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Abstract
Background: Elevated resting heart rate has been shown in multiple studies to be a strong predictor of
cardiovascular disease. Previous family studies have shown a significant heritable component to heart rate with
several groups conducting genomic linkage scans to identify quantitative trait loci.

Methods: We performed a genome-wide linkage scan to identify quantitative trait loci influencing resting heart
rate among 3,282 Caucasians and 3,989 African-Americans in three independent networks comprising the Family
Blood Pressure Program (FBPP) using 368 microsatellite markers. Mean heart rate measurements were used in
a regression model including covariates for age, body mass index, pack-years, currently drinking alcohol (yes/no),
hypertension status and medication usage to create a standardized residual for each gender/ethnic group within
each study network. This residual was used in a nonparametric variance component model to generate a LOD
score and a corresponding P value for each ethnic group within each study network. P values from each ethnic
group and study network were merged using an adjusted Fisher's combining P values method and the resulting P
values were converted to LOD scores. The entire analysis was redone after individuals currently taking beta-
blocker medication were removed.

Results: We identified significant evidence of linkage (LOD = 4.62) to chromosome 10 near 142.78 cM in the
Caucasian group of HyperGEN. Between race and network groups we identified a LOD score of 1.86 on
chromosome 5 (between 39.99 and 45.34 cM) in African-Americans in the GENOA network and the same region
produced a LOD score of 1.12 among Caucasians within a different network (HyperGEN). Combining all network
and race groups we identified a LOD score of 1.92 (P = 0.0013) on chromosome 5p13-14. We assessed
heterogeneity for this locus between networks and ethnic groups and found significant evidence for low
heterogeneity (P ≤ 0.05).

Conclusion: We found replication (LOD > 1) between ethnic groups and between study networks with low
heterogeneity on chromosome 5p13-14 suggesting that a gene in this region influences resting heart rate.
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Background
Heart rate has been implicated as a risk factor in cardio-
vascular disease (CVD) [1-9], cancer [10,11], and sudden
death in middle-aged men [12]. Furthermore, elevated
heart rate has been shown to be an independent predictor
of CVD[8,10,13]. Even after other risk factors have been
controlled for, resting heart rate remains significantly
associated with cardiovascular mortality and total mortal-
ity [10].

Singh et al. [14] and more recently Kupper et al. [15]
reported that there is a significant genetic component to
heart rate variability. Moreover, loci that influence heart
rate have been located in a number of organisms includ-
ing humans [16,17], mice [18], rats [19-21] and dro-
sophila [22]. In a population of normotensive and
hypertensive individuals Martin et al [23] report signifi-
cant evidence of linkage (LOD = 3.9) on chromosome 4q
for resting heart rate. On chromosome 10, a serine/glycine
(Ser49Gly) substitution polymorphism in the β1 adrener-
gic receptor was found to be highly associated with heart
rate in a Chinese and Japanese hypertensive cohort, with
higher mean heart rates occurring in individuals that are
serine homozygotes [24].

Due to its importance in predicting cardiovascular and all-
cause mortality, we have used data from Caucasians and
African-Americans enrolled in the NHLBI Family Blood
Pressure Program to evaluate genetic factors associated
with resting heart rate. We report a meta-analysis of
genome scans within the GenNet, GENOA, and Hyper-
GEN Networks, using genotyping carried out by the Mam-
malian Genotyping Service.

Methods
Study participants
Subjects were recruited by four multicenter networks
investigating the genetics of hypertension/blood pressure
(BP) known collectively as the Family Blood Pressure Pro-
gram (FBPP)[25]. Data from 3 of the 4 networks [Gen-
Net[26], GENOA [27], and HyperGEN [28] were
appropriate for the present analysis. GenNet sampled
Caucasian and African American families through mostly
unmedicated probands with elevated BP levels who were
younger than the age typically associated with the onset of
hypertension. GENOA sampled 553 Caucasian and Afri-
can American families with at least two full siblings with
essential hypertension diagnosed before the age of sixty.
HyperGEN sampled Caucasian and African American
families that contained hypertensive sibships.

The present analyses were based on a total of 7,271 sub-
jects. There were 542 Caucasians (from 203 families) and
776 African-Americans (from 281 families) in GenNet;
1,400 Caucasians (from 481 families) and 1,695 African

Americans (from 547 families) in GENOA; and 1,340
Caucasians (from 583 families) and 1,518 African Ameri-
cans (from 684 families) in HyperGEN who had both
genotyping and data on resting heart rate and other cov-
ariates for adjustment of the phenotype. Each network has
been approved by the appropriate local Institutional
Review Board and all participants provided informed
written consent.

Heart rate measurement
Prior to examination, participants were told to avoid caf-
feinated products such as tea, coffee, and chocolate as well
as any other food and heavy physical activity for twelve
hours. Clinical examinations all took place in the morn-
ing. After being seated for five minutes, heart rate and
blood pressure were measured by arterial pulsations
measured from the upper arm using either a Dinamap or
Omron automatic blood pressure monitor. A measure of
heart rate derived from 24 hour monitoring would be
ideal; however, the feasibility of such a measure on this
number of participants is limited. GENOA and Hyper-
GEN networks exclusively used the Dinamap monitor,
whereas the GenNet network used both blood pressure
monitors, with 71.3% of patients measured with a
Dinamap monitor and 28.7% of patients measured with
an Omron monitor. Each device was turned off and
allowed to recalibrate between participants. Mean heart
rate was calculated either from three (for the Dinamap
monitor) or two (for the Omron monitor) measurements
taken in a six minute interval to control for intra-individ-
ual variability.

Genotyping
Blood was drawn into three 10 ml vacutainer tubes con-
taining EDTA. Genomic DNA was isolated using standard
protocols. The Mammalian Genotyping Service (MGS) in
Marshfield, WI completed each genome screening using
the same set of 368 highly polymorphic microsatellite
markers for each network. These markers have an average
heterozygosity of ~80%, an average intermarker distance
of 10 cM, and cover ~95% of the human genome. Specific
details on gel preparation, PCR conditions, and the
genetic map were reported by Weber and Broman [29]
and are available from the MGS website [30].

Covariate measurement
Questionnaires were used to collect information on
potentially confounding factors for heart rate including
age, sex, smoking, alcohol use, and medication usage.
Medication use was also assessed by inventory of the par-
ticipant's current prescriptions. Height and weight for the
calculation of body mass index (BMI) were ascertained
during the participant's clinical examination. Smoking
habits were defined by three categories: non-smoker, cur-
rent smoker and past smoker and, if the participant
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Table 1: Demographic Information

Characteristics GenNet

CA AA

Male (n = 255) Female (n = 287) Male (n = 319) Female (n = 457)

Age (years) 36.7(9.0) 37.5(9.0) 38.7(10.1) 41.6(12.1)
Body Mass index (kg/m2) 28.6(5.4) 28.5(6.7) 27.1(8.6) 32.1(8.6)
Resting Heart Rate (beats/minute) 68.2(9.4) 71.9(9.3) 74.3(12.4) 74.6(11.0)
Pack years of smoking 9.1(15.9) 6.1(10.6) 9.9(12.9) 6.6(10.7)
Current Alcohol Drinking (%) 71.4 61 43.9 22.3
β-Blocker users (%) 2.3 4.9 1.8 3.3
Hypertension status (%)
Non-hypertensive 76.5 82.2 69 62.8
Hypertensive 23.5 17.8 31 37.2
Secondary 0 0 0 0

GENOA

CA AA

Male (n = 638) Female (n = 762) Male (n = 527) Female (n = 1168)

Age (years) 55.6(10.8) 55.2(11) 58.4(9.9) 56.9(10.4)
Body Mass index (kg/m2) 30.3(5.1) 30.2(7) 28.4(4.9) 32.1(6.9)
Resting Heart Rate (beats/minute) 64.5(11) 67.8(11) 68.1(11.5) 69.6(10.9)
Pack years of smoking 20.2(9) 9(16.8) 17.4(20.5) 6.1(12.9)
Current Alcohol Drinking (%) 75.9 37.8 46.5 31.1
β-Blocker users (%) 24 23.3 9.5 10.1
Hypertension status (%)
Non-hypertensive 24.8 27.8 31.1 26
Hypertensive 70.2 66.9 66.6 73.5
Secondary 5 5.3 2.3 0.4

HyperGEN

CA AA

Male (n = 638) Female (n = 702) Male (n = 518) Female (n = 1000)

Age (years) 56.3(13.1) 56.6(12.3) 47.9(12.7) 48.0(12.9)
Body Mass index (kg/m2) 29.5(4.7) 29.5(6.6) 29.8(6.2) 33.6(8.1)
Resting Heart Rate (beats/minute) 65.4(10.8) 69.6(11.2) 69.9(13.5) 72.8(12.0)
Pack years of smoking 16.4(23.9) 8.2(17.2) 13.2(17.3) 6.6(13.3)
Current Alcohol Drinking (%) 40.3 24.5 42.3 16.5
β-Blocker users (%) 21.9 22.1 7.1 12.2
Hypertension status (%)
Non-hypertensive 25.6 26.2 24.5 18.4
Hypertensive 74.5 73.1 75.5 81.6
Secondary 0 0.4 0 0

Demographic information by network, race (CA for Caucasian and AA for African-American) and medication use. Means (± standard deviation) are 
given.

answered yes to smoking currently or in the past, total
pack years were calculated. Alcohol use was assessed by
inquiring whether the person "presently drinks alcoholic
beverages". Hypertension was designated for participants

if they met any of three criteria: (1) currently taking anti-
hypertension medication (2) average diastolic blood pres-
sure ≥ 90 mmHg or (3) average systolic blood pressure ≥
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140 mmHg. In addition, normotensive individuals were
defined as not being hypertensive or hypotensive.

Previous reports of the effect of different hypertension
medication use on heart rate within the networks of the
FBPP have shown that β-blocker medication users had, on
average, a significantly lower heart rate than non-
users[16]. Therefore, we adjusted heart rate for β-blocker
medication use and excluded participants taking β-
blocker medication in a separate analysis.

Statistical methods
Mean values of resting heart rate were calculated from all
available measurements; for the Dinamap monitor three
readings were used and for the Omron monitor two meas-
urements were used. We used a regression model to eval-
uate the relationship of covariates to heart rate within
each gender and racial group. Variables that were signifi-
cant predictors of heart rate were included in the race and
gender-specific regression model for adjustment. They
included age, age2, BMI, pack-years, currently drinking
alcohol (yes/no), hypertension status and β-blocker use.
We then calculated the standardized residuals of heart rate
for each gender and racial group within each network (i.e.
GenNet, GENOA and HyperGEN). A second standardized
residual was generated after excluding β-blocker medica-
tion users from the sample and removing the β-blocker
medication use covariate from the regression model.
Residuals from the models described above were used in
subsequent linkage analysis.

Linkage analyses were performed using variance compo-
nent (VC) models as implemented in MERLIN version
0.10.2 [31]. Multipoint analysis was performed modeling
genetic variance as additive polygenic and quantitative
trait locus (QTL). The linkage analysis was carried out sep-
arately for each race within each network for all partici-
pants and for individuals not currently taking β-blocker
medication.

P values obtained from MERLIN's VC linkage were com-
bined using Fisher's method of combining P values [32].
Briefly, if n independent tests are made about the same
hypothesis, resulting in the P values P1, P2... Pn then

 is distributed as a χ2 with 2n degrees of free-

dom. Combined P Values where converted to LOD scores

using the equation P = 1 - Φ [sign (LOD)

], where Φ is the cumulative Gaussian

distribution function [33]. In addition, any LOD score
derived from the above equation that was less than zero
was converted to zero. Fisher's method was adjusted for
non-parametric linkage where a LOD score of zero was

interpreted as a P value of  ≈ .72 [34].

A test for heterogeneity was performed using the program
Heterogeneity and Genome Search Meta-analysis
(HEGESMA)[35,36]. The genome was equally divided
into 95 bins of ~30 cM and the maximum LOD score was
recorded for each bin. Each bin was ranked separately in
each network and ethnic group with the highest LOD
score having the highest rank and heterogeneity was esti-
mated by the Q statistic[35]. Statistical significance for
observing low heterogeneity (P ≤ 0.05) was estimated
from a null distribution of the Q statistic calculated from
10,000 rank permutations within each study network and
ethnic group.

Results
Table 1 shows descriptive statistics for heart rate and the
covariates included in the regression model to define the
heart rate phenotype for all participants by network, race
and gender. Unadjusted mean heart rates are higher
among women than men in both ethnic groups in all net-
works. Furthermore, African-Americans had higher resting
heart rates than Caucasians at 71.6 ± 2.7 and 67.9 ± 2.7
respectively. The GenNet network had higher heart rate
readings than comparable ethnic/gender groups in both
GENOA and HyperGEN. A gender effect for BMI was
much greater in African-Americans than in Caucasians.
Caucasian males and females had the same average BMI
of 29.4 whereas African American males, on average, had
lower BMI then females at 28.4 and 32.6, respectively. The
prevalence of β-blocker medication usage was higher in
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i

n
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Table 2: Heritability and Medication Usage Data

GenNet GENOA HyperGEN

CA AA CA AA CA AA

All Participants 28.23% 28.82% 37.00% 30.15% 32.62% 23.27%
Participants not taking β-Blocker Medication 28.70% 29.27% 36.76% 30.61% 33.40% 29.02%

Heritability estimates (h2) for resting heart rate, by network, race (CA for Caucasian and AA for African-American) and medication use.
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Table 3: Genome Scan Multipoint LOD scores

GenNet GENOA HyperGEN Meta-Analysis

Chr Dist. Marker CA AA CA AA CA AA CA AA All

1 102.02 GATA61A06 0.12 1.03 0.17 0 0 0.26 0.04 0.65 0.49

3 44.81 GATA73D01 0.22 0 1.03 0 0 0 0.61 0.00 0.09
70.61 ATA10H11 0.01 0 1.39 0.03 0 0.04 0.61 0.00 0.28
89.91 AFM306YG5 0.49 0 0.23 0.11 0 1.29 0.27 0.68 0.82
90.01 GATA148E04 0.51 0 0.23 0.11 0 1.30 0.28 0.69 0.84
91.18 AFM191YG5 0.40 0 0.17 0.04 0 1.29 0.18 0.60 0.64
91.28 UT7805 0.39 0 0.16 0.03 0 1.28 0.17 0.57 0.61
176.54 GATA3H01 0 0.33 0 0.38 1.87 0.17 0.79 0.58 1.23
181.87 GATA92B06 0 0 0.04 0.01 1.29 0 0.60 0.00 0.15
215.84 ATA22E01 0 0 1.12 0 0.20 0.87 0.66 0.18 0.69
224.88 AFM254VE1 0 0 0.13 0 0.42 1.94 0.16 0.83 0.81

4 104.94 GATA2F11 0 0.45 0.17 0 0 1.25 0.00 0.97 0.50

5 36.25 GATA134B03 0.15 0 0.17 1.46 0.75 0 0.70 0.51 1.08
39.99 GATA145D09 0.29 0 0.14 1.86 1.12 0.04 1.09 0.99 1.92
45.34 GATA7C06 0.25 0 0.14 1.07 1.08 0.46 1.02 0.85 1.70
59.3 GATA21D04 0 0 0.77 0.75 0.61 1.48 0.75 1.41 1.97

116.98 GATA68A03 0.14 0.01 0.05 0.22 0.19 1.33 0.18 0.98 0.95

6 128.93 GATA23F08 0 0.99 0 1.12 0 0 0.00 1.32 0.46
137.74 GATA32B03 0 1.27 0 0.43 0 0 0.00 0.97 0.26
146.06 GATA184A08 0 1.97 0 0 0 0 0.00 0.86 0.20
154.64 GATA165G02 0 1.31 0.21 0 0 0 0.00 0.42 0.18

7 41.69 AFM224XG5 0 0.07 0 1.26 0 0 0.00 0.62 0.10
41.79 GGAA3F06 0 0.07 0 1.26 0 0 0.00 0.62 0.10
57.79 GATA31A10 0.01 0.01 0 1.54 0.01 0 0.00 0.71 0.29
69.56 GATA24D12 0.05 0 0.01 1.24 0.06 0 0.02 0.38 0.26
90.95 GATA73D10 0 0 0.01 1.21 0.76 0 0.23 0.36 0.49
98.44 AFM165YH12 0.01 0 0.11 1.25 0.66 0 0.40 0.39 0.68
98.54 GATA3F01 0.01 0 0.11 1.24 0.66 0 0.40 0.38 0.68

8 26.43 GATA23D06 0 0.01 0 0.34 0 1.68 0.00 1.37 0.49
94.08 GATA14E09 0.22 0 0 1.1 0 0 0.00 0.30 0.11
135.08 GATA7G07 0 1.28 0.33 0 0 0 0.00 0.40 0.22
164.47 UT721 0.13 0 0 0 1.11 0 0.58 0.00 0.08

10 4.32 GATA88F09 0 0 0 1.15 0 0.46 0.00 0.91 0.23
28.31 ATA31G11 0 0 0 0.67 0 1.17 0.00 1.10 0.33
125.41 GATA64A09 0.01 0 0 0 1.26 0 0.52 0.00 0.06
134.7 GATA48G07A 0 0.18 0 0.01 2.78 0 1.45 0.00 0.96
142.78 ATA29C03 0.75 0.09 0 0.05 4.62 0 4.08 0.00 3.06
148.17 GGAA5D10 0.48 0 0 0.23 3.66 0 2.96 0.00 2.05
157.89 AFM212XD6 0.24 0.06 0 0.53 1.65 0 1.08 0.17 1.01
170.94 AFM198ZB4 0.08 0.05 0 1.25 0.01 0 0.00 0.58 0.28

11 76.13 GATA90D07 0.05 0.43 0.08 0.46 0 1.19 0.00 1.61 1.05

12 17.72 GATA49D12 0 0 0 0.65 1.15 0 0.33 0.09 0.31
19.68 M273ZC9 0 0 0 0.68 1.06 0 0.28 0.10 0.29
78.14 GATA73H09 1.36 0 0 0.37 0 0 0.45 0.01 0.27
80.52 GATA3F02 1.05 0 0 0.52 0 0 0.27 0.04 0.22
136.82 GATA4H01 0.01 0 0 0 1.67 0.42 0.80 0.02 0.53
149.6 GATA32F05 0 0 0 0.08 0.13 1.42 0.00 0.74 0.32
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160.68 ATA29A06 0 0 0 0.48 0 1.48 0.00 1.18 0.38

13 45.55 GATA29A09 0 0.21 0 1.78 0 0.12 0.00 1.50 0.57
55.31 GATA64F08 0.05 0.11 0 1.48 0 0.12 0.00 1.15 0.51
63.9 GATA7G10 0 0.02 0 1.73 0 0 0.00 0.86 0.21

14 44.06 GATA4B04 0 0 0 0.45 0 1.32 0.00 1.03 0.29
105 AFM304YA5 1.03 0 0 0 0 0 0.26 0.00 0.00

105.53 GGAA21G11 1.06 0 0 0 0 0 0.28 0.00 0.00

16 29.97 GATA42E11 0 0 0 0 0 1.08 0.00 0.29 0.00
32.07 AFMB337ZC9 0 0 0 0 0 1.36 0.00 0.45 0.04
43.89 AFM049XD2 0.02 0 0 0 0.01 2.48 0.00 1.23 0.63
50.6 GATA71H05 0.06 0 0 0 0.06 1.65 0.00 0.64 0.35

124.73 GATA11C06 0.53 0 0.08 0.04 0 1.60 0.18 0.81 0.82
130.41 GATA71F09 0.11 0 0 0.22 0 2.28 0.00 1.54 0.84

17 66.85 ATC6A06 0 1.16 0 0.01 0.06 0 0.00 0.46 0.12

19 36.22 AFM224YE9 0 0 0 1.05 0 0 0.00 0.27 0.00
42.28 AFM256YC9 0.03 0 0.41 1.07 0 0.07 0.09 0.49 0.44
42.38 GATA66B04 0.03 0 0.42 1.06 0 0.07 0.09 0.49 0.44

21 2.99 GATA11C12 0 0 1.07 0 0 0 0.28 0.00 0.00
13.05 GGAA3C07 0.02 0 1.11 0 0.04 0 0.64 0.00 0.10
19.39 AFM344WF5 0 0 1.60 0 0.01 0 0.75 0.00 0.15
24.73 GATA129D11 0 0 1.50 0 0 0 0.54 0.00 0.07
27.4 AFM211ZG9 0 0 1.83 0.01 0.01 0 0.91 0.00 0.32
35.45 AFM261ZG1 0 0 1.88 0 0.02 0.01 0.97 0.00 0.35
36.77 ATA27F01 0 0 1.75 0 0.02 0.03 0.88 0.00 0.32
40.49 GATA188F04 0 0 2.29 0 0.02 0.04 1.28 0.00 0.58
45.87 AFM234XG9 0 0.01 2.25 0 0.01 0.03 1.22 0.00 0.65

Multipoint LOD scores greater than 1.0 for individuals not taking β-blocker medication. Each network is shown by race (CA for Caucasian and AA 
for African-American). LOD scores replicated between 2 networks are shown in bold. Distance is given in cM.

Table 3: Genome Scan Multipoint LOD scores (Continued)
Caucasians than in African-Americans. GENOA and
HyperGEN had more individuals diagnosed with hyper-
tension than GenNet.

Heritability estimates for adjusted heart rate within each
network and ethnic group are shown in Table 2. Mean
heritability estimates across all networks for all partici-
pants were 32.62 (SE = 2.53) for Caucasians and 27.41
(SE = 2.11) for African-Americans. For just those partici-
pants not taking β-blocker medication, the mean herita-
bility estimates were 32.96 (SE = 2.34) for Caucasians and
33.14 (SE = 2.17) for African-Americans.

In Caucasians, the maximal LOD score of 2.06 was seen
on chromosome 10 at 142.78 cM within the HyperGEN
Network. In African-Americans, the maximal LOD score
was seen in the GENOA Network, where chromosome 13
produced a LOD of 3.07 across a region from 55.31 cM to
63.9 cM. Excluding participants taking β-blocker medica-
tion had a minimal impact in LOD scores (average
increase of 0.002). In the HyperGEN network the

multipoint LOD score of 2.06 detected for Caucasians on
chromosome 10 at 142.78 cM increased to 4.62 (micros-
atellites at this linkage peak are ATA29C03, GATA48G07A
and GGAA5D10) and the maximal LOD score seen in
African-Americans in GENOA network on chromosome
13 decreased from 3.07 to 1.48 after removal of individu-
als using β-blocker medication. In African-Americans, the
maximal LOD score in the sample not taking β-blocker
medication was on chromosome 16 at 43.89 cM in Hyper-
GEN with a LOD of 2.48, an increase from 1.86. Two net-
works (GENOA and HyperGEN) showed replication
(LOD score > 1.0) across different ethnic groups on chro-
mosome 5 between 39.99 and 45.34 cM at the microsat-
ellites GATA145D09 and GATA7C06. Table 3 summarizes
all multipoint LOD scores greater than 1.0 within any net-
work/race group in study participants that are not taking
β-blocker medication and includes the position and
marker name where the maximal LOD score occurred for
resting heart rate (for a complete listing of all participants
see Additional file 1).
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Figure 1 shows the original genome scan for each network
from participants not taking β-blocker medication sepa-
rated by ethnic group. Figure 2 shows the meta-analysis
results from participants not taking β-blocker medication
combining the genome scans of all networks by race and

combing all races and networks. The combined Caucasian
sample not taking β-blocker medication showed seven
LOD scores greater than 1.0 with a maximum of 4.08 on
chromosome 10 at 142.8 cM near the microsatellite
ATA29C03. The combined African-American sample not
taking β-blocker medication showed nine LOD scores
above 1.0 with a maximum of 1.60 on chromosome 11 at
76.13 cM (GATA90D07). When ethnic groups where

Meta-analysis of LOD scoresFigure 2
Meta-analysis of LOD scores. Meta-analysis of multipoint 
LOD scores for all genome scans for participants not taking 
β-blocker medication across all three networks. A) Cauca-
sians B) African-Americans C) Combined

Original Genome Scans for Each NetworkFigure 1
Original Genome Scans for Each Network. Genome 
scans separated by race for participants not taking β-blocker 
medication across all three networks. Caucasians and Afri-
can-Americans are represented in each panel by a solid and a 
dashed line respectively. A) GenNet B) GENOA C) Hyper-
GEN
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combined there were two major peaks seen with a maxi-
mal LOD score of 3.06 on chromosome 10 at 78.14 cM
and a smaller LOD score of 1.96 on chromosome 5
between 39.99 and 45.34 cM. Figures 2 and 3 show chro-
mosomes 5 and 10, respectively, presenting the meta-
analysis by ethic group and the total combined meta-anal-
ysis in individuals not taking β-blocker medication. We
found significance evidence of low heterogeneity (P ≤
0.05) for chromosome 5 between 39.99 and 45.34 cM.

Discussion
Resting heart rate is a clinically significant variable that a
large number of studies have shown to be associated with
CVD, atherosclerosis, cancer, and all-cause mortal-

ity[1,2,5,6,8,10,11,37-39]. Individuals with elevated rest-
ing heart rate have been shown to have high cholesterol,
triglycerides and fasting insulin which are known risk fac-
tors for hypertension[40]. Furthermore, elevated resting
heart rate has been associated with increased BMI and
blood glucose, dyslipidemia, and high hematocrit[37,41].

The pathogenesis of the connection between tachycardia-
associated disease and death is not well understood. How-
ever, it has been postulated that tachycardia is a marker of
abnormal autonomic control and is caused by shift in
sympathovagal balance towards relative sympathetic
dominance [40]. Given the importance of heart rate as an
independent predictor of CVD and death, it becomes

Chromosome 5 meta-analysis of LOD scoresFigure 3
Chromosome 5 meta-analysis of LOD scores. Meta-analysis of multipoint LOD scores on chromosome 5 for resting 
heart rate for all Caucasians not taking β-blocker medication (Caucasians) and all African-Americans not taking β-blocker med-
ication (African-Americans). Also shown is the combined race meta-analysis for all individuals not taking β-blocker medication 
(Combined)
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increasingly important to identify genetic modifiers that
affect heart rate. It has been shown that heart rate lowered
by either surgical (ablation of the sinoatrial node [42]) or
pharmaceutical (administration of β-blocker medica-
tions[43,44]) means in cholesterol-fed monkeys slowed
the development of coronary atherosclerosis. Therefore
the identification of genes influencing heart rate may pro-
duce new drug targets that could decrease atherosclerosis
and ultimately CVD.

We estimated the heritability of resting heart rate across all
networks for all participants to be 32.62 % (SE = 2.53) for
Caucasians and 27.41 % (SE = 2.11) for African-Ameri-
cans. These values are slightly higher than previous esti-
mates of 26% [23] and 21% [14] but lower than a twin

study estimate of 59% [45]. Additionally much higher
correlation for heart rate among siblings (0.23) than
spouse pairs (0.06) has been reported [14]. This evidence
suggests a strong genetic component to heart rate and
heart rate variability.

In our genome scan for resting heart rate, we found sug-
gestive evidence for linkage at several loci for both Cauca-
sian and African Americans, but only one locus in
Caucasians not taking β-blockers reached the level of
genomewide significance with a LOD score of 4.62 (chro-
mosome 10, 142.78 cM). Combining all races and net-
works we found suggestive linkage at several loci
including overlapping regions of linkage across races in
two separate networks, GENOA and HyperGEN, implicat-

Chromosome 10 meta-analysis of LOD scoresFigure 4
Chromosome 10 meta-analysis of LOD scores. Meta-analysis of multipoint LOD scores on Chromosome 10 for resting 
heart rate for all Caucasians not taking β-blocker medication (Caucasians) and all African-Americans not taking β-blocker med-
ication (African-Americans). Also shown is the combined race meta-analysis for all individuals not taking β-blocker medication 
(Combined)
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ing chromosome 5 with LOD scores of 1.86 and 1.12
respectively.

The largest meta-analysis peak was seen on chromosome
10 at 142.78 cM and seems to be driven entirely by Cau-
casians with a nominal contribution of the African-Amer-
ican cohort. The second largest meta-analysis peak was
seen on chromosome 5 between 39.99 and 45.34 cM and
is driven by two completely separate networks and ethnic
groups. This linkage peak between 39.99 and 45.34 cM
overlaps with a linkage peak in a recent genome scan for
neonatal atrial fibrillation [46]. Contrary to previous
reports [16,23], we saw no evidence for a QTL on chromo-
some 4q. Finally, while the HyperGEN study provided
strong evidence for linkage on chromosome 10 in Cauca-
sians and in the meta-analysis, the locus was only repli-
cated with a 0.75 LOD in one other race/network group.
While past studies of this region on chromosome 10, have
reported association for a polymorphism in the β adren-
ergic receptor with increased resting heart rate[24], the
evidence for linkage to this region was driven by a single
race/network group in our study.

The major strengths of our analysis include that it was car-
ried out in multiple networks, each with multiple sites
across the country, using a large population of Caucasian
and African Americans. Moreover, adjustments for factors
known to affect heart rate (including BMI, smoking status,
medication and alcohol use) were made prior to analysis.

Conclusion
Our finding of linkage in several locations in the genome
strongly suggests that heart rate is a polygenic phenotype
and additional study of the implicated loci is needed.
Notably, the overlapping linkage region (LOD > 1) across
ethnic groups and study centers on chromosome 5p13-14
with low heterogeneity provides strong support for a QTL
influencing elevated resting heart rate.
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