
head, long head, and ocular hypertelorism were observed
in almost all patients. Syndactyly/polydactyly and capillary
malformations, which are considered main symptoms of
MCAP and MPPH, were not observed even in patients
with AKT3 or PIK3R2 mutations. Regarding brain MRI
findings, while ventriculomegaly, polymicrogyria and white
matter abnormalities were observed in all patients with
AKT3 and PIK3R2 mutations, no obvious abnormalities
were found in patients with PTEN mutations (Fig. 2,
Table 2). Phenotypes and MRI findings varied among the
three mutation-negative patients who showed in-
creased expression of phospho-S6 protein by western
blot analysis. Moreover, no apparent phenotypic dif-
ference was noted between these patients and the pa-
tients with neither a pathogenic mutation, nor an
increase in phospho-S6 expression.

Discussion
In this study, we identified constitutive activation of the
mTOR pathway in nine of 13 patients with megalence-
phaly of unknown etiology, indicating a significant role
for the mTOR pathway in pathogenesis of genetic mega-
lencephaly syndromes. We identified pathogenic muta-
tions through multiplex targeted sequencing or WES in
six patients. Of note is that all five mutation-positive pa-
tients in whom western blot analysis was performed
showed abnormal activation of the mTOR pathway. Ac-
cordingly, we did not detect pathogenic mutations in
four patients who did not show abnormal activation of
the mTOR pathway. Thus, western blot analysis of
phospho-S6 protein could be used as a biochemical
marker to suggest megalencephaly associated with the
constitutional activation of the mTOR pathway. It can
also aid in confirming the results of molecular genetics
analysis. Recently, Loconte et al. described three patients
with PIK3CA-related overgrowth syndrome, including
one patient with MCAP, and demonstrated the useful-
ness of a combination of genetic and biochemical
methods [28]. They used skin fibroblasts for biochemical
investigation, partially because some of their patients
showed somatic mosaicism involving only limited parts
of the limbs. Skin biopsy would be an important alterna-
tive method, particularly for patients with mosaicism,
but it is not easily applied as an initial investigation. Our
study demonstrated that blood could be used as a start-
ing material to find possible involvement of the mTOR
pathway.
In a report from Riviere et al., a PIK3R2 mutation

found at the same site [c.1117G > A; p.(G373R)] always

Table 3 Mutant allele frequency in multiplex target next-
generation sequencing

Subject Gene Mutation Mutant allele Total allele %

Patient 1a AKT3 p.(N229S) 43 78 55.1

Patient 2 PIK3R2 p.(G373R) 847 1828 46.3

Patient 3 PIK3R2 p.(G373R) 343 689 47.8

Patient 4 PTEN p.(Q214*) 1497 2922 51.2

Patient 5 PTEN p.(L247S) 238 500 47.6

Patient 6 PTEN p.(Y336*) 96 214 44.9
aThe mutation, which had previously been identified by WES, was reconfirmed
by target next-generation sequencing
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presented clinical symptoms of MPPH. PIK3CA muta-
tions were identified at multiple sites, and all but one
case showed MCAP. AKT3 mutations were found in pa-
tients with overlapping phenotypes or MPPH [2]. Thus,
genotype and phenotype correlate considerably with
each other. Nevertheless, syndactyly/polydactyly and ca-
pillary malformations, which are considered to be the
main symptoms of both MCAP and MPPH, were not
observed in patients with AKT3 or PIK3R2 mutations in
our study. Mutations in PTEN, which suppresses the
mTOR pathway, are also found in PTEN hamartoma
syndrome, such as Cowden disease, Bannayan syndrome,
and Proteus syndrome [19]. However, there is no evident
genotype–phenotype association. The PTEN mutation
[c.640C > T; p.(Q214*)] detected in our study has also
been previously reported in Bannayan syndrome [23], but
hamartomatous gastrointestinal polyposis or pigmented
patches on the penis was not noted in our patient at the
time of final evaluation. Another patient with a PTEN mu-
tation also had no major anomaly other than megalence-
phaly and dysmorphic facial features. Neither patient had
complications with tumors. While all patients showed a +2
SD or larger head circumference, the head circumference
at birth was not necessarily large, indicating that megalen-
cephaly in our patients was progressive. While develop-
mental delays were observed in all patients, patients with
AKT3 or PIK3R2 mutations had no meaningful words and
had a more severe disease phenotype than those with
PTEN mutations. Overall, no apparent differences in
phenotype could be identified between patients with or
without the involvement of the mTOR pathway and

between patients with or without identified pathogenic
mutations, suggesting genetic heterogeneity of the
disorder.
Regarding head MRI findings, enlargement of the

ventricle, polymicrogyria, and white matter abnormal-
ities were observed in all patients with AKT3 or PIK3R2
mutations, and seemed indicative of mTOR pathway in-
volvement. One mutation-negative patient, however, did
exhibit these features, and thus these findings are not
sufficiently specific to indicate all underlying pathogen-
esis. No abnormal MRI findings were observed in
patients with PTEN mutations. The lack of a cortical
anomaly has been reported for PTEN macrocephaly [10],
and it appears to be an indicator of PTEN involvement.
In our study, target sequencing was performed primar-

ily on 15 genes involved in the mTOR pathway. There-
fore, the first conceivable limitation is the possibility of
mutations in other genes that were not covered by our
gene panel. In addition, our gene panel do not cover the
entire exon region (the coverage ratio of PIK3R2 in par-
ticular is low at 79.2%), and the Ion PGM method offers
only limited indel detection. Nevertheless, our target se-
quencing is useful in early diagnosis in clinical settings
due to the lower costs and shorter turn-around time
than WES. Secondly, our strategy is limited when ana-
lyzing cases of mosaicism. Indeed, Riviere et al. per-
formed targeted ultra-deep sequencing (coverage of
more than 10,000 reads) of the PIK3CA mutation sites
in mutation-negative affected individuals, as well as in
known mutation carriers and control individuals [2].
This experiment detected additional low-level mosaic

Fig. 1 Representative western blot analysis of phospho-S6 protein levels in control and patient LCLs. Expression of phospho S6 (Ser 240/244) and
GAPDH in variable amounts of protein extract (total protein indicated by shaded bars) are depicted in the upper and lower panel, respectively.
After normalisation with GAPDH, there was increased expression of phospho-S6 in patients with mutations (Patient 1, 2, 4) and without mutations
(Patient 7, 8), compared to wild type (WT) and a patient without mutations (Patient 11)
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Fig. 2 MRI findings in PI3K-AKT-mTOR pathway-associated megalencephaly. T2-weighted axial images (a, b, d, e, g, h, j-l), T1-weighted coronal
image (c), T2-weighted images (f, i) of patients (a-c, Patient 1 with an AKT3 mutation [p.(N229S)] at 2 years of age; d-f, Patient 2 with a PIK3R2
mutation [p.(G373R)] at 2 years; g-i, Patient 3 with a PIK3R2 mutation [p.(G373R)] at 6 years; j, Patient 4 with a PTEN mutation [p.(Q214*)] at 2 years;
k, Patient 5 with a PTEN mutation [p.(L247S)] at 1 year and 9 months; l, Patient 8 without mutation at 4 years. In Patient 1–3, ventriculomegaly
(b, e, h), bilateral polymicrogyria that appears to be most severe in the perisylvian regions but is also present in other regions (a, c, d, f, g, i), and
an abnormally high intensity signal from white matter (b, e, h) were observed. The patient with PTEN mutations showed no abnormalities (j, k).
Patient 8, without mutation, showed only mild ventriculomegaly (l)
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mutations missed by Sanger sequencing. Although a
100-fold or greater depth was obtained for about 93% of
the target area with our target sequencing method, it is
still possible that low-level mosaics were not detectable
using this approach. Ultra-deep sequencing could be
performed to identify such low-level mosaicism. Our
biochemical analysis also used materials from peripheral
blood, and thus it could not identify activation of the
mTOR pathway in patients with mosaicism. Riviere et al.
reported that mTOR pathway activation was also con-
firmed by means of western blot analysis using LCLs
with low-level mosaics of a mutated allele frequency of
16% in the peripheral blood [2]. However, it is unknown
whether similar results could be obtained with our
protocol. It is also unknown whether similar results can
be obtained in patients with lower allelic frequencies of
the mutated allele. In rare cases, low-level mosaic muta-
tions are detected only in the saliva, buccal mucosa, and
LCLs. Therefore, affected tissues need to be used for
molecular diagnosis of patients with mosaicism. The
final limitation of this study is the small sample size.
Further studies with larger sample sizes are warranted to
perform WES or ultra-deep sequencing in patients who
are positive with western blot analysis but negative with
genetic analysis.
mTOR inhibitors are effective treatment for not only

cancer, but for the brain and renal tumors of tuberous
sclerosis [14]. They are also effective for epilepsy [13].
Moreover, their effects on intellectual disability and aut-
ism have also been demonstrated in experiments using
model animals [29, 30]. Thus, the mTOR pathway
associated-megalencephaly, a disease for which there is
no curative treatment available, could also be a thera-
peutic target. Seizure related death was reported in a pa-
tient with mTOR pathway-associated megalencephaly
[7], and thus development of a specific therapeutic inter-
vention is crucial.

Conclusions
A combination of genetic and biochemical methods was
able to identify the involvement of the mTOR pathway
in approximately 70% of patients with megalencephaly
of an unknown etiology. Our combined approach could
be useful to identify patients who are suitable for future
clinical trials using an mTOR inhibitor.
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