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Abstract

Background: Oxidative stress is recognized as a major pathogenic factor of cellular damage caused by
hyperglycemia. NOX/NADPH oxidases generate reactive oxygen species and NOX1, NOX2 and NOX4 isoforms are
expressed in kidney and require association with subunit p22phox (encoded by the CYBA gene). Increased
expression of p22phox was described in animal models of diabetic nephropathy. In the opposite direction,
glutathione is one of the main endogenous antioxidants whose plasmatic concentrations were reported to be
reduced in diabetes patients. The aim of the present investigation was to test whether functional single nucleotide
polymorphisms (SNPs) in genes involved in the generation of NADPH-dependent O2

•- (-675 T ® A in CYBA,
unregistered) and in glutathione metabolism (-129 C ® T in GCLC [rs17883901] and -65 T ® C in GPX3
[rs8177412]) confer susceptibility to renal disease in type 1 diabetes patients.

Methods: 401 patients were sorted into two groups according to the presence (n = 104) or absence (n = 196) of
overt diabetic nephropathy or according to glomerular filtration rate (GFR) estimated by Modification of Diet in
Renal Disease (MDRD) equation: ≥ 60 mL (n = 265) or < 60 mL/min/1.73 m2 (n = 136) and were genotyped.

Results: No differences were found in the frequency of genotypes between diabetic and non-diabetic subjects.
The frequency of GFR < 60 mL/min was significantly lower in the group of patients carrying CYBA genotypes T/A
+A/A (18.7%) than in the group carrying the T/T genotype (35.3%) (P = 0.0143) and the frequency of GFR < 60
mL/min was significantly higher in the group of patients carrying GCLC genotypes C/T+T/T (47.1%) than in the
group carrying the C/C genotype (31.1%) (p = 0.0082). Logistic regression analysis identified the presence of at
least one A allele of the CYBA SNP as an independent protection factor against decreased GFR (OR = 0.38, CI95%
0.14-0.88, p = 0.0354) and the presence of at least one T allele of the GCLC rs17883901 SNP as an independent risk
factor for decreased GFR (OR = 2.40, CI95% 1.27-4.56, p = 0.0068).

Conclusions: The functional SNPs CYBA -675 T ® A and GCLC rs17883901, probably associated with cellular redox
imbalances, modulate the risk for renal disease in the studied population of type 1 diabetes patients and require
validation in additional cohorts.
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Background
Diabetic nephropathy (DN) represents one of the lead-
ing causes of end-stage renal disease. Unlike diabetic
retinopathy, with up to 80% incidence in diabetes
patients with more than 20 years’ diagnoses [1], DN
affects approximately one third of type 1 diabetes
patients during their lifetime, at times irrespective of the
glycemic control [2]. These findings taken together with
results of familial studies [3], point to the existence of
genetic susceptibility to the renal lesions caused by
chronic hyperglycemia.
Oxidative stress is currently recognized as a major

pathogenic factor of cellular damage caused by hypergly-
cemia, being considered the final common pathway
through which hyperglycemia-related pathways (polyol,
advanced glycation end products, protein kinase C and
hexosamine) can trigger the chronic complications of
diabetes [4]. NOX/NADPH oxidases catalyse NADPH-
dependent reduction of O2 to O2

•-, generating reactive
oxygen species (ROS). NOX1, NOX2 and NOX4 are iso-
forms expressed in the kidney [5] whose activation
requires association with subunit p22phox, encoded by
the CYBA gene. Increased expression of p22phox was
described in animal models of DN [6].
Acting in the opposite direction, glutathione (GSH) is

one of the main endogenous antioxidants whose plas-
matic concentrations were reported to be reduced in
diabetes patients [7]. GSH synthesis requires the gluta-
mate-cysteine ligase enzyme (g-GCL) in the first and
rate-limiting step for its production. This enzyme is a
heterodimer composed by a heavy catalytic subunit,
encoded by the GCLC gene, as well as a light regulatory
subunit [8]. GSH regulates ROS concentrations via reac-
tions catalyzed by glutathione peroxidases (GPX), such
as the plasmatic GPX (GPX3) [9].
Given the role of oxidative stress in the etiopathogen-

esis of diabetic complications, we examined the associa-
tion between the presence of renal disease in type 1
diabetes patients and functional single nucleotide poly-
morphisms (SNPs) in the promoter region of three
genes related to cellular redox balance: (1) -675 T ® A
in CYBA (unregistered), where the T allele is associated
with higher phagocytic NADPH oxidase activity [10], (2)
-129 C ® T in GCLC (rs17883901), where the T allele
determines a lower promoter activity [8] and -65 T ® C
in GPX3 (rs8177412), where the C allele is present in a
haplotype associated with a lower promoter transcrip-
tional activity [9].

Methods
A total of 401 type 1 diabetes patients and 188 non-dia-
betic subjects age and gender matched were included
between October 2004 and February 2011. The study
was carried out in compliance with the Institutional

Ethics Committee and the Declaration of Helsinki, with
informed consent being given to each participant. Inclu-
sion criterion was diabetes duration ≥ 10 years. DN sta-
tus was determined by measurements of urinary
albumin-to-creatinine ratio (ACR) or urinary albumin
excretion rate (UAER). Patients presenting persistent
macroalbuminuria (> 300 mg/g of creatinine or > 200
μg/min) or proteinuria (> 500 mg/24 h) were classified
as having overt DN (n = 104) and patients without overt
DN (n = 196) presented persistent normoalbuminuria.
Patients with microalbuminuria were excluded from this
analysis. Patients were also stratified according to Modi-
fication of Diet in Renal Disease (MDRD)-estimated
GFR: ≥ 60 mL (n = 265) or < 60 mL/min/1.73 m2 (n =
136). All patients presenting autoimmune diseases and
HIV or HCV infection were excluded from the study, as
well as patients with overt DN or GFR < 60 mL/min/
1.73 m2 who did not present diabetic retinopathy.
Hypertension was defined as blood pressure > 140/90

mmHg on two occasions or use of antihypertensive
drugs. UAER was measured in 24-h urine samples by
immunoturbidimetry and ACR was measured in spot
urine samples using nephelometry, in at least two sam-
ples collected over the preceding 6 months. HbA1C,
creatinine, triglycerides, HDL and LDL-cholesterol were
measured as described [11].
GCLC -129 C ® T (rs17883901; location 6:53410037)

was determined by PCR-RFLP as previously described [8],
GPX3 -65 T ® C (rs8177412; location 5: 150400087) was
genotyped by sequencing of PCR products (5’
CCTGACTTCCACCTCTCTGC 3’ and 5’ CGCCCTCC
CCGCTGCTCCTC 3’) on an ABI3130DNA sequencer
(Applied Biosystems). CYBA -675 A ® T (unregistered;
location 16:88718096) [10] was genotyped by PCR using
specific primers (sense: 5’-GCGCTGGCTCACCAC-3’ and
antisense: 5’-ACTGGGAAAGCACAGAATGCA-3’) and
fluorescent-labelled probes (VIC: 5’-CCTCCCGAACC-
CAGG-3’ and FAM: 5’-CCTCCCGTACCCAGG-3’) (Taq-
Man, Applied Biosystems). Genotyping success rates were
100% for the GCLC and GPX3 SNPs and 98% for the
CYBA SNP. We achieved 100% concordance in the analy-
sis of duplicate samples (15% of total) for all SNPs (the
SNP evaluated by RFLP was double genotyped by direct
sequencing).
Statistical analyses were performed using JMP 8.0

(JMP SAS Institute Inc). Pearson’s c2 test was used to
compare genotype frequencies between non-diabetic and
diabetic groups. Mann-Whitney and Fisher’s c2 test
were used to compare continuous and categorical vari-
ables, respectively. Magnitude of association was esti-
mated using odds ratios (OR) and adjusted OR was
estimated by logistic regression for possible confounders
(sex, age at diagnosis, diabetes duration, hypertension,
triglyceride and cholesterol levels, and HbA1C). P values

Vieira et al. BMC Medical Genetics 2011, 12:129
http://www.biomedcentral.com/1471-2350/12/129

Page 2 of 6



< 0.05 were considered significant. Power calculations
were carried out with the CaTS power calculator [12]
and the power of the study was > 80% to detect associa-
tions of SNPs (dominant model) with a minor allele fre-
quency ≥ 0.11 and a genotype relative risk ≥ 1.6.
Benjamini-corrected false-discovery rate was employed
to control for multiple hypothesis testing (MHT) [13].

Results
The distribution of genotypes was consistent with
Hardy-Weinberg equilibrium for all SNPs. No differ-
ences were found in the age and sex distribution and in
the frequency of genotypes between diabetic and non-
diabetic subjects (Table 1). The characteristics of the
patients according to GFR status are depicted in Table
2. Patients with GFR < 60 mL/min/1.73 m2 are older,
present longer diabetes duration, higher frequency of
hypertension and of use of lipid lowering drugs, higher
plasmatic concentrations of triglycerides and lower plas-
matic concentrations of HDL-cholesterol.
No statistically significant differences were found in

frequency of the genotypes T/C+C/C of the SNP GPX3
rs8177412 between patients with and without overt DN
(29.8% and 24%, respectively) and between patients with
GFR < and ≥ 60 mL/min/1.73 m2 (28.4% and 24%,
respectively) (data not shown).
The characteristics of the patients according to the

genotypes of SNPs CYBA -675 A ® T and GCLC
rs17883901 are depicted in Table 3. The frequency of
overt DN was significantly lower in the group of
patients carrying CYBA genotypes T/A+A/A (20%) than
in the group carrying the T/T genotype (36.2%) (p =

0.0398) but this association lost significance if corrected
for MHT. The frequency of GFR < 60 mL/min/1.73 m2

was also significantly lower in the group of patients car-
rying genotypes T/A+A/A (18.7%) than in the group
carrying the T/T genotype (35.3%) (p = 0.0143). Regard-
ing GCLC rs17883901, the frequency of GFR < 60 mL/
min/1.73 m2 was significantly higher in the group of
patients carrying genotypes C/T+T/T (47.1%) than in
the group carrying the C/C genotype (31.1%) (p =
0.0082). Both associations remained significant after cor-
rection for MHT. GCLC C/T+T/T genotypes were also
associated with a significantly lower age at diabetes diag-
nosis (11 years old) in comparison to the C/C genotype
(13 years old) (p = 0.0073) and with a higher frequency
of use of angiotensin converting enzyme inhibitors
(31.4% versus 18.8%, respectively; p = 0.0164).
Logistic regression analysis with GFR < 60 mL/min/

1.73 m2 as dependent variable identified the presence of
at least one A allele of the CYBA SNP as an indepen-
dent protection factor against decreased GFR (OR =
0.38, CI95% 0.14-0.88, p = 0.0354) and the presence of
at least one T allele of the GCLC rs17883901 SNP as an
independent risk factor for decreased GFR (OR = 2.40,
CI95% 1.27-4.56, p = 0.0068). Longer diabetes duration,
arterial hypertension and higher triglycerides concentra-
tions were also identified as independent risk factors for
a GFR < 60 mL/min/1.73 m2 (Table 4).

Discussion
In the current study, the presence of at least one A
allele in -675 T ® A SNP and at least one T allele in
rs17883901 located, respectively, at the promoter region

Table 1 Frequency of CYBA - 657 T ® A (unregistered), GCLC - 129 C ® T (rs17883901) and GPX3 - 65 T ® C
(rs8177412) polymorphisms in type 1 diabetes patients and non-diabetic control subjects

Non-diabetic control subjects
n = 118

Type 1 diabetes patients
n = 401

Sex (male/female) 44.2%/54.8% 49.5%/50.5%

Age (years)* 36 (29-44.5) 34.7 (27.8-43)

- 675 T ® A CYBA genotypes

T/T 101 (85.6%) 351 (87.5%)

T/A 17 (14.4%) 47 (11.7%)

A/A 0 (0%) 3 (0.8%)

- 129 C ® T GCLC genotypes

C/C 97 (82.2%) 333 (83%)

C/T 21 (17.8%) 64 (16%)

T/T 0 (0%) 4 (1%)

- 65 T ® C GPX3 genotypes

T/T 87 (73.7%) 298 (74.3%)

T/C 28 (23.8%) 98 (24.5%)

C/C 3(2.5%) 5 (1.2%)

*median ± interquartile interval.
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of the CYBA and GCLC genes modulate the risk for
decreased GFR in type 1 diabetes patients even after
adjusting for other risk factors.
The participation of NOX-derived ROS in DN has

been previously demonstrated in experimental models of
diabetes [6,14] while the contribution of genes coding
proteins belonging to the NADPH system to genetic
predisposition for DN has been little explored. The asso-
ciation of one CYBA SNP (+242 C ® T [rs4673]) with
overt DN was previously demonstrated in type 1 dia-
betes patients [15]. We evaluated a different functional
SNP,-675 T ® A and the proportion of patients with
GFR < 60 mL/min/1.73 m2 was significantly lower in

the group of patients carrying genotypes T/A+A/A.
Moreno et al. have previously associated the T allele of
this SNP with essential hypertension and with a higher
phagocytic NADPH-dependent O2

•- production in Span-
ish subjects and they hypothesized that the presence of
the T allele increases p22phox transcription by interfer-
ing with binding of the transcription factor hypoxia-
inducible factor 1-a (HIF-1a) [10]. Because high glucose
is able to increase expression of HIF-1a in the glomeruli
of animal models of diabetes in conditions of normoxia
[16], it is plausible that patients harboring the T/A+A/A
genotypes do not present an increase in p22phox tran-
scription rate as high as that observed in patients

Table 2 Characteristics of type 1 diabetes patients according to the Glomerular Filtration Rate (GFR) status

GFR ≥ 60 mL/min/1.73 m2 (n = 265) GFR < 60 mL/min/1.73 m2

(n = 136)
p value

Sex (male/female) (%) 42/58 50/50 0.1410

Age (years) 33 (25.7-42.8) 38 (30.8-45.6) 0.003

Age at diabetes diagnosis (years) 11.5 (6-18) 13 (9-20.7) 0.1206

Duration of diabetes (years) 20.6 (16.1-25.1) 23 (18-31) 0.0086

Arterial hypertension (%) 36.7 64.5 < 0.0001

Use of lipid-lowering drugs (%) 16.4 25.3 0.0325

Use of ACE inhibitors (%) 21.7 21 0.8591

HbA1C (%) 8.25 (7.4-9.7) 8.4 (7.4-9.8) 0.7027

Cholesterol (mg/dL) 172 (149-199) 179 (151-211) 0.1437

HDL cholesterol (mg/dL) 58 (49-69) 52 (43-64.2) 0.0134

LDL cholesterol (mg/dL) 91 (76-113) 103 (78-129) 0.0634

Triglycerides (mg/dL) 71 (53-107) 98 (72-145) < 0.0001

Data are median ± interquartile interval; ACE: angiotensin converting enzyme; GFR: glomerular filtration rate.

Table 3 Characteristics of type 1 diabetes patients according to the genotypes of CYBA -675 T ® A (unregistered) or
GCLC rs17883901 SNPs

CYBA
TT

(n = 353)

CYBA
TA+AA
(n = 48)

P value GCLC
CC

(n = 331)

GCLC
CT+TT
(n = 70)

p value

Sex (male/female) (%) 45/55 43/57 0.4334 53/47 38/62 0.1259

Age (years) 34.6 (27.7-43) 33 (27.8-43) 0.4778 35 (27.9-44) 34.6 (27.1-42) 0.6965

Age at diabetes diagnosis (years) 12 (7-19) 13 (10-19) 0.3466 13 (7.5-20) 11 (7-15.2) 0.0073

Duration of diabetes (years) 21 (16.4-26) 20.3 (16-27) 0.7917 21 (16.6-26) 21.6 (17-29.4) 0.6799

Arterial hypertension (%) 45.6 44.9 0.5250 46.1 43.4 0.3937

Use of lipid-lowering drugs (%) 19 15.7 0.3583 17.4 25.3 0.1336

Use of ACE inhibitors (%) 21.1 18.3 0.4068 18.8 31.4 0.0164

HbA1C (%) 8.4 (7.4-9.6) 8.25 (7.2-10) 0.6329 8.3 (7.3-9.8) 8.3 (7.3-9.3) 0.9669

Cholesterol (mg/dL) 173 (150-200) 180 (149.5-209) 0.4319 174 (149-201) 174 (157-197) 0.7560

HDL cholesterol (mg/dL) 55 (46-67) 58 (47-69) 0.2954 57 (47-68) 52 (43-64.5) 0.0986

LDL cholesterol (mg/dL) 95 (78-118) 97 (75.2-124.4) 0.7686 94.4 (78-119) 94.2 (78-116) 0.8902

Triglycerides (mg/dL) 82 (58-118) 73 (54-113) 0.4712 80 (57-119.2) 85.5 (58-114.2) 0.3683

Overt DN (%) 36.2 20 0.0398 33.6 40 0.2387

GFR < 60 mL/min (%) 35.3 18.7 0.0143 31.1 47.1 0.0082

Data are median ± interquartile interval; ACE: angiotensin converting enzyme; DN: diabetic nephropathy; GFR: glomerular filtration rate.
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harboring the T/T genotype in response to HIF-a,
which could result in lower ROS generation in condi-
tions of hyperglycemia.
The T allele of the GCLC rs17883901 SNP was pre-

viously associated to myocardial infarction in the Japa-
nese [8] and Italian [17] populations and to non-
alcoholic steatohepatitis in a Brazilian series [18]. No
previous studies have associated this SNP with any of
the chronic microangiopathic complications of DM, but
a study performed in a Swedish population of type 1
diabetes patients found that the C/T genotype was asso-
ciated with higher anti-GAD autoantibody concentra-
tions compared to the C/C genotype. The authors
suggested that this SNP influences anti-GAD levels and
perhaps diabetes age at onset [19]. The results of the
present study also suggest an effect of this SNP on the
age at diabetes onset since age at diabetes diagnosis
among those harboring the C/T+T/T genotypes was sig-
nificantly lower than among patients with the C/C
genotype.
Mechanisms underlying the increased susceptibility of

type 1 diabetes patients carrying the T allele of the
GCLC rs17883901 SNP toward the presence of
decreased GFR may be the inability to increase concen-
trations of the enzyme g-CGS during oxidative stress,
which would result in lower production of GSH and
thus, increased susceptibility of cells exposed to chronic
hyperglycemia to ROS-induced lesions.

This study widens the spectrum of candidate genes for
DN belonging to oxidant and antioxidant pathways and
corroborates the assumption that therapeutic
approaches to improve antioxidant defenses may be a
strategy to prevent or delay chronic diabetic complica-
tions. However the present findings should be inter-
preted in the context of limitations of cross-sectional
studies and must be validated in larger populations
sorted by different phenotypes of renal impairment to
further evaluated if these genetic variants are more
involved with the decline of GFR than with development
of proteinuria or if the current findings only reflect the
larger number of patients stratified by GFR than by
albuminuria status, given that in this latter analysis,
patients presenting normoalbuminuria had been
excluded. Besides, the ethnic admixture that charac-
terizes the Brazilian population may be a source of
false-positive associations. Ninety percent of the patients
of the present study defined themselves as Caucasoid,
7.3% as African descendants and 2.7% as Asian descen-
dants, but previous genetic studies demonstrated that
color, as determined by physical evaluation, is a poor
predictor of genomic African ancestry in Brazilians [20].
Nevertheless type 1 DM is predominantly a disease of
Caucasians and of populations with a great Caucasian
genetic admixture [21] and the genotypic frequencies of
the GCLC and CYBA SNPs observed in this Brazilian
sample are similar to those reported in the representa-
tive Caucasian samples genotyped in the HapMap CEU
and in the previous study of the CYBA SNP in a Spanish
series [10], respectively.

Conclusions
The functional SNPs -675 T ® A in CYBA and
rs17883901 in GCLC, probably associated with cellular
redox imbalances, modulate the risk for renal disease in
the studied population of type 1 diabetes patients.
Furthermore, replication studies for these functional var-
iants will need to be carried out.
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