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Abstract
Background: Population heterogeneity may be a significant confounding factor hampering detection and verification of
late onset Alzheimer's disease (LOAD) susceptibility genes. The Amish communities located in Indiana and Ohio are
relatively isolated populations that may have increased power to detect disease susceptibility genes.

Methods: We recently performed a genome scan of dementia in this population that detected several potential loci.
However, analyses of these data are complicated by the highly consanguineous nature of these Amish pedigrees.
Therefore we applied the Combinatorial Mismatch Scanning (CMS) method that compares identity by state (IBS) (under
the presumption of identity by descent (IBD)) sharing in distantly related individuals from such populations where
standard linkage and association analyses are difficult to implement. CMS compares allele sharing between individuals in
affected and unaffected groups from founder populations. Comparisons between cases and controls were done using
two Fisher's exact tests, one testing for excess in IBS allele frequency and the other testing for excess in IBS genotype
frequency for 407 microsatellite markers.

Results: In all, 13 dementia cases and 14 normal controls were identified who were not related at least through the
grandparental generation. The examination of allele frequencies identified 24 markers (6%) nominally (p ≤ 0.05)
associated with dementia; the most interesting (empiric p ≤ 0.005) markers were D3S1262, D5S211, and D19S1165. The
examination of genotype frequencies identified 21 markers (5%) nominally (p ≤ 0.05) associated with dementia; the most
significant markers were both located on chromosome 5 (D5S1480 and D5S211). Notably, one of these markers
(D5S211) demonstrated differences (empiric p ≤ 0.005) under both tests.

Conclusion: Our results provide the initial groundwork for identifying genes involved in late-onset Alzheimer's disease
within the Amish community. Genes identified within this isolated population will likely play a role in a subset of late-
onset AD cases across more general populations. Regions highlighted by markers demonstrating suggestive allelic and/
or genotypic differences will be the focus of more detailed examination to characterize their involvement in dementia.
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Background
With over 4 million individuals affected with Alzheimer's
disease (AD) in the U.S., dementia of the Alzheimer's
Type (DAT) is the leading cause of dementia in the elderly.
These current estimates are projected to triple over the
next 50 years as the population ages [1-3]. AD has a com-
plex etiology with strong genetic and environmental
determinants. Tremendous evidence suggests the involve-
ment of at least three genes in early-onset autosomal dom-
inant AD. Amyloid precursor protein (APP on
chromosome 21) [4,5], presenilin I (PSEN1 on chromo-
some 14) [6-9], and presenilin II (PSEN2 on chromosome
1) [10,11] are all prominent early-onset Alzheimer's dis-
ease genes. Understanding of the more common late-
onset Alzheimer disease (LOAD), is centered on the role
of one universally accepted risk gene, the apolipoprotein
E locus (APOE) [12]. The APOE ε4 allele (frequency
approximately 16%) [13,14] acts in a dose-related man-
ner to increase risk for LOAD and decrease age-of-onset
[15,16]. Although its involvement is without question,
APOE accounts for less than half of late-onset AD suscep-
tibility [15]. Given the strong heritability of AD, other
genetic factors are likely to be involved. Multiple linkage
screens have been conducted to elucidate additional
regions harboring susceptibility genes for late-onset AD
[17-35]. While regions on chromosomes 9, 10 and 12 are
most consistently identified, candidate genes within those
regions have yet to be clearly implicated in AD. Mean-
while, numerous other regions have been implicated but
have not been the focus of detailed study due to the prom-
inence of 9, 10, and 12.

Though numerous promising LOAD candidate genes have
been examined, the lack of replication across studies has
made a definitive declaration of their involvement diffi-
cult (Reviewed in [36,37]). Genetic heterogeneity is likely
to be one of the underlying reasons for this lack of repli-
cation. Given this, one possible solution is to study popu-
lations likely to be more genetically homogeneous,
thereby enriching for a more homogeneous set of risk alle-
les. The North American Amish population is a relatively
isolated, genetically well-defined homogeneous popula-
tion, well-suited for this type of study. Further detail
regarding the establishment of the North American Amish
population has been described elsewhere [38-43]. While
there may be a number of LOAD susceptibility genes con-
tributing to disease in the general population, the rela-
tively homogeneous Amish population is likely to contain
a smaller set of risk alleles.

One challenge in performing linkage analysis in Amish
pedigrees is to utilize the extensive pedigree information
available while maintaining tractability of the computa-
tions. Due to their strong religious and cultural beliefs, the
Amish very rarely marry outside of their communities,

thereby promoting a genetically isolated population [38-
41]. This in turn has led to an elevated degree of consan-
guinity, yielding family pedigrees that contain many
loops that can often be traced back three or more genera-
tions. In fact, through use of the Anabaptist Genealogy
Database (AGDB), we find that 93% of our overall study
population of 460 individuals and more specifically 25/
27 (93%) of the individuals used in this study can be
traced back 10 generations to a single founding couple.
Moreover, 100% of individuals within our entire Amish
sample (460) belong to one very large extended pedigree
when allowing parent-child and marriage links to be
included [44]. Since LOAD cannot be ascertained until
late in life, affected individuals are usually only available
for genotyping in a single generation. Hence, by far, most
of the individuals in the pedigree have unknown pheno-
type and genotype status. It should be noted that there are
limited methodologies available to analyze disease gene
linkage utilizing such large complex pedigrees. One such
method is SimWalk2 which utilizes descent graph theory
and Markov Chain Monte Carlo (MCMC) simulation to
compute lod scores [45]. This is a computationally
demanding process and because of the uncertainty of
MCMC convergence, the accuracy of the scores obtained
may be difficult to assess.

Combinatorial mismatch scanning (CMS) is an alterna-
tive technique to search for IBS sharing in distantly related
individuals from isolated founder populations where
standard linkage and association analyses are difficult to
implement. While several other methods could be imple-
mented, this approach was used because of its simplicity
in examining existing data. This method was also chosen
because at the onset of analysis, we lacked the more
detailed knowledge of the inter-relatedness of our sample
often required to perform similar, but more sophisticated
approaches within large inbred pedigrees [46-48]. This
strategy is designed to circumvent the confounding issue
of genetic heterogeneity, by examining affected and unaf-
fected persons from relatively small founder populations
[49]. By genetically evaluating case and control individu-
als selected from such a population, whose common
ancestor is no more closely related than grandparents,
some prevailing problems in allelic association studies of
complex disease within generally outbred populations
can be avoided. Population stratification can lead to
allelic association and be misinterpreted as linkage dise-
quilibrium. In this approach, population stratification is
less of an issue due to the relative isolation and common
heritage of the study population. Another difficulty facing
genetic studies within large outbred populations is that
these populations are likely to exhibit locus heterogeneity.
Within an isolated population, the probability that the
risk allele of interest might have entered the gene pool
only once or rarely, provides a great advantage. This in
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turn will likely facilitate the distinction between true and
spurious association. Heath and colleagues highlight
another advantage of examining isolated populations by
alluding to the potential for detecting gene-gene interac-
tions [49]. These epistatic interactions may play a substan-
tial role in complex disease, effectively hampering the
ability to detect association using single locus methods
within heterogeneous populations. With reference to this
problem, there are good reasons to believe that epistatic
(gene-gene) interactions are ubiquitous in complex dis-
ease and may in fact be more important than single-gene
effects [50].

Methods
Subjects and phenotypes
The Amish often have large sibships and extensive pedi-
gree records that permit the accurate estimation of IBS
gene sharing to be accurately evaluated. The estimated
coefficient of inbreeding for the entire population is
0.0151, which is approximately equivalent to having sec-
ond cousins as parents [51]. This effect has led present-
day Amish to possess genes inherited identically from a
common ancestor at rates higher than observed in the
general population. By searching the Anabaptist Geneal-
ogy Database (AGDB) with the query software Ped-
Hunter, we have determined the level of relatedness of our
sample more precisely [44,52]. We calculated the average
kinship coefficient for our overall ascertained Amish sam-
ple to be 0.019 ± 0.00053 (mean ± SEM). This measure
demonstrates a significant difference from the average
kinship coefficients calculated for the within cases group
(0.011 ± 0.0013, mean ± SEM), the within controls group
(0.0094 ± 0.0011, mean ± SEM), and the between cases
and controls group (0.010 ± 0.00065, mean ± SEM).
These calculations provide us with additional confidence
that our cases and controls are more distantly related to
each other relative to our overall sample population.

The subjects included in this study are a subset of individ-
uals described in extensive detail elsewhere [43]. Briefly,
individuals enrolled in the study each were assigned to
one of three clinical impression categories; dementia
(probable or possible Alzheimer's disease); unclear
(includes mild cognitive impairment (MCI)); or unaf-
fected (cognitively normal). Participants were adminis-
tered the Mini-Mental State Exam (MMSE) [53], with
possible scores ranging from 0 to 30. All individuals scor-
ing 27 or greater were classified as cognitively normal/
unaffected. Those scoring 23 or less were classified as cog-
nitively impaired and labeled as probable dementia.
Those who scored 24–26 had additional neuropsycholog-
ical testing including the Dementia Rating Scale (DRS)
[54], the Boston Naming Test (BNT) [55], and a reading
subtest from the Wide Range Achievement Test-Revised
(WRAT-R) [56]. Persons were categorized as having mild

cognitive impairment if their DRS score fell below an age-
adjusted threshold. Each case was discussed and a consen-
sus "final" diagnosis was determined using all available
information. For analytical purposes, the cases were clas-
sified as affected (demented), unclear (includes MCI), and
unaffected (cognitively normal).

Five Amish pedigrees were included in this study. Three
families were from Elkhart and LaGrange counties in Indi-
ana, one extended family from Adams county Indiana,
and one extended family from Holmes county Ohio. The
extended pedigree from Adams county has been the sub-
ject of other previous and ongoing studies of dementia in
the Amish [16,57]. Among the 115 individuals who were
genotyped, 40 were classified as having dementia, 9 were
classified as unclear, and 66 individuals were unaffected.
To minimize chance IBS inheritance, individuals selected
for the CMS analysis were unrelated through the grandpa-
rental generation [49]. For this current study we identified
13 dementia cases and 14 cognitively normal individuals
who met this requirement. This study was undertaken
after Institutional Review Board review and approval.

Molecular analysis
Following informed consent, blood samples were col-
lected from each individual and genomic DNA was
extracted from blood using standard procedures. Cell
lines have been initiated on most sampled individuals. All
DNA samples were coded and stored at 4°C until used.

Markers were genotyped at both the Vanderbilt and Duke
laboratories for all DNA samples. Laboratory personnel
were blinded to pedigree structure, affection status, and
location of quality control samples. Duplicate quality
control samples were placed both within and across plates
and equivalent genotypes were required for all quality
control samples to ensure accurate genotyping. At the
Vanderbilt laboratory, marker primer sequences were
obtained from the Genome Database [58] or designed
with Primer3 software [59] and synthesized by Invitrogen
Life Technologies (Carlsbad, CA). Amplification was per-
formed in a PCR Express machine (ThermoHybaid, Need-
ham Heights, MA) with the following conditions: 94°C-4
min.; 94°C-15 sec., AT-30 sec., 72°C-45 sec. (35 cycles);
72°C-4 min. PCR products were denatured for 3 min. at
95°C and run on a 6% polyacrylamide gel (Sequagel-
6®from National Diagnostics, Atlanta, GA) for ~1 hr. at 75
W. Gels were stained with a SybrGold®rinse (Molecular
Probes, Eugene, OR) and scanned with the Hitachi Biosys-
tems FMBIOII laser scanner (Brisbane, CA). Marker geno-
typing at the Duke laboratory was performed using
fluorescence imaging (Molecular Dynamics SI Fluorim-
ager) and a semi-automated allele calling system [60].
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Hardy-Weinberg equilibrium calculations were per-
formed for each marker and Mendelian inconsistencies
were identified using PedCheck in the overall dataset [61].
Suspect genotypes were re-read by a different technician
or re-run as necessary to reduce errors. All microsatellite
markers were required to have >90% of possible geno-
types to be included in the analysis.

Statistical analysis
Comparisons between case and control genotype data for
the 407 microsatellite markers were conducted using the
R software package to perform Fisher's exact tests in r × c
Contingency Tables [62-64]. Each marker was examined
for both allele and genotype differences between individ-
uals affected with dementia and those without dementia.
The first test was for IBS allele frequency inequality
between the two classes, and the second test was for IBS
genotype frequency inequality between the two classes.

Fisher's exact test computes the probability p that the pat-
tern of alleles observed in the sample would be obtained
if there were truly no difference between the allele fre-
quencies among affected and unaffected individuals.
While our current sample size is adequate to detect mod-
erate to major effects (odds ratio of >6 with 80% power),
it does not preclude our ability to detect smaller effects
given that these power calculations are based on the
assumptions of complete independence of samples and
random sampling of the population, neither of which is
true.

To empirically evaluate the statistical significance of the
p-values computed in the CMS study, we permuted our
dataset. We randomly re-assigned affection status for
each of the 27 individuals maintaining the original total
of 13 cases and 14 controls. We then executed the
Fisher's exact test using the same allele and genotype data
in the original dataset for each of the 407 markers. The
distribution of p-values obtained from Fisher's exact test-
ing on 1000 randomized sets of data was then created for
both the allele and genotype comparisons to assess the
empiric thresholds. We would expect the Fisher's exact p-
value to match the p-value within the large distribution.
These permutations were needed to correct for any resid-
ual bias from unrecognized kinship correlation present.

Results
We tested 407 microsatellite markers for differences in
both allele frequency and genotype frequency between
Amish dementia cases and controls. We considered all
pointwise p-values and have chosen to report only mark-
ers demonstrating Fisher's exact p-values < 0.05 for either
allele or genotype frequency differences. This arbitrary
threshold was chosen to limit the results to be displayed
and to provide a reference point for discussion of markers
demonstrating nominally significant (albeit within the
null expectation given the number of markers examined)
evidence of association to dementia within our popula-
tion.

As an example, Table 1a shows the allele count data for
marker D5S211. There are eight D5S211 alleles in the
sample with 27 subjects being typed for 54 alleles. In the
example, the probability of this data being obtained if
there were no underlying difference between the allele dis-
tributions for the two classes is < 0.005 (Table 2). Table 1b
shows the genotype data for marker D5S211. Note that
out of the thirteen genotypes observed in the data only
one genotype is present in both affected and unaffected
classes. The probability of the data being obtained if there
were no underlying difference between the genotype dis-
tributions for the case and controls is < 0.005 (Table 2).
Markers demonstrating nominally significant (p ≤ 0.05)
differences between cases and controls are listed in Table

Table 1: Comparison of Allele and Genotype frequencies for 
D5S211 in dementia cases and controls

Allele counts

Alleles Cases Controls Totals

186 2 0 2
192 4 8 12
196 2 4 6
198 1 1 2
200 16 4 20
206 1 1 2
202 0 6 6
204 0 4 4

Totals 26 28 54

Genotype 
counts

Genotypes Cases Controls Totals

186/200 2 0 2
192/192 0 3 3
192/196 0 1 1
192/200 4 0 4
192/206 0 1 1
196/198 0 1 1
196/200 2 1 3
196/202 0 1 1
198/206 1 0 1
200/200 4 0 4
200/202 0 3 3
200/204 0 2 2
204/204 0 1 1

Totals 13 14 27

Bold highlights allele demonstrating greatest difference
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2. There were 24 out of 407 markers (6%) demonstrating
significant differences in allele frequency. The most signif-
icant markers were D3S1262, D5S211, and D19S1165.
When examining the markers for genotype frequency dif-
ferences, 21 out of 407 markers (5%) were significantly
different between our dementia cases and controls. The
most significant markers were D5S1480 and D5S211.
While there were seven markers (D3S1262, D4S1625,
D5S211, D6S1031, D8S1477, D8S272, D17S921, and
D18S481) with p-values ≤ 0.05 for both the allelic and
genotypic tests, only one marker (D5S211) was significant
at the empiric p ≤ 0.005 level for both tests. Although all
findings are uncorrected and there are no findings with
genome-wide significance, markers in close proximity to
those regions previously identified are of particular inter-
est for future study.

Discussion
We have detected a few microsatellite markers of particu-
lar interest, which demonstrate significant differences
between dementia cases and controls within our Amish
founder population using the combinatorial mismatch
scanning approach. The CMS concept is based on excess
IBS allele/genotype sharing between individuals sharing a
distant set of common founders [49]. The most notewor-
thy finding is on chromosome 5q35.2 at approximately
183 cM where we find evidence for both allele and geno-
type differences between our dementia cases and controls
for marker D5S211. In their large genome-wide linkage
study of Alzheimer's disease, Blacker et al. detected a
multipoint lod score of 1.3 at this same marker [32]. In a
recent study of consanguineous Israeli-Arab communities,
Farrer and colleagues found significant evidence for allele
frequency differences between AD cases and controls at
the closest marker (D5S400 at 175 cM) on chromosome 5
run in their study [33]. Positive findings across three dis-
tinct study populations suggest that a gene or genes within
this region of chromosome 5 may be involved in risk for
dementia of the Alzheimer's type (DAT). Thus future
examination of this region on chromosome 5 within our
Amish families is warranted. While another marker on
chromosome 5q31.3 (D5S1480 at 147 cM) demonstrated
genotype differences between dementia cases and con-
trols, this location is novel with respect to other previous
studies.

We also found evidence of allele frequency differences on
chromosome 3q27.3 at D3S1262 (201 cM). One study
tested for association with AD in a geographically distinct
Finnish population descended from a small group of orig-
inal founders [65]. This group found significant associa-
tion (empiric p = 0.007) at marker D3S1602 (also located
at 201 cM) within their AD sample. An interesting candi-
date gene at this location is SST, the gene encoding soma-
tostatin, which functions as a neurotransmitter in the

central nervous system. Somatostatin inhibits the release
of glucagon, growth hormone, gastrin, insulin, and secre-
tin. Additional evidence for this region stems from our
genome-wide linkage study within the Amish population,
for which we observed a suggestive two-point lod score of
2.42 at the nearby marker D3S2398 (209 cM) [43].

An additional marker demonstrating suggestive allele
frequency differences is located on chromosome
19p13.2 (D19S1165 at 36 cM). Hiltunen et al. had
detected evidence for association at two nearby markers
(D19S1034 and D19S433) spanning the region contain-
ing our significant results [65]. ICAM-1 (Intercellular
Adhesion Molecule 1), a previously-reported AD candi-
date gene, also lies within this region of interest. Pola et
al. showed that the ICAM-1 K469E gene polymorphism
was associated with AD in an Italian population [66].
This association was not, however, supported in studies
of the gene in Finnish and Spanish populations [67,68].
Additional strong evidence from previous work indicates
the presence of a late-onset AD locus within this region.
A study by Wijsman et al. provides substantial evidence
for a locus at approximately 35 cM affecting AD age at
onset [69]. While our study does not address age at onset,
it further suggests the involvement of this region in AD.

Another region of relative interest is on chromosome
4q31.2 at marker D4S1625. This marker located on chro-
mosome 4q at approximately 146 cM lies between two
markers (D4S2394 at 130 cM and D4S1548 at 154 cM)
demonstrating highly suggestive evidence for linkage
within our Amish population [43]. Further evidence for
this region stems from work by Pericak-Vance et al. where
they detect modest evidence for linkage to a marker only
4 cM away (D4S1629, lod = 1.32) from D4S1625 (Table
2) [26].

Given that our data may violate assumptions (i.e. normal-
ity and/or unrealized correlation) of the Fisher's exact test,
we determined the empiric p-value for our results through
permutation. We performed the Fisher's exact test on
1000 replicates containing the same original genotype
data, but with randomized affection status. The resulting
distribution of p-values was then used as an empiric meas-
ure of significance for our results (Table 2). On the whole,
the empiric p-value thresholds for our study showed the
Fisher's exact p-value to be somewhat more liberal than
expected.

We have previously performed a genome-wide linkage
screen for dementia within this population; however the
complex nature of the Amish pedigrees provides a chal-
lenge for linkage analysis, given the size and number of
consanguineous loops within these extended families.
Accordingly the linkage analysis by itself does not allow
Page 5 of 9
(page number not for citation purposes)



BMC Medical Genetics 2006, 7:19 http://www.biomedcentral.com/1471-2350/7/19

Page 6 of 9
(page number not for citation purposes)

Table 2: Microsatellite markers demonstrating nominally significant (p ≤ 0.05) empiric p-values for allele and genotype frequency 
differences between dementia cases and controls. Microsatellite markers in close proximity to those demonstrating significance in this 
study and found to be either linked (lod ≥ 1) or associated (p ≤ 0.05) in previous studies are also listed.

Chromosome Map Position 
(cM)

Mb Location Marker Fisher's Exact p-value Empiric p-value Max Lod 
Score

Study

Allele Genotype Allele Genotype

1 25 11.4 D1S2667 0.162 0.007 0.170 0.015
1 64 32.1 D1S396 0.043 0.449 0.050 0.407
2 38 17.4 D2S1360 0.028 0.243 0.035 0.228
2 74 50.7 D2S1352 0.200 0.026 0.208 0.032
2 252 237.9 D2S2968 0.688 0.018 0.684 0.025
3 119 103.7 D3S2459 0.223 0.007 0.231 0.014
3 153 140.7 D3S1764 0.029 0.271 0.035 0.248
3 177 168.7 D3S1763 1.69 Hahs et al.
3 201 187.5 D3S1602 0.007** Hiltunen et al.
3 201 187.7 D3S1262 0.001 0.019 0.003 0.026
3 209 191 D3S2398 2.16 Hahs et al.
3 216 193.8 D3S2418 1.18 Hahs et al.
4 78 D4S2367 0.557 0.015 0.557 0.022
4 130 130.7 D4S2394 2.12 Hahs et al.
4 146 143.9 D4S1625 0.032 0.013 0.038 0.020
4 154 152.5 D4S1548 3.01 Hahs et al.
4 158 158.7 D4S1629 1.32 Pericak-Vance 

et al. (2000)
5 8 D5S2849 0.590 0.031 0.589 0.038
5 92 82.3 D5S1347 0.060 0.002 0.068 0.007
5 98 89.2 D5S1725 1.47 Hahs et al.
5 147 144.1 D5S1480 0.465 0.001 0.467 0.005
5 175 168.4 D5S400 0.04* Farrer et al.
5 183 173.2 D5S211 0.001 0.001 0.002 0.004
5 183 173.2 D5S211 1.3 Blacker et al.
6 89 77.5 D6S1031 0.024 0.046 0.030 0.051
6 160 158 D6S1007 0.933 0.017 0.923 0.025
8 60 32.2 D8S1477 0.004 0.018 0.007 0.026
8 125 118.5 D8S592 0.387 0.032 0.391 0.038
8 154 137.8 D8S272 0.007 0.021 0.010 0.028
9 14 D9S2169 0.022 0.394 0.027 0.362
10 63 35.3 D10S1208 0.013 0.247 0.018 0.231
10 76 57.2 D10S1221 0.028 0.054 0.034 0.059
12 78 66.2 D12S1294 0.220 0.045 0.228 0.050
13 39 42.1 D13S325 0.027 0.070 0.033 0.072
13 76 96.7 D13S892 0.040 0.224 0.047 0.210
14 44 37.4 D14S306 0.020 0.104 0.026 0.103
14 94 86.3 D14S612 0.016 0.166 0.021 0.156
15 101 92.8 D15S816 0.046 0.158 0.053 0.150
15 116 98.9 D15S87 0.031 0.083 0.037 0.084
16 64 49.7 D16S3396 0.039 0.450 0.046 0.409
16 130 D16S2621 0.227 0.036 0.235 0.042
17 36 14.2 D17S921 0.024 0.026 0.030 0.032
17 126 77.8 D17S928 0.024 0.201 0.029 0.186
18 7 3.1 D18S481 0.017 0.006 0.022 0.013
18 109 D18S1362 0.431 0.021 0.434 0.028
19 21 6.1 D19S1034 0.013** Hiltunen et al.
19 33 9.7 D19S586 2.06 Hahs et al.
19 36 12.2 D19S1165 0.002 0.066 0.004 0.069
20 39 17.3 D20S470 0.027 0.206 0.033 0.191
21 27 30.6 D21S1270 0.245 0.010 0.253 0.018

Bold denotes markers nominally significant (p ≤ 0.05) in both allele and genotype comparisions
Italics highlights markers empirically significant at p ≤ 0.005
*SAS software was used to measure significant differences in allele frequency between DAT cases and controls
**Pearson's chi-square was calculated and then empirical significance was determined through examination of 1000 replicated datasets.
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taking full advantage of the data available to us. To exam-
ine our data more thoroughly, we performed the combi-
natorial mismatch scan. Both this approach and the
linkage analysis utilize the high level of inter-relatedness,
within the Amish population, to their advantage. The
nature of the CMS analysis, allowed us to examine these
data without being computationally burdened by the size
or family structure of our population. These two methods
complement each other by allowing the examination of
the same data using both a family-based approach and a
"pseudo" case-control approach to identify regions across
the genome which are potentially involved in AD suscep-
tibility. We are fully aware of the limited power of our cur-
rent sample; however, these analyses should be viewed as
an adjunct to our recent genomic screen.

Conclusion
We have reported several markers across the genome
(chr3, 4, 5, and 19) to have significant allelic and/or gen-
otypic frequency differences between dementia cases and
controls within the combined Amish communities of
Ohio and Indiana. While the evidence presented here is
not overwhelming for any specific region, these results
must be viewed in conjunction with not only our genomic
screen but with findings across other studies within addi-
tional populations. In conclusion, our results provide the
groundwork for future detailed study of these regions
within our growing sample of Amish individuals.
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