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Abstract
Background: Genetic factors make an important contribution to the aetiology of congenital
talipes equinovarus (CTEV), the most common developmental disorder of the lower limb. WNT7A
was suggested as a candidate gene for CTEV on the basis of a genome-wide scan for linkage in a
large multi-case family. WNT7A is a plausible candidate gene for CTEV as it provides a signal for
pattern formation during limb development, and mutation in WNT7A has been reported in a
number of limb malformation syndromes.

Methods: We investigated the role of WNT7A using a family-based linkage approach in our large
series of European multi-case CTEV families. Three microsatellite markers were used, of which one
(D3S2385) is intragenic, and the other two (D3S2403, D3S1252) are 700 kb 5' to the start and 20
kb from the 3' end of the gene, respectively. Ninety-one CTEV families, comprising 476 individuals
of whom 211 were affected, were genotyped. LOD scores using recessive and incomplete-
dominant inheritance models, and non-parametric linkage scores, excluded linkage.

Results: No significant evidence for linkage was observed using either parametric or non-
parametric models. LOD scores for the parametric models remained strongly negative in the
regions between the markers, and in the 0.5 cM intervals outside the marker map. No significant
lod scores were obtained when the data were analysed allowing for heterogeneity.

Conclusion: Our evidence suggests that the WNT7A gene is unlikely to be a major contributor
to the aetiology of familial CTEV.

Background
Congenital talipes equinovarus (CTEV), colloquially
known as "clubfoot", is a common developmental disor-
der of the lower limb, with an incidence of 1 – 7 per 1000

births in various populations [1]. In the UK 1–2 births per
1000 are affected [2]. CTEV is a three dimensional malfor-
mation immediately recognisable at birth; the ankle is in
the plantar flexed (equinus) position, the heel is inverted
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(varus) and the midfoot and forefoot are inverted and
adducted (varus). Epidemiological studies implicate mul-
tifactorial inheritance. Pedigree analyses have suggested a
major role of a single gene, with both variably penetrant
autosomal dominant and recessive patterns fitting the
data [3-5]. In a systematic review of the literature we
found that a family history of CTEV was present in 24–
50% of cases depending on the population studied [1].
Identification and characterization of the causative
gene(s) will contribute to our understanding and treat-
ment of clubfoot as well as the determinants of normal
limb growth and development.

Wnt genes encode a family of highly conserved cysteine
rich glycoproteins that play an important role in the nor-
mal developmental processes during embryogenesis [6,7]
and in carcinogenesis [8]. The Wnt family has at least 19
members; several of them are expressed in the limb, where
they control patterning, outgrowth and/or differentiation
[9]. WNT7A is known to be involved in limb development
[10-13]. In mouse [10] and chicken [14], Wnt-7a provides
a signal for pattern formation during limb development.
In human, mutations in WNT7A cause a range of limb
malformations including Fuhrmann syndrome and Al-
Awadi/Raas-Rothschild/Schinzel Phocomelia syndrome,
indicating the specific and conserved importance of
WNT7A in multiple aspects of vertebrate limb develop-
ment [13]. WNT7A is thus an excellent candidate gene for
CTEV. In 2005, Dietz and co-workers reported a genome
wide scan for linkage in a four generation CTEV family,
comprising 13 individuals with clubfoot and 41 unaf-
fected members [15]. The highest LOD score of 2.18 was
obtained for markers on chromosome 3, close to the
WNT7A gene. We therefore performed a linkage study of
the WNT7A locus in our large series of European multi-
plex CTEV families.

Methods
Recruitment of families
Children affected by clubfoot and their parents were
recruited through the United Kingdom support group for
children with lower limb deformities, STEPS, and through
the Dutch support group VOK (Fig 1). All families regis-
tered with STEPS and VOK as having a child affected by
clubfoot were invited to take part in the study. Parents
were contacted by mail and were asked whether they, and
their affected child, would participate. Recruitment took
place during 2001–2002. Fifty two percent of eligible fam-
ilies took part. Participants provided a buccal DNA sam-
ple, collected by mouthwash, or a cheek smear using a
Cytocell brush (Medical Packaging Co., USA). Parents,
and children who were old enough, provided their own
sample. Samples from young children were collected by
their parents using a cytocell brush. Mothers completed a
questionnaire on socioeconomic factors, ethnicity, the

pregnancy and birth of the index child, the nature of the
child's clubfoot (laterality, etc.), the child's other medical
conditions (to enable assessment of syndromic status),
family history of clubfoot, maternal reproductive history,
and maternal use of supplements and consumption of
alcohol during the index pregnancy. CTEV phenotype was
confirmed by asking parents to indicate which one of a
series of four photographs of foot deformities most
closely resembled their child's foot at birth, and by asking
them to select one of four medical terms from a list, which
included metatarsus varus, talus verticalis, ectrodactyly
and oligodactyly, as well as congenital talipes equinova-
rus. Where a family history of CTEV was declared on the
questionnaire, a study nurse (English or Dutch as appro-
priate) contacted the family by telephone. She sought fur-
ther details of the phenotype to exclude non-CTEV foot
deformity and to exclude syndromic CTEV in the
proband. She then constructed a pedigree of at least three
generations, explained our procedure for obtaining con-
sent for the study, and arranged further mouthbrush DNA
samples from siblings of the proband. If the proband's
parent agreed to contact other affected family members
and/or the parents as appropriate, they were sent a study
pack to pass to their relative. This pack contained mouth-
brush kits for the affected relatives, and other unaffected
relatives such as parents. Affected relatives (or their par-
ents in the case of children) were asked to complete a
questionnaire, which included the same questions about
phenotype (photographs and multiple choice medical
terms) as administered to the proband. In this manner, we
obtained DNA from at least two affected family members
and the proband's parents from 91 families. These fami-

Pedigree of an informative Dutch CTEV family used in this studyFigure 1
Pedigree of an informative Dutch CTEV family used 
in this study. Individuals affected by CTEV are indicated in 
black.
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lies comprised 91 affected probands, 22 affected, and 5
unaffected siblings of probands, 18 affected and 156 unaf-
fected parents of probands, and 80 affected and 104 unaf-
fected more distant relatives. In total, DNA samples from
476 individuals, 117 male and 94 female affected and 132
male and 133 female unaffected, were analysed in this
study.

The study was approved by the Grampian Research Ethics
Committee and the Medical Ethical Committee of the
Academic Medical Center in Amsterdam.

Genotyping methods
DNA was extracted from the cheek smears and mouth-
washes by using Instagene matrix (Bio-Rad, Hercules, Cal-
ifornia) and sodium hydroxide, respectively. Three short
tandem repeat markers were selected for DNA amplifica-
tion. D3S2403 and D3S1252 are linked to the gene
WNT7A. D3S2403 is 700 kb 5' to the start of the gene
while D3S1252 located 20 kb from the 3' end of the gene.

D3S2385 is within an intron (Fig 2). The primers were flu-
orescence labelled (Sigma). Primer sequences are in Table
1. Amplification products were identified and quantified
by use of capillary electrophoresis on an ABI 3100
sequencer and by use of GeneScan analysis software (ver-
sion 3.7.1, ABI Biosystems).

Linkage analysis
Genotypes were analysed for linkage using the package
GENEHUNTER [16]. Parametric and non-parametric
models were used, and inter-marker genetic distances
were estimated from physical map distances (1 cM/Mb).
The parametric models were autosomal recessive and
autosomal dominant with partial penetrance. The non-
parametric model (NPL, non-parametric linkage) imple-
mented by GENEHUNTER is described in Kruglyak et al
[16], and is a development of previous affected-pedigree-
member methods, allowing efficient use of multipoint
data.

The marker allele frequencies were estimated from one
randomly selected individual per pedigree. The frequen-
cies listed in order of increasing allele size were as follows
(frequencies set to 0.0001 are for alleles not observed in
our sample, since a frequency of 0 is not allowed by
GENEHUNTER):

D3S2403: 0.0001, 0.0001, 0.0173, 0.0878, 0.0216,
0.0001, 0.0043, 0.0288, 0.1685, 0.0894, 0.5763, 0.0057;

D3S2385: 0.0155, 0.2795, 0.472, 0.1988, 0.0342;

D3S1252: 0.69, 0.0001, 0.3099.

For the heterogeneity analysis, we used the facility of
GENEHUNTER to optimise the value of alpha (fraction of
linked families) to maximise the LOD score.

Results
Genotyping of the three markers was performed in 476
individuals from 91 families, which included 211 affected
cases. In the linkage analysis, we used both a simple reces-

Table 1: Details of STS markers linked to the WNT7A gene used in this study

Marker Primer sequence Gen Map* (cM) Physical location (bp)**

D3S2403 F: ACAGATTGAGACCATGTGTCA
R: CACACTCAAAATACATGAAGGC

37.20 13,147,397–13,147,709

D3S2385 F: GCTGTATTCGGGAGCATCTA
R: CCACCATGAAAGAATGGCTA

38.54 13,853,945–13,854,287

WNT 7A 13,835,083–13,896,619
D3S1252 F: TGTGGCCACTGAACTCTCTG

R: TCCAAGTGTTGAGAGCATGC
38.83 13,916,603–13,916,877

* Genetic map positions from Marshfield [27].
** Physical locations obtained through UCSC genome browser.

Schematic representation of WNT7A chromosomal regionFigure 2
Schematic representation of WNT7A chromosomal 
region. Genetic map positions are from Marshfield [27].
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sive model of inheritance (genotype penetrances 0/0/1)
and an incomplete penetrance dominant model (pene-
trances 0/0.33/0.33) since both models have been sug-
gested as plausible by previous studies [3,17]. The data
were also analysed using a non-parametric model. In this
case, the information content of the analysis (calculated
by GENEHUNTER) was between 0.27 and 0.29. In no case
was any significant evidence for linkage observed. In fact,
LOD scores for the parametric models remained strongly
negative in the regions between the markers, and in the
0.5 cM intervals outside the marker map (Table 2). No sig-
nificant lod scores were obtained when the data were ana-
lysed allowing for heterogeneity (results not shown). This
result shows that the WNT7A gene is not a major cause of
familial CTEV in this collection of families.

Discussion
WNT7A encodes a secreted protein that stimulates LMX-1
to confer dorsal patterning in the developing limb ecto-
derm [18]. The linkage findings of Dietz et al. [15] sug-
gested WNT7A as a highly plausible candidate gene for
CTEV. They used seven markers around WNT7A on chro-
mosome 3 in a linkage study of a single large family.
Marker D3S3608, about 0.16 Mb away from WNT7A, gave
the highest LOD score of 2.18. We used one marker intra-
genic to WNT7A, one downstream, and one D3S2403
upstream of D3S3608 to ensure that the region surround-
ing D3S3608 was excluded. This marker also allowed us
to exclude linkage to a gene upstream of WNT7A
expressed in skeleton, FIBULIN 2. We found no evidence

for linkage to any of these markers in this large study, and
thus we have shown that variation in either WNT7A or
FIBULIN 2 is very unlikely to be significant causes of
familial CTEV.

Samples from the 91 families studied represented 168
affected, and 92 unaffected meioses. It is very unlikely that
our ability to detect linkage was comprised by inadequate
power, as if inheritance were autosomal dominant with
perfectly informative markers, these meioses, could yield
a lod of 50 or so at theta = 0. Analyses were performed
using both plausible models of inheritance. Heterogene-
ity analysis gave no evidence that the linkage might be
present in a sub-set of families. Such a linkage study can-
not exclude genetic variation in WNT7A as a low pene-
trance risk factor for CTEV, nor can it exclude linkage in
rare families or in populations other than those European
populations studied. However, this candidate gene was
proposed on the basis of such linkage analysis, and this
study does exclude it as a major contributor to familial
congenital talipes equinovarus.

To date, a small number of genes have been implicated in
a small proportion of CTEV families. A mutation
(R279W) in the diastrophic dysplasia sulphate transporter
gene (DTDST) was reported as the aetiology of CTEV in
two sets of siblings of western French ancestry [19], but
this finding was not confirmed in a large series studied by
transmission disequilibrium test for linkage and associa-
tion [20]. A single missense mutation was once identified

Table 2: Results of linkage analysis

Position (cM)* Recessive Model LOD Incomplete penetrance LOD** Non-parametric score Non-parametric p-value

-0.5 -42.225244 -33.909119 0.50113 0.287155
-0.4 -44.768435 -35.992476 0.50248 0.286652
-0.3 -47.971668 -38.616184 0.50384 0.286191
-0.2 -52.351361 -42.183565 0.5052 0.285689
-0.1 -59.533471 -47.885138 0.50656 0.285229
0 - infinity -72.191026 0.50793 0.284728

0.14 -69.148113 -48.627625 0.57235 0.262384
0.28 -65.288751 -46.023141 0.63682 0.241056
0.42 -64.988176 -45.483255 0.70133 0.220786
0.56 -67.984864 -46.804102 0.76591 0.201567
0.7 - infinity -58.961596 0.83053 0.183456
0.71 -94.432148 -52.757392 0.8011 0.191547
0.72 -91.779782 -51.295166 0.77166 0.199903
0.74 -91.558237 -50.687057 0.74221 0.208489
0.75 -93.691707 -50.70706 0.71276 0.217304
0.76 - infinity -54.960933 0.68331 0.226347
0.86 -53.997125 -38.450649 0.68135 0.226971
0.96 -47.61052 -34.138501 0.6794 0.227558
1.06 -43.628903 -31.376063 0.67746 0.228183
1.16 -40.69302 -29.317393 0.67553 0.228773
1.26 -38.353692 -27.6683 0.6736 0.229363

* Positions in cM relative to D3S2403; D3S2385 and D3S1252 are at 0.7 and 0.76 cM respectively.
** Dominant model with penetrances of 0.33 for heterozygotes and homozygotes of disease allele.
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(M319K 956 T > A) in the homeodomain recognition
helix of the HoxD 10 gene that segregated with disease in
one large British family [21]. But after sequencing the
HoxD 10 coding and 5' and 3' untranslated regions in 190
patients and linkage analysis in one large family, this gene
was suggested not responsible for idiopathic clubfoot
[22]. Heck et al. [23] identified a variant allele in the
CASP10 gene that displays evidence of linkage and associ-
ation with simplex CTEV cases. They further genotyped 40
SNPs spanning seven apoptotic genes including CASP10
in 210 simplex trios and 139 multiplex families confirm-
ing that the variation in these genes may play a role in
development of clubfoot [24]. We recently found that pol-
ymorphism of the methylenetetrahydrofolate reductase
gene (MTHFR) was associated with clubfoot [25]. Also
recently N-acetylation genes, NAT1 and NAT2 were
reportedly associated with CTEV [26]. Despite rapid
recent progress in the molecular basis of CTEV, a "major
gene" as suggested by the segregation analyses remains
elusive. The best way forward for CTEV research may be
collaborative studies to perform high density genome-
wide scans for linkage and association.

Conclusion
Our evidence suggests that the WNT7A gene is unlikely to
be a major contributor to the aetiology of familial CTEV.
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