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Abstract
Background: Human cytochrome P450 3A enzymes, particularly CYP3A4 and CYP3A5, play an
important role in drug metabolism. CYP3A expression exhibits substantial interindividual variation,
much of which may result from genetic variation. This study describes Pyrosequencing assays for
key SNPs in CYP3A4 (CYP3A4*1B, CYP3A4*2, and CYP3A4*3) and CYP3A5 (CYP3A5*3C and
CYP3A5*6).

Methods: Genotyping of 95 healthy European and 95 healthy African volunteers was performed
using Pyrosequencing. Linkage disequilibrium, haplotype inference, Hardy-Weinberg equilibrium,
and tag SNPs were also determined for these samples.

Results: CYP3A4*1B allele frequencies were 4% in Europeans and 82% in Africans. The CYP3A4*2
allele was found in neither population sample. CYP3A4*3 had an allele frequency of 2% in Europeans
and 0% in Africans. The frequency of CYP3A5*3C was 94% in Europeans and 12% in Africans. No
CYP3A5*6 variants were found in the European samples, but this allele had a frequency of 16% in
the African samples. Allele frequencies and haplotypes show interethnic variation, highlighting the
need to analyze clinically relevant SNPs and haplotypes in a variety of ethnic groups.

Conclusion: Pyrosequencing is a versatile technique that could improve the efficiency of SNP
analysis for pharmacogenomic research with the ultimate goal of pre-screening patients for
individual therapy selection.

Background
The human cytochrome P450 3A (CYP3A) subfamily of
enzymes plays an important role in drug metabolism. The
four CYP3A genes lie within a 218 kb region of chromo-
some 7q22.1 in the following order: CYP3A5, CYP3A7,
CYP3A4, and CYP3A43. CYP3A enzymes, primarily
CYP3A4 and CYP3A5, catalyze the metabolism of a mul-
titude of exogenous and endogenous compounds. As the
most abundant group of CYPs in the liver and small intes-
tine, CYP3A enzymes strongly affect the oral bioavailabil-
ity and clearance of many drugs, and it is estimated that

CYP3A enzymes are involved in the metabolism of over
half of the drugs currently approved by the Food and Drug
Administration [1-4].

Interindividual variation in CYP3A expression is substan-
tial. Protein expression in liver and small intestine varies
up to 40-fold, leading to variation in drug metabolism
[2,5]. Genetic variation within the CYP3A genes may con-
tribute to interindividual variability in drug metabolism.
It has been suggested that approximately 90% of inter-
individual differences in hepatic CYP3A activity are due to
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genetic variation [6]. Single nucleotide polymorphisms
(SNPs) are the most common form of genetic variation in
the CYP3A genes.

CYP3A4*1B is a 5' untranslated region -392A>G transi-
tion in CYP3A4 [7]. A number of associations between
CYP3A4*1B and clinical phenotypes have been found.
Rebbeck et al. have shown that prostate cancer patients are
more likely to have the CYP3A4*1B allele than healthy
controls, and this has been confirmed in other studies [7-
9]. Additionally, homozygous wild-type (CYP3A4*1A/
*1A) individuals have an increased risk for developing
leukemia after epipodophyllotoxin therapy [10].

Relatively little is known about the effects of the other
commonly studied CYP3A4 SNPs, CYP3A4*2 and
CYP3A4*3. CYP3A4*2 is a SNP in exon 7 (15713T>C)
that results in a Ser222Pro change. In vitro kinetic studies
have shown that CYP3A4*2 has a 6-to 9-fold reduced
intrinsic clearance for nifedipine compared to wild-type
[11]. CYP3A4*3 is a 1334T>C transition causing a
Met445Thr change. Although this SNP occurs within a
conserved region, no difference in testosterone, progester-
one, or 7-benzyloxy-4(trifluoromethyl)coumarin metab-
olism was found [12].

CYP3A5*3C is an IVS3-237A>G (6986A>G) transition
within intron 3 of CYP3A5 [13]. This transition creates an
alternative splice site in the pre-mRNA, leading to the pro-
duction of aberrant mRNA with a premature stop codon
[13]. This SNP leads to polymorphic expression of
CYP3A5. CYP3A5*3C homozygotes lack CYP3A5 expres-
sion, while individuals with at least one CYP3A5*1 wild-
type allele express CYP3A5 [13]. Polymorphic expression
of CYP3A5 may account for some of the interindividual
variation in clearance of CYP3A substrates. Indeed,
CYP3A5 genotype is predictive of tacrolimus doses for
lung and kidney transplant recipients [14,15].

CYP3A5*6 is a 14690G>A synonymous mutation that
causes the formation of a splice variant mRNA. Exon 7 is
deleted, resulting in a frameshift and a truncated protein
[13]. Very little is known about the effects of this SNP,
although CYP3A5*6 was found to have no effect on mida-
zolam clearance in a small sample size [16].

For further analysis of these SNPs and their relations to
clinical outcomes, an accurate, rapid, and cost efficient
method of SNP evaluation is needed. This study describes
the use of Pyrosequencing to assay key CYP3A4 and
CYP3A5 SNPs.

Methods
Genotyping
PCR was performed on DNA from 95 healthy European
volunteers and 95 healthy African volunteers, after IRB
approval and written informed consent [17,18]. PCR
primers were designed using Primer Express Version 2.0
(ABI, Foster City, CA, USA) and Pyrosequencing Primer
SNP Design Version 1.01 software [19]. Primer sequences
and PCR conditions are described in Table 1. PCR was car-
ried out using 1–5 ng genomic DNA, 0.6 nmol each of for-
ward and reverse oligonucleotide PCR primers (one of
which is biotinylated) (Integrated DNA Technologies,
Coralville, Iowa, USA) and 1X AmpliTaq Gold PCR Mas-
ter Mix (Applied Biosystems, CA, USA), containing 255U
(0.05 U/ml) AmpliTaq Gold DNA polymerase, Gene Amp
PCR Gold Buffer (30 mmol/L Tris-HCL, 100 mmol/L KCl,
pH 8.05), 400 mM dNTP and 5 mmol/L MgCl2. Pyrose-
quencing was carried out as described [20] using internal
primer diluted in 1X Annealing Buffer (20 mmol/L Tris-
Acetate, 2 mmol/L MgAc2), 2X Binding Wash Buffer II pH
7.6 (10 mmol/L Tris-HCL, 2M NaCl, 1 mmol/L EDTA,
0.1% Tween20), Streptavidin Sepharose Beads (Amer-
sham Biosciences, Uppsala, Sweden), 0.2 M NaOH,70%
Ethanol, and a PSQ HS96 SNP reagent kit (Pyrosequenc-
ing AB, Uppsala, Sweden). Samples were analyzed on a
PSQ HS96A instrument with pyrosequencing software
(Biotage, Uppsala, Sweden). A Tecan pipetting robot
(Tecan, Research Triangle Park, NC, USA) was used for all
of the steps apart from the addition and transfer of the
sepharose beads.

Statistics
Pairwise linkage disequilibrium (|D'|), haplotype infer-
ence, and Hardy-Weinberg equilibrium were determined
using the Polymorphism and Haplotype Analysis Suite
[21,22]. Tag SNPs were determined using SNPtagger
[23,24].

Results and discussion
Genotyping data from the European and African samples
are shown in Table 2. All results are in Hardy-Weinberg
equilibrium. CYP3A4*1B allele frequencies were 4% for
Europeans and 82% for Africans. No CYP3A4*2 alleles
were found in either the European or African population
samples. CYP3A4*3 had an allele frequency of 2% in
Europeans and 0% in Africans. The frequency of
CYP3A5*3C was 94% in Europeans and 12% in Africans.
No CYP3A5*6 variants were found in the European sam-
ples, but this allele had a frequency of 16% in the African
samples. There were no individuals homozygous for both
CYP3A5*3C and CYP3A5*6 in either population.

The CYP3A4 and CYP3A5 genes lie in close proximity
(136 kb) to one another on chromosome 7q22.1, so hap-
lotypes were determined across both genes for each
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population (Table 3). In Europeans, haplotype 1 was the
predominant haplotype, with a 90% frequency. Haplo-
types 2, 3, and 5 were also observed, with frequencies of
5.5%, 1.8%, and 1%, respectively. Haplotype 4 was not
observed, but it has an inferred frequency of 1.8%. The
African population had five observed haplotypes: Haplo-
type 4 (57%), Haplotype 2 (15%), Haplotype 5 (12%),
Haplotype 6 (11%), and Haplotype 7 (3%). Haplotype 1
was not observed, but it has an inferred frequency of

0.6%. No loci are significantly linked in either population
(data not shown). In addition, no haplotype tag SNPs
could be identified in either population. However, geno-
typing Europeans for CYP3A5*3C could be used to iden-
tify the haplotype of 95.5% of the population. Similarly,
genotyping Africans for CYP3A4*1B and CYP3A5*3C
could be used to identify the haplotype of 84% of the
population.

Table 1: Primer sequence, PCR and Pyrosequencing conditions for CYP3A4 and CYP3A5 SNP analysis.

SNP Forward Primera(5'-3') Reverse Primera (5'-3') Number 
of Cycles

Annealing 
Temperature 

(° C)

Internal Primerbc(5'-3') Sequence to 
Analyzed

CYP3A4*1B aggacagcccatagagacaagg *atcaatgttactggggagtcc 55 55 F-ccatagagacaagggca A/GGAGA
CYP3A4*2 aacaatccacaagacccctt *atcttcaaatgtactacaaatcactga 55 55 F-tttggatccattctttc TCTC/TAAT
CYP3A4*3 cgtggaaccagattcagcaa *gaaggagaagttctgaaggactctg 55 65 F-ccagaaactgcattgg CAT/CGAGG
CYP3A5*3C *cccacgtatgtaccacccagc attagggtgtgacacagcaaga 55 65 R-ccaaacagggaagaga TAC/TTGe

CYP3A5*6 *tctttggggcctacagcatg aaagaaataatagcccacatacttattgagag 55 62 R-agaaaccaaattttaggaa CTTC/TTTAGe

a* = biotin molecule attached
bF = forward primer
cR = reverse primer
d Simplex entry nucleotide information for Pyrosequencing
eAssays on reverse complement strand

Table 2: Genotype and allele frequencies for CYP3A4 and CYP3A5 SNPs in European and African populations. Figures in brackets are 
95% confidence intervals.

SNP European African

na Wild 
Type

Heterozygous Variant p q na Wild 
Type

Heterozygous Variant p q

CYP3A4*1B 93 86 7 0 0.96 (0.92–0.98) 0.04 (0.02–0.08) 88 3 25 60 0.18 (0.11–0.27) 0.82 (0.73–0.89)
CYP3A4*2 56 56 0 0 1 0 87 87 0 0 1 0
CYP3A4*3 94 90 4 0 0.98 (0.95–0.99) 0.02 (0.01–0.05) 93 93 0 0 1 0
CYP3A5*3C 95 0 12 83 0.06 (0.03–0.10) 0.94 (0.90–0.97) 95 72 23 0 0.88 (0.83–0.92) 0.12 (0.08–0.17)
CYP3A5*6 92 92 0 0 1 0 91 64 25 2 0.84 (0.78–0.89) 0.16 (0.11–0.22)

a n = number of passed samples out of 95 samples tested

Table 3: Haplotype analyses for CYP3A4 and CYP3A5.

CYP3A4*1B CYP3A4*2 CYP3A4*3 CYP3A5*3C CYP3A5*6 % European % African

Hap1 A C T G G 90 0.6a

Hap2 A C T A G 5.5 15
Hap3 A C C G G 1.8 0
Hap4 G C T A G 1.8a 57
Hap5 G C T G G 1 12
Hap6 G C T A A 0 11
Hap7 A C T A A 0 3

a inferred frequency
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The frequency of CYP3A4*1B in Europeans (4%) is con-
sistent with other studies [25]. The CYP3A4*1B frequency
in Africans (82%) is much higher than in Europeans, and
it is also higher than the 35–67% frequency seen in Afri-
can Americans [25]. The rare CYP3A4*2 allele was not
found in either of our population samples. To date
CYP3A4*2 has only been described in a Finnish Cauca-
sian population, with an allele frequency of 2.7% [11].
The CYP3A4*3 allele frequency in Europeans (2%) is con-
sistent with frequencies reported in other studies [25].

CYP3A5*3C frequency shows dramatic interethnic varia-
tion. In Europeans, the CYP3A5*3C variant is the pre-
dominant allele (94% frequency), but this allele has a
much lower frequency in the African population (12%).
CYP3A5*6 frequency also shows interethnic variation.
The CYP3A5*6 allele was not found in Europeans, but it
was found in the African population at a frequency of
16%. Other studies have also failed to find CYP3A5*6 in
Europeans, but this has been found in African Americans
at a frequency of 13–16% [16,26].

Haplotype also shows interethnic variation. Haplotype 1
is the predominant haplotype in Europeans, with haplo-
types 2–5 occurring at low frequencies. In contrast, haplo-
type 4 is the most common haplotype in Africans, and
haplotypes 2, 5, and 6 all occur at frequencies greater than
10%. However, the presence of homozygous variants was
rare for CYP3A4 in Europeans and for CYP3A5 in Africans.
Consequently, the limits of in silico determining haplo-
type frequencies in these populations should be taken
into account. Larger population studies are necessary for a
more accurate understanding of CYP3A4-CYP3A5 haplo-
types. Interethnic variation highlights the need to analyze
clinically relevant SNPs and haplotypes in a variety of eth-
nic groups. An understanding of the genetic variation that
exists in various populations will aid in tailoring health
care to different populations.

Conclusion
Restriction fragment length polymorphism (RFLP) is the
predominant method of SNP analysis used to assay
CYP3A4 and CYP3A5 SNPs in previous studies [14,27].
Pyrosequencing offers several advantages over RFLP. For
RFLP analysis, a SNP must alter a restriction enzyme cut-
ting site. This limitation precludes many SNPs from RFLP
analysis. Pyrosequencing assays can be designed for the
vast majority of SNPs, making it a versatile alternative.
Pyrosequencing also requires less time than RFLP. Post-
PCR, Pyrosequencing steps take approximately 30 min-
utes for 96 samples, whereas enzyme digestion (1–2 h)
and gel electrophoresis for RFLP take significantly longer.
Additionally, Pyrosequencing assays are readily transfera-
ble to any lab with the appropriate equipment and require
no on-site optimization. This procedure could improve

the efficiency of SNP analysis for pharmacogenomic
research with the ultimate goal of pre-screening patients
for individual therapy selection.
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