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Abstract

Background: To uncover the genes involved in the development of osteosarcoma (OS), we performed a meta-analysis
of OS microarray data to identify differentially expressed genes (DEGs) and biological functions associated with gene
expression changes between OS and normal control (NC) tissues.

Methods: We used publicly available GEO datasets of OS to perform a meta-analysis. We performed Gene Ontology
(GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Protein-Protein
interaction (PPI) networks analysis.

Results: Eight GEO datasets, including 240 samples of OS and 35 samples of controls, were available for the meta-analysis.
We identified 979 DEGs across the studies between OS and NC tissues (472 up-regulated and 507 down-regulated). We
found GO terms for molecular functions significantly enriched in protein binding (GO: 0005515, P = 3.83E-60) and calcium
ion binding (GO: 0005509, P = 3.79E-13), while for biological processes, the enriched GO terms were cell adhesion
(GO:0007155, P = 2.26E-19) and negative regulation of apoptotic process (GO: 0043066, P = 3.24E-15), and for cellular
component, the enriched GO terms were cytoplasm (GO: 0005737, P = 9.18E-63) and extracellular region (GO: 0005576,
P = 2.28E-47). The most significant pathway in our KEGG analysis was Focal adhesion (P = 5.70E-15). Furthermore,
ECM-receptor interaction (P = 1.27E-13) and Cell cycle (P = 4.53E-11) are found to be highly enriched. PPI network analysis
indicated that the significant hub proteins containing PTBP2 (Degree = 33), RGS4 (Degree = 15) and FXYD6 (Degree = 13).

Conclusions: Our meta-analysis detected DEGs and biological functions associated with gene expression changes
between OS and NC tissues, guiding further identification and treatment for OS.
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Background
Osteosarcoma (OS), the most common non-haematological
primary malignant tumor of bone, occurs most commonly
in the metaphyseal regions of long bones mainly in
adolescents and young adults, but also in patients
over 40 years of age [1]. Though the survival rate has
been improved after the introduction of neoadjuvant
chemotherapy, the need for advances in treatments is still
very urgent [2,3]. Therefore, an in-depth understanding
of the pathobiology of OS is needed to develop
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rational treatment options for OS. Cytogenetic analyses
have revealed that most conventional OShave complex
karyotypes with numerous and highly variable genomic
aberrations [4]. Many genes become dysregulated due to
genomic aberrations, and DNA copy number and DNA
methylationand and gene expression data combined
to identify oncogenes and tumor suppressor genes in
OS [5,6].
As the high-throughput technologies have been used in

many fields, detection of expression level across the whole
genome is a useful way to find unusual genomic alteration
in OS patients with microarray. Recently, researchers have
used this technique to more comprehensively increase
knowledge about the cellular and molecular changes
in OS [7-13]. Although these studies have shown lists
of differently expressed genes (DEGs), there tends to
be inconsistencies among studies due to limitations of
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small sample sizes and varying results obtained by
different groups, accomplished by different laboratory
protocols, microarray platforms and analysis techniques
[14]. Recent studies have shown that the systematic
integration of gene expression data from multiple sources,
so-called meta-analyses, can increase statistical power for
detecting differentially expressed genes while allowing for
an assessment of heterogeneity, and may lead to more
robust, reproducible and accurate predictions [15,16].
Similar meta-analysis has never been conducted for OS,
and we first perform a meta-analysis of gene expression
data sets from various OS studies to overcome the
limitations of individual studies, resolve inconsistencies,
and reduce the likelihood that random errors are
responsible for false-positive or false-negative associations,
and lay a foundation for uncovering the pathology of OS
and further generating new therapies for OS.

Methods
Identification of eligible OS gene expression datasets
OS expression profiling studies were identified by searching
PubMed database. The following key words and their
combinations were used: “osteosarcoma, gene expression,
microarray, genetics”. In addition, the Gene Expression
Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo)
was also searched to ensure the relevant studies were not
missed [17]. We only retained the original experimental
articles that analyzed gene expression profiling between
OS and normal control (NC) tissues. Non-human studies,
review articles and integrated analysis of expression
profiles were excluded (Figure 1). We conducted this
meta-analysis in accordance with the guidelines provided
Figure 1 Flowchart of the selected process of microarray datasets for
in the PRISMA statement (Additional file 1: The PRISMA
Checklist S1). Data were extracted from the original
studies by 2 independent reviewers. Any discrepancies
between reviewers were resolved by consensus or a third
reviewer. The following information was extracted from
each identified study: GEO accession number, sample
type, platform, number of cases and controls, references,
and gene expression data.

Data preprocessing
Normalization is important for comparison of microarray
data sets. The heterogeneity of different datasets caused
by different platforms, different gene nomenclature
and different control tissues may make it difficult to
directly compare the data sets from various sources.
The improperly normalization used in the comparisons of
microarray data sets may run a high risk of skewing
comparison results and reduce the credibility of measure-
ments of individual gene expression change. In this case, a
global normalization method to minimize the inconsistency
should be considered. For this purpose, we used the Z-score
transformation approach to calculate the expression
intensities of each probe in gene expression profiles.
Z-scores were calculated according to the following
formula:

Z score ¼ xi‐�x
δ

Where xi represents raw intensity data for each gene;
�x represents average gene intensity within a single
experiment and δ represents standard deviation (SD) of
all measured intensities.
the meta-analysis.

http://www.ncbi.nlm.nih.gov/geo
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Statistical analysis
The significance analysis of microarray (SAM) software
was then used to identify the DEGs between pathological
and control samples. This procedure identifies DEGs by
carrying out gene specific t-statistics, with a “relative
difference” score for each gene. The D value was defined as
the average expression change from different expression
states to the standard deviation of measurements for
that gene. Genes exhibiting at least two-fold changes
corresponding to a false discovery rate (FDR) less than
0.05 were selected as the significantly DEGs [18].

Functional classification of DEGs
In order to interpret the biological significance of the
DEGs, we performed Gene Ontology (GO) enrichment
analysis to investigate their functional distribution in OS.
The online based software GENECODIS (http://genecodis.
cnb.csic.es) was used to perform this analysis [19]. In
addition, we also performed the pathway enrichment
analysis based on the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database.

PPI network construction
The protein-protein interactions (PPIs) research could
reveal the functions of proteins at the molecular level
and help discover the rules of cellular activities including
growth, development, metabolism, differentiation and
apoptosis [20]. The identification of protein interact ions
in a genome-wide scale is an important step for the
interpretation of the cellular control mechanisms [21]. In
this analysis, we used Biological General Repository for
Interaction Datasets (BioGRID) (http://thebiogrid.org/) to
construct PPI network and visualized the distribution
characteristics of the top 10 up- and down-regulated
DEGs in the network in Cytoscape [22].

Results
Short overview of the studies included
In this work, we collected a total of 8 expression profiling
studies according to the inclusion criteria, among which it
Table 1 Characteristics of the individual studies

GEO ID Sample count
(case:control)

Platfor

GSE14359 18: 2 GPL96 [HG-U133A] Affymetrix Human Gen

GSE16102 48: 6 GPL96 [HG-U133A] Affymetrix Human Gen

GSE12865 12: 2 GPL6244 [HuGene-1_0-st] Affymetrix Huma

GSE11414 4: 2 GPL6244 [HuGene-1_0-st] Affymetrix Huma

GSE42352 103:15 GPL10295 Illumina human-6 v2.0 expressio

GSE36001 19: 6 GPL6102 Illumina human-6 v2.0 expression

GSE32964 35: 1 GPL6947 Illumina HumanHT-12 V3.0 expres

GSE30807 1: 1 GPL570 [HG-U133_Plus_2] Affymetrix Hum
included240 samples of OS and 35 samples of controls.
Selected details of the individual studies are summarized
in Table 1. 4 studies utilized bone tissues of OS samples, 3
studies utilized OS cell lines and 1 study utilized
bone tissues and cell lines simultaneously.

Detecting genes associated with OS
To identify the genetic markers involved in the develop-
ment and progression of OS, we firstly unified the probe
ID, for a microarray platform that represent a named gene,
and the HUGO symbol of that gene, to the Entrez gene ID.
The expression value was logarithmically transformed (base
2). This lead to a total of 14722 genes obtained. The
expression values for each gene were then transformed to
the z-score for the purpose of global normalization. By
using the assembled expression compendium, we investi-
gated the global shifts of gene expression between OS and
NC. Then, we used SAM method to identify DEGs between
pathological and control samples. With a FDR of 0.05 and
by applying a minimal fold change of 1.4, a total of 979
genes were found to show altered expression in samples of
OS compared with normal control. Among those DEGs,
472 genes were up-regulated and 507 genes were down-
regulated. A list of the top 10 most significantly up- or
down-regulated DEGs was presented in Table 2. The
up-regulated gene with the lowest P-value (P = 5.08E-15)
was CPE (carboxypeptidase E), previously reported to
correlate with tumor growth and metastasis [23], which is
a carboxypeptidase that cleaves C-terminal amino acid
residues and is involved in the biosynthesis of peptide
hormones and neurotransmitters, including insulin
[24]. The down-regulated gene with the lowest P-value
(P = 1.86E-48) was NPR3 (natriuretic peptide receptor 3)
that acts as a decoy/clearance receptor functioning to
limit the effects of natriuretic peptides. The full list of
these genes was provided as Additional file 2: Table S1.

Functional annotation
To gain insights into the biological roles of the DEGs
from OS, we performed a GO categories enrichment
m Sample source Tissue

ome U133A Array in vivo Bone, lung

ome U133A Array in vivo Bone

n Gene 1.0 ST Array in vivo Bone

n Gene 1.0 ST Array in vitro Bone

n beadchip (using nuIDs as identifier) in vivo/in vitro Bone

beadchip in vitro Bone

sion beadchip in vivo Bone

an Genome U133 Plus 2.0 Array in vitro Bone

http://genecodis.cnb.csic.es
http://genecodis.cnb.csic.es
http://thebiogrid.org/


Table 2 The top 10 most significantly up- or down-regulated DEGs

Gene ID Gene symbol P-value Fold change Official full name

Up-regulated genes

1363 CPE 5.08E-15 3.856 Carboxypeptidase E

23462 HEY1 6.72E-15 2.7097 Hes-related family bHLH transcription factor with YRPW motif 1

5538 PPT1 8.34E-15 2.7668 Palmitoyl-protein thioesterase 1

58155 PTBP2 2.19E-12 1.7278 Polypyrimidine tract binding protein 2

81035 COLEC12 3.87E-12 1.7098 Collectin sub-family member 12

54504 CPVL 4.90E-12 2.4601 Carboxypeptidase, vitellogenic-like

53826 FXYD6 2.40E-11 2.3862 FXYD domain containing ion transport regulator 6

54453 RIN2 5.85E-11 1.6714 Ras and Rab interactor 2

80135 RPF1 5.94E-11 1.7889 Ribosome production factor 1 homolog (S. cerevisiae)

1942 EFNA1 1.23E-10 1.9501 Ephrin-A1

Down-regulated genes

4883 NPR3 1.9E-48 −2.352 Natriuretic peptide receptor 3

25802 LMOD1 4.1E-32 −1.5799 Leiomodin 1 (smooth muscle)

2621 GAS6 2.5E-31 −2.6934 Growth arrest-specific 6

5959 RDH5 4.2E-30 −2.3838 Retinol dehydrogenase 5 (11-cis/9-cis)

316 AOX1 3.2E-28 −2.1826 Aldehyde oxidase 1

55679 LIMS2 9.2E-28 −1.7498 LIM and senescent cell antigen-like domains 2

4053 LTBP2 7.3E-27 −3.0523 Latent transforming growth factor beta binding protein 2

5999 RGS4 8.3E-27 −3.2551 Regulator of G-protein signaling 4

8613 PPAP2B 2.2E-25 −2.6475 Phosphatidic acid phosphatase type 2B

23529 CLCF1 6.5E-25 −1.6977 Cardiotrophin-like cytokine factor 1
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analysis. Gene ontology provides a common descriptive
framework and functional annotation and classification
for analyze the gene sets data. GO categories are
organized into three groups: biological process, cellular
component, and molecular function. The biological process
and molecular functions are thus examined separately in
our analysis by web-based software GENECODIS. Genes
that showed a nominal significance level of P < 0.01 were
selected and were tested against the background set of all
genes with GO annotations. We found GO terms for
molecular functions significantly enriched in protein
binding (GO: 0005515, P = 3.83E-60) and calcium ion
binding (GO: 0005509, P = 3.79E-13), while for biological
processes, the enriched GO terms were cell adhesion
(GO: 0007155, P = 2.26E-19) and negative regulation of
apoptotic process (GO: 0043066, P = 3.24E-15), and
for cellular component, the enriched GO terms were
cytoplasm (GO: 0005737, P = 9.18E-63) and extracellular
region (GO: 0005576, P = 2.28E-47) (Figure 2).
To further evaluate the biological significance for the

DEGs, we also performed the KEGG pathway enrichment
analysis. Hypergeometric test with P value < 0.05 was
used as the criteria for pathway detection (Table 3). The
most significant pathway in our KEGG analysis was Focal
adhesion (P = 5.70E-15). Furthermore, ECM-receptor
interaction (P = 1.27E-13) and Cell cycle (P = 4.53E-11)
were found to be highly enriched.

Protein-Protein interaction (PPI) network construction
Nodes represent proteins, edges represent interactions
between two proteins. The higher the node shape, the
greater deagree of connection. The PPI networks we estab-
lished for the top 10 up-regulated and down-regulated
DEGs by Cytoscape software included 129 nodes and 182
edges. The significant hub proteins containing PTBP2
(polypyrimidine tract binding protein 2, Degree = 33),
RGS4 (regulator of G-protein signaling 4, Degree = 15) and
FXYD6 (FXYD domain containing ion transport regulator
6, Degree = 13) (Figure 3), we also annotated the edges
connecting the top 10 up-regulated and down-regulated
DEGs directly or indirectly in Additional file 3: Table S2,
and numbered in Figure 3.

Discussion
Osteosarcoma (OS) is an aggressive cancer demonstrating
both high metastatic rate and chemotherapeutic resistance.
A comprehensive analysis of the mechanism underlying
OS development is of crucial importance for management
policy. In this paper, we chose a meta-analysis approach
that combines differently expressed genes (DEGs) from



Table 3 The top 15 enriched KEGG pathway of DEGs

KEGG ID KEGG Name No.of
genes

P value

hsa04510 Focal adhesion 34 5.70E-15

hsa04512 ECM-receptor interaction 22 1.27E-13

hsa04110 Cell cycle 23 4.53E-11

hsa04060 Cytokine-cytokine receptor interaction 28 8.54E-08

hsa04610 Complement and coagulation cascades 14 1.26E-07

hsa05200 Pathways in cancer 31 1.53E-07

hsa04810 Regulation of actin cytoskeleton 22 4.27E-06

hsa04114 Oocyte meiosis 15 1.33E-05

hsa05144 Malaria 10 1.76E-05

hsa04540 Gap junction 13 2.39E-05

hsa04974 Protein digestion and absorption 12 3.59E-05

hsa04380 Osteoclast differentiation 15 5.09E-05

hsa05150 Staphylococcus aureus infection 9 7.59E-05

hsa05322 Systemic lupus erythematosus 12 0.0001029

hsa04142 Lysosome 14 0.000113

Figure 2 The top 15 enriched GO terms of differentially expressed genes. A. molecular functions for DEGs (P value≤ 9.35E-06); B. biological
process for DEGs (P value≤ 1.92E-07); C. cellular component for DEGs (P value≤ 2.98E-09).
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microarray datasets to highlight genes that were consist-
ently expressed differentially with statistical significance,
and performed GO enrichment analysis and KEGG
pathway analysis, and construct the protein-protein
interaction (PPI) networks.
We performed a meta-analysis using 8 publicly available

GEO data sets to identify common biological mechanisms
involved in the pathogenesis of OS. OS is a kind of rare
tumor, where material from clinical samples is scarce,
therefore data from both bone tissues and cell lines were
included in our meta-analysis. In total, 979 genes across
the studies were consistently expressed differentially in
OS (472 up-regulated and 507 down-regulated). The
up-regulated gene with the lowest P-value (P = 5.08E-15)
was CPE (carboxypeptidase E), which is a carboxypeptidase
that cleaves C-terminal amino acid residues and is
involved in the biosynthesis of peptide hormones and
neurotransmitters, including insulin [24], but at the
present the role and association with OS have not yet been
reported. In line with previous findings, We found that
some genes have been closely related to the development
of OS among the top ten up-regulated DEGs, such as



Figure 3 The constructed protein-protein interaction networks of the top 10 up- and down-regulated DEGs. The edges numbered mean
which connect the top 10 up- and down-regulated DEGs directly or indirectly.
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HEY1, FXYD6, EFNA1. HEY1, one of target genes of
NOTCH1, was reported to be up-regulated in OS from
p53 mutant mice, suggesting that activation of Notch
signaling contributes to the pathogenesis of OS [25].
Another study also found that HEY1 and other downstream
target genes of Notch signaling including HES1, NOTCH1
and NOTCH2, were elevated in canine osteosarcoma by
gene expression microarray analysis and reverse transcript-
ase - quantitative PCR (RT-qPCR) [26]. Olstad OK et al.
applied directional tag PCR subtractive hybridization to
construct a cDNA library generated from three different
human osteosarcoma (OS) target cell lines (OHS, SaOS-2
and KPDXM), and identified FXYD6 was enriched in OS
cell lines [27]. EFNA1 was significantly elevated in OS
samples by using genome-wide microarrays, and in vitro
study on the functional role of EphA2 and EFNA1 showed
that EFNA1 ligand binding induced increased tyrosine
phosphorylation, receptor degradation and downstream
mitogen-activated protein kinase (MAPK) activation [28].
The down-regulated DEGs with the lowest P-value

(P = 1.86E-48) was NPR3 (natriuretic peptide receptor 3)
that acts as a decoy/clearance receptor functioning to
limit the effects of natriuretic peptides. NPR3, which is
an important anabolic regulator of endochondral bone
growth, is enriched in bone marrow-derived mesenchymal
stem cells, and there is no relevant report to OS at
present. In our meta-analysis Gas6 was identified to be
one of the top ten down-regulated DEGs. In OS cell lines,
rhGas6 could activate Axl to protect the tumor cells from
apoptosis caused by serum starvation, and promote tumor
cells’ migration and invasion in vitro [29].
In order to uncover the biological roles of the DEGs

from OS, we performed a GO categories enrichment
analysis. We found GO terms for molecular functions
significantly enriched in protein binding and calcium
ion binding, while for biological processes, the enriched
GO terms were cell adhesion and negative regulation
of apoptotic process, and for cellular component, the
enriched GO terms were cytoplasm and extracellular
region. To further evaluate the biological significance
for the DEGs, we also performed the KEGG pathway
enrichment analysis. Focal adhesion, ECM-receptor
interaction and Cell cycle in our KEGG analysis were
found to be highly enriched. Many signal transduction
pathways involved in OS development were stimulated
by bone morphogenetic proteins (BMPs), transforming
growth factors (TGFs), Notch family proteins and
Wnt family proteins, and components of each of these
pathways have been implicated in OS. Interestingly, we
noted that the most significant pathway in our KEGG
analysis was Focal adhesion. Focal adhesions are associated
with cell migration dynamics. However in the human cells
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focal adhesion would initially appear to be contradictory to
their migratory phenotype. It has been proved previously
that knockdown of paxillin in highly metastatic OS
sub-lines M112 and 132 would inhibit cell migration [30].
Furthermore the results from PPI network analysis of the

top 10 up-regulated and down-regulated DEGs indicated
the significant hub proteins containing PTBP2, RGS4 and
FXYD6. PTBP2, a member of PTB (polypyrimidine tract
binding protein) family of RNA-binding proteins which
plays a critical role in development through the regulation
of post-transcriptional events, is expressed in the nervous
system including the brain, the neural retina and the spinal
cord and the intermediate mesoderm [31]. PTBP2
regulates the generation of neuronal precursors in the
embryonic brain by repressing adult-specific splicing [32],
but the function involved in OS development has not been
discovered. Our result of PPI suggested that PTBP2 may
play an important role in the development.
The present study has some limitations. First, hetero-

geneity and confounding factors may have distorted the
analysis. Clinical samples might be heterogeneous with
respect to clinical activity, severity, or gender. Although
we conducted global normalization for different data sets,
the heterogeneity of various microarray platforms used in
different studies can’t remove. Second, there are differences
in gene expression between tissues such as bones, cell lines
and lung that were not taken into account. However, our
meta-analysis integrated data from different studies which
may enable us to detect genes that we would otherwise
have missed in an analysis. Despite these limitations, our
discover have important implications for the molecular
mechanisms of OS,but further experimental research is still
need to confirm our study.

Conclusions
In conclusion, by this meta-analysis based on gene
expression data of osteosarcoma we have shown the
underlying molecular differences between NC tissues and
osteosarcoma, including DEGs and their biological function
which may contribute to the successful identification of
therapeutic targets for osteosarcoma. Further functional
studies may provide additional insights into the role of
the differentially regulated genes in the pathophysiology of
osteosarcoma.
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