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Abstract

Background: DAVID syndrome is a rare condition combining anterior pituitary hormone deficiency with common
variable immunodeficiency. NFKB2 mutations have recently been identified in patients with ACTH and variable
immunodeficiency. A similar mutation was previously found in Nfkb2 in the immunodeficient Lym1 mouse strain,
but the effect of the mutation on endocrine function was not evaluated.

Methods: We ascertained six unrelated DAVID syndrome families. We performed whole exome and traditional
Sanger sequencing to search for causal genes. Lym1 mice were examined for endocrine developmental anomalies.

Results: Mutations in the NFKB2 gene were identified in three of our families through whole exome sequencing,
and in a fourth by direct Sanger sequencing. De novo origin of the mutations could be demonstrated in three of
the families. All mutations lie near the C-terminus of the protein-coding region, near signals required for processing
of NFΚB2 protein by the alternative pathway. Two of the probands had anatomical pituitary anomalies, and one
had growth and thyroid hormone as well as ACTH deficiency; these findings have not been previously reported.
Two children of one of the probands carried the mutation and have to date exhibited only an immune phenotype.
No mutations were found near the C-terminus of NFKB2 in the remaining two probands; whole exome sequencing
has been performed for one of these. Lym1 mice, carrying a similar Nfkb2 C-terminal mutation, showed normal
pituitary anatomy and expression of proopiomelanocortin (POMC).
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Conclusions: We confirm previous findings that mutations near the C-terminus of NFKB2 cause combined endocrine and
immunodeficiencies. De novo status of the mutations was confirmed in all cases for which both parents were available. The
mutations are consistent with a dominant gain-of-function effect, generating an unprocessed NFKB2 super-repressor
protein. We expand the potential phenotype of such NFKB2 mutations to include additional pituitary hormone deficiencies
as well as anatomical pituitary anomalies. The lack of an observable endocrine phenotype in Lym1 mice suggests that the
endocrine component of DAVID syndrome is either not due to a direct role of NFKB pathways on pituitary development,
or else that human and mouse pituitary development differ in its requirements for NFKB pathway function.
Background
Deficit in anterior pituitary function (hypopituitarism)
and common variable immune deficiency (CVID, MIM
[607594]) represent two very different clinical presenta-
tions. Mutations in several genes have been associated
with each of these conditions, but until recently no gene
has been associated with deficiencies in both systems in
the same patients. Several years ago we identified such
patients in three families as part of a national screen for
hypopituitarism in France, and defined a novel disorder
which we named DAVID syndrome (for Deficient Anter-
ior pituitary with Variable Immune Deficiency) [1]. At
the time it was not obvious whether these patients rep-
resented a shared molecular etiology or a coincidental
overlap of two otherwise uncommon pediatric condi-
tions, although there were at least two previous isolated
case reports with similar clinical descriptions [2,3]. Chen
et al recently reported mutations in the NFKB2 gene in
two families from Utah with features consistent with our
definition of DAVID syndrome (immunodeficiency with
hypogammaglobulinemia, plus central pituitary defi-
ciency), one mutation of which was consistent with de
novo germ line origin [4]. Several additional groups have
since reported mutations near the C-terminus of NFKB2,
in patients with features overlapping DAVID syndrome,
although not all patients showed the endocrine aspect of
the phenotype [5-7].
Methods
Research ethics approval was obtained from the review
boards of the Centre de Recherche du CHU Ste-Justine, and
of the Assistance Publique-Hôpitaux de Marseille. Written
informed consent for the study and for publication of the
patients’ anonymous details and images were obtained from
the participants or their parents. Clinical studies were
performed as described in the Additional file 1. All experi-
mental procedures with laboratory animals were approved
by the IRCM Animal Protection Committee and followed
guidelines and regulations of the Canadian Council of
Animal Care. Whole exome sequencing on DNA from per-
ipheral blood leukocytes was performed using standard
methods and as previously described (see Additional file 1
for additional details) [8]. PCR-based Sanger sequencing
with fluorescent capillary electrophoresis was performed
using standard methods, and results were visualized using
Mutation Surveyor (Soft Genetics, Inc.) Numbering in this
study refers to Refseq entry NM_001077494.3, equivalent to
isoform a, consistent with the usual amino acid numbering
in functional studies of NFKB2 protein and the non-
canonical processing pathway. Nucleotide numbering for
mutations begins at the first A of the initiating methionine
ATG.
Lym1 mice were obtained from the Walter and Eliza Hall

Institute (Victoria, Australia). Histology and immunohisto-
chemistry were performed as previously described [9]. See
Additional file 1 for additional details.
Results and discussion
Our original French probands, recruited from different
geographic regions through the “Genhypopit” network,
[10] were noted to have immunodeficiencies of varying
severity with recurrent childhood infections and hypo-
gammaglobulinemia, in addition to ACTH deficiency
(patients A1, B1, C1, C2, see Figure 1, our original publi-
cation for full clinical details, and Additional file 1 for
updated phenotypes; C2 was deceased prior to this
study) [1]. Patients A2, A3 and C3 had immune but not
endocrine deficiencies. Patient C1 also had a growth
hormone deficiency, and this patient has since developed
central (i.e. not thyroidal) hypothyroidism. The endo-
crine deficiencies appear to be longstanding, not acute
secondary to current infections. MRI scans of the pituit-
ary were performed for the probands, with hypoplasia
observed for patient B1 but not A1 or C1 (Additional
file 1: Figure S1A, B, C1, 2). Since the original report,
two new carriers were ascertained in family A, A5 and
A6 (see below and Additional file 1: Table S1 for clinical
details).
We performed whole exome sequencing on DNA from

A1, B1 and C1. In the exome data, only one gene carried a
rare, protein-altering variant in all three probands, the
gene NFKB2 (MIM [164012]). In NFKB2, proband A1 was
heterozygous for missense mutation p.A867V, proband B1
was heterozygous for missense mutation p.D865G, and
proband C1 was heterozygous for an 8 bp frameshift dele-
tion, p.R853Afs*29 (Figure 1A, B, C). All three mutations



Figure 1 DAVID syndrome families and NFKB2 gene structure with mutations. A-D, pedigrees showing genotypes of sequenced individuals.
Symbols: Filled, immunodeficiency, ACTH deficiency, GH deficiency; lower half filled, immunodeficiency; lower half plus upper left quadrant filled,
immunodeficiency, ACTH deficiency; open, unaffected or unknown. n.a. DNA and clinical information not available. +/+, no mutation at any of
the three sites found in the families. E, structure of the NFκB2 protein (isoform A numbering), indicating the major functional domains, regulated
phosphorylated serines 866 and 870, and sites of mutations reported here, by Chen, Liu, Lee, Lindsley et al, or at the orthologous site in the Lym1
mouse (Tucker et al). The vertical arrow above the domain cartoon indicates approximate site of proteolytic cleavage of p100, which releases the
amino-terminal p52 active fragment. RHD, rel homology domain; ARDs, ankyrin repeat domains; DD, death domain; NRD, NIK response domain.
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were verified by PCR-based Sanger fluorescent sequencing
(Additional file 1: Figure S3A-E). Sequencing confirmed
that both parents were negative in peripheral blood DNA
for the mutations found in the probands in families B and
C, as was the one sampled parent in family A. In families
A and B, all of the sampled unaffected relatives were
negative for the familial mutation (data not shown). Two
children of A1, A5 and A6, were heterozygous for the fa-
milial mutation (data not shown). One child (A6) showed
a clinical phenotype with recurrent infections and im-
munodeficiency, while A5 had moderate immunoglobulin
deficiency with no clinical signs as yet. In family C,
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affected sibling C3 of the proband also carried the familial
mutation. No additional pathogenic variants were found in
any of the probands in targeted exons of genes otherwise
known to cause hypopituitarism (see Additional file 1).
There were rare protein-altering variants detected in several
other genes associated with common variable or severe im-
munodeficiency, some in B1 and some in C1, but none in
any two probands together (see Additional file 1: Table S2).
A fourth patient with DAVID syndrome was independ-

ently ascertained, previously only reported in abstract form
[11]. This patient (D1, see Figure 1, Additional file 1: S2))
was asthenic with immunodeficiency from an early age, suf-
fered hair loss and onychodystrophy, and had low ACTH
before and after CRH stimulation. All other pituitary func-
tions were normal, and MRI showed hypoplastic anterior pi-
tuitary (Additional file 1: Figure S1D, see Additional file 1
for more details). The two C-terminal coding exons of
NFKB2 were directly sequenced in DNA from patient D1,
using PCR-based Sanger technology. The patient was het-
erozygous for a truncating mutation also at amino acid pos-
ition 853, p.R253X (Figure 1D). This was not the same as
the frameshift mutation at the same residue in family C.
The mutation was not present in blood DNA from either
parent (data not shown).
All variants have been submitted to ClinVar and assigned

preliminary accession numbers pending database curation:
c.2556_2563del SCV000172085; c.2594A >G SCV0001720
86; c.2600C >T SCV000172087; c.2557C >T SCV00017
2088.
Our genetic findings strongly implicate NFKB2 as the

causal gene for DAVID syndrome in our patients, particu-
larly taking into account similar mutations found by two
other groups in similar patients. In all we identified four dif-
ferent heterozygous mutations, two protein-truncating and
two missense variants, near the C-terminus of the protein
coding region of NFKB2, a region required for the correct
processing of the primary translation product (Figure 1E)
[12,13]. In the three families (B, C, D) where both parents
could be sampled, neither parent carried the mutation in
DNA from peripheral lymphocytes, consistent with the
mutations being germline de novo; family A with only one
parent available is also compatible with this model of trans-
mission. The occurrence of two affected siblings in family
C is completely consistent with the proposed de novo germ
line origin of the mutations. Although uncommon, such
mutations may arise in mitotic germ line clones, either in
testes or ovaries, and clonally expand, giving rise to
mutation-carrying post-meiotic gametes repeatedly, poten-
tially over a period of years. Intrafamilial recurrence in mul-
tiple affected siblings with presumptive de novo pre-meiotic
germ line origin has been reported in numerous studies of
unrelated genetic disorders [14-18].
The mutation in family B of Chen et al is identical to

the mutation in our family D at the nucleotide and protein
level (p.R253X, Figure 1E) [4]. These probably represent
independent mutational events, although the ethnicity of
their family was not reported. In the family reported by
Liu et al., the phenotype co-segregates with a frameshift
mutation beginning one amino acid upstream of phos-
phorylated serine 865. It should be noted that hypoplastic
pituitary anatomy as visualized by MRI was not reported
by either Chen or Liu et al, whereas two of our patients
have anatomical pituitary defects. Similarly, the mutation
p.D865G reported by Lee et al is the same as that found
in our family B [5]. Lee et al demonstrated that this muta-
tion deleteriously affected NFKB2 protein processing in
response to activation of the non-canonical pathway.
Oddly, all three patients of Lee et al are reported to have
alopecia areata, which we did not observe in our patient
B1, whereas their patients lacked an overt endocrine
deficiency.
The unique association of ACTH deficiency with com-

bined variable immunodeficiency in DAVID syndrome sug-
gested that NFKB2 might have a critical role in pituitary
development, particularly for differentiation of ACTH-
producing corticotrope cells. A similar mutation near the
C-terminus of the murine Nfkb2 ortholog was previously
identified in a large scale mouse mutagenesis screen for
cellular immunodeficiency [19]. This Lym1 strain shows
severely reduced viability as homozygotes, although hetero-
zygotes are viable and fertile. The mice show multiple as-
pects of immunodeficiency similar to DAVID syndrome,
including a reduced B cell compartment and reduced anti-
gen response with hypogammaglobulinemia and auto-
immune response in heterozygotes. However the endocrine
status of these mice was not previously described, nor was
the anatomical development of their hypothalamus and pi-
tuitary. We assessed pituitary development in the Lym1
mice at various ages. Unexpectedly, the gross morphology
of pituitaries from wild-type and Lym1heterozygous or
homozygous mutant pituitaries did not reveal any obvious
anatomical defect either in young mice (Figure 2A, E, I), or
in older animals (Additional file 1: Figure S4). Expression of
Pomc was assessed using ACTH immunofluorescence, and
the differentiation status of corticotropes and melanotropes
was assessed using immunostaining for Tpit (Tbx19) Dif-
ferentiation of anterior lobe corticotropes and intermediate
lobe melanotropes appeared normal in distribution and cell
numbers (Figure 2C, G, K, S4) and expression of Pomc
was not obviously affected by the Lym1 mutation
(Figure 2B, F, G, S4). Histological analysis of adrenals from
mice of the three genotypes also did not reveal any defect
(Figure 2D, H, L). In separate experiments using expres-
sion array profiling, we have documented that both Nfkb1
and Nfkb2 are expressed in the adult mouse anterior pitu-
itary (see Additional file 1: Figure S5).
NFκB2 is synthesized as a large precursor (p100) that

must be processed to release the active N-terminal rel-



Figure 2 Histology of Lym1 mutant mouse pituitaries and adrenals. HE staining of pituitaries (A, E, I) and adrenals (D, H, L) from WT (A, D),
heterozygous (Nfkb2Lym1/+) or homozygous (Nfkb2Lym1/Lym1) newborn mice. Staining of pituitaries with anti-ACTH (B, F, J) or anti-Tpit (C, G, K)
antibodies in wild type, heterozygous, and homozygous mutant mice respectively. AL: anterior lobe, IL: intermediate lobe, PL: posterior lobe. Scale
bars are shown.
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homology domain (RHD, p52). Processing of NFκB2 is
tightly regulated via the non-canonical pathway, with
most protein remaining unprocessed until the cell re-
ceives an appropriate signal via receptors such as LTβR,
BAFFR, RANK or CD40 [12,20,21]. Signalling leads to
phosphorylation of specific serines near the C-terminus
of NFκB2, including S866 and S870, via a pathway that
employs the NIK and IKKA kinases [12]. This in turn
leads to cleavage by the proteasome to produce the
RHD p52 fragment. The occurrence of missense muta-
tions bracketing S866 in two of our families suggests
that these residues are important for recognition of the
site by its kinase. Unprocessed full-length NFκB2 p100
can act as an IκB-like inhibitor [12,22]. Mutations in
NFKB2 leading to a protein that is unable to proceed via
the non-canonical pathway, but is otherwise functional,
are therefore anticipated to generate a dominant nega-
tive repressor, which could block the action of multiple
RHD-dimers. The tight clustering of six different muta-
tions in human DAVID syndrome patients in the region
of NFKB2 regulated by the non-canonical pathway
(Figure 1E) is likely related to the specificity and rarity
of the phenotype. It should be noted that mutations in
NFKB2 have not been reported in cases of isolated an-
terior pituitary deficiency, lacking an immunodeficiency
component.
The pathology we observed in the Lym1 mice is incon-

sistent with an effect of the Nkfb2 mutation in that strain
at the level of primary pituitary development. Alterna-
tively, the human endocrine phenotype might potentially
result from an autoimmune reaction, consistent with the ob-
served alopecia in several DAVID patients. Nfkb2 has been
shown to play a role in acquired self-tolerance in knockout
mice [23]. Mice accumulating p100 as a result of defects in
or upstream of Nfkb2 show mild osteopetrosis, [19,24] and
the RHD system is known to play a role in bone metabolism
[25]. However, our DAVID syndrome patients carrying
NFKB2 mutations have normal bone mineral density (T.
Brue and M.-H. Quentien, pers. comm.).
The occurrence of GH and TSH deficiencies in our pa-

tient C1, as well as the abnormal pituitary anatomy observed
in patients B1 and D1, constitute an expansion of the
phenotype for this gene defect. We have previously reported
that severe neonatal cortisol deficiency may be associated
with transient GH deficiency [26] but an association with
TSH deficiency is a novel observation. The subclinical
phenotype of patient A5 is indicative of variable penetrance
even in the same family, or a possibly delayed onset of the
phenotype. The terminology of ‘central adrenal’ deficiency
in other papers describing NFKB2 mutations may be overly
restrictive, as the endocrine deficiencies among our patients
are not restricted to hormones affecting adrenal function. A
corticotropin-releasing factor test of patient D1 was consist-
ent with a pituitary and not an hypothalamic defect.
We recently ascertained a fifth case (E1) with DAVID

syndrome, in an unrelated French patient with both par-
ents unaffected (but not sampled). Sanger sequencing of
the two C-terminal coding exons of NFKB2 was negative
for any variation. Thus the phenotype of this patient re-
mains unexplained.
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A sixth, French-Canadian patient (F1), was ascertained
after being hospitalized at age 17 years for a renal granu-
loma with immunoglobulin M-complex glomeruloneph-
ritis, low IgG levels, and a diagnosis of possible common
variable immunodeficiency [27]. She was referred to Endo-
crinology due to primary amenorrhea and was found to
have hypothalamic hypogonadism and severe ACTH and
growth hormone deficiencies, although she was not of short
stature [28]. Pituitary MRI showed a small anterior pituitary
and a thin pituitary stalk with an ectopic posterior pituitary,
suggesting a congenital defect [29]. Exome sequencing of
DNA from this patient showed no pathogenic variants in
NFKB2, whereas all coding exons of the gene were well
covered. As is typical, several hundred heterozygous rare
potentially pathogenic variants were identified in the
complete exome analysis of this patient. The results for pa-
tients E1 and F1 suggest that genetic heterogeneity is likely
for DAVID syndrome, and that variable endocrine presen-
tation may be a hallmark of the disorder.
The rel homology domain transcription factor signalling

pathway is an active target of therapies for cancers espe-
cially breast and multiple myeloma [30,31]. Our results cau-
tion that broad inhibition of these pathways, or specific
inhibition of NFκB2 processing, could have long-term dele-
terious effects on central endocrine function. Monitoring
endocrine function may be indicated as a component of
drug trials targeting NFκB pathways.

Conclusions
We confirm previous findings that mutations near the C-
terminus of NFKB2 cause combined endocrine and im-
munodeficiencies. De novo status of the mutations was
confirmed in all cases for which both parents were avail-
able. The mutations are consistent with a dominant gain-
of-function effect, generating an unprocessed NFKB2
super-repressor protein. We expand the potential pheno-
type of such NFKB2 mutations to include additional pituit-
ary hormone deficiencies as well as anatomical pituitary
anomalies. The lack of an observable endocrine phenotype
in Lym1 mice suggests that the endocrine component of
DAVID syndrome is either not due to a direct role of NFΚB
pathways on pituitary development, or else that human and
mouse pituitary development differ in its requirements for
NFΚB pathway function.

Additional file

Additional file 1: Clinical description of the patients.
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