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Abstract
Background: Translocations are hallmarks of non-Hodgkin lymphoma (NHL) genomes. Because
lymphoid cell development processes require the creation and repair of double stranded breaks, it
is not surprising that disruption of this type of DNA repair can cause cancer. The members of the
MRE11-RAD50-NBS1 (MRN) complex and BLM have central roles in maintenance of DNA integrity.
Severe mutations in any of these genes cause genetic disorders, some of which are characterized
by increased risk of lymphoma.

Methods: We surveyed the genetic variation in these genes in constitutional DNA of NHL
patients by means of gene re-sequencing, then conducted genetic association tests for susceptibility
to NHL in a population-based collection of 797 NHL cases and 793 controls.

Results: 114 SNPs were discovered in our sequenced samples, 61% of which were novel and not
previously reported in dbSNP. Although four variants, two in RAD50 and two in NBS1, showed
association results suggestive of an effect on NHL, they were not significant after correction for
multiple tests.

Conclusion: These results suggest an influence of RAD50 and NBS1 on susceptibility to diffuse
large B-cell lymphoma and marginal zone lymphoma. Larger association and functional studies could
confirm such a role.

Background
Non-Hodgkin lymphoma (NHL) is a heterogeneous
group of hematological malignancies that in aggregate
constitutes the 5th highest cause of cancer mortality in the

United States [1] and Canada [2]. NHL subtypes vary in
presentation, survival expectation, morbidity and
responses to treatment. Chromosomal translocations are
so characteristic of NHL that many genes now known to
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be important in the development of cancer, such as BCL2
[3], were originally discovered due to their position at
recurrent translocation breakpoints in NHL tumours.

During development and differentiation, the DNA of B-
and T-cells is subject to double stranded breaks necessary
for the rearrangement of immunoglobulin genes. Genes
functioning in double-stranded break repair are involved
in successfully controlling and repairing these breaks, thus
protecting the genome from molecular events that could
lead to cancer. This study examined four genes with key
roles in maintaining genome stability: the MRN complex,
MRE11, RAD50 and NBS1, and the Bloom syndrome gene
(BLM). We have previously shown association with NHL
of a genetic variant in H2AX, which encodes a histone
involved in signalling the presence of double stranded
breaks [4]. The MRN complex forms foci at sites of double
stranded breaks induced by ionizing radiation or immu-
noglobulin rearrangements during B- and T-cell develop-
ment, sensing DNA damage and initiating DNA repair [5-
7].

The chromosome instability syndromes (reviewed in [8])
form a group of rare autosomal recessive diseases charac-
terized by an increased risk of cancer. This group includes
ataxia-telangiectasia (AT, OMIM 208900), Nijmegen
breakage syndrome (NBS, OMIM 251260), Bloom syn-
drome (OMIM 210900) and Fanconi anemia (OMIM
227650). NBS includes an increased risk of lymphoid
malignancies [9], particularly B-cell lymphoma [10,11].
Some patients with an NBS-like phenotype have muta-
tions in RAD50 [12]. Hypomorphic mutations in MRE11
result in an AT-like disorder (AT-LD). NBS and AT-LD
share many features, including immunodeficiency and
genome instability caused by failure of timely activation
of cell cycle checkpoint pathways [13-16].

Mutations in NBS1 cause aplastic anemia and acute lym-
phoblastic leukemia [17,18]. RAD50 variants have also
been associated with an increased risk of sporadic [12],
but not necessarily familial breast cancer [19,20]. MRE11
inactivation has been identified in colorectal cancer cell
lines and primary tumours [21], suggesting that inactiva-
tion of the MRN complex could be a frequent event in
cancers.

Bloom syndrome is also marked by a predisposition to
cancer, particularly lymphoma and leukemia in young
patients [22]. Although homozygous loss of Blm in mice
leads to embryonic lethality, heterozygotes show
increased risk of neoplasia, with augmented T-cell
tumourigenesis [23]. This haploinsufficiency is supported
by the increased risk of cancer in BLM heterozygotes of
Ashkenazi Jewish descent [24], although there is some
controversy regarding this finding [25]. This illustrates

BLM's role in response to DNA damage [26], particularly
during DNA replication stress [27].

While both Nbs1 [28] and Mre11 [29] null mutants are
inviable in vertebrates, the hypermorphic Rad50S muta-
tion causes hematopoietic stem cell failure so that mice
that do not die of lymphoma die of bone marrow attrition
[30], highlighting the delicate balance the MRN complex
exerts on cell survival. This is illustrated by the dosage sen-
sitivity to this mutation and the bidirectional phenotypic
rescue in Rad50S/S Atm-/- mice [31], leading the authors to
speculate that while mutations that cause gross chromo-
somal instability would have a wide array of outcomes,
less severe mutations would primarily affect tissues devel-
oped from a limited number of precursor stem cells. Since
the hematopoietic system is such a system, this reinforces
the need to look for variants in genes already known to be
associated with severe genetic disorders, with the rationale
that varying degrees of mutation severity affect the spec-
trum of possible effects.

To systematically investigate the role of NBS1, MRE11,
RAD50 and BLM in susceptibility to NHL, we carried out
re-sequencing of these four genes to establish the spec-
trum of genetic variation in NHL cases, and genotyped
797 NHL cases and 793 controls. Just as total inactivation
of a gene and attenuation of its activity lead to different
phenotypes in mice, we expected that subtle variation in
DNA repair genes could be pertinent to NHL risk in the
general population, while complete inactivation of these
genes leads to rare and severe syndromes.

Methods
Study population
The methodology has been described previously [32,33].
Informed consent was obtained as approved by the joint
University of British Columbia/British Columbia Cancer
Agency Research Ethics Board. All HIV-negative NHL cases
diagnosed in British Columbia from March 2000 to Feb-
ruary 2004, residing in the Greater Vancouver Regional
District and greater Victoria (Capital Regional District),
aged 20 to 79 were invited to participate. Cases were
reviewed and coded using the World Health Organization
classification by an experienced lymphoma pathologist
(RDG). Population controls were identified from the Cli-
ent Registry of the British Columbia Ministry of Health
and were frequency matched to cases by sex, age, and area
of residence in a 1:1 ratio. 828 cases and 848 controls
completed at least part of a study questionnaire; however,
only those subjects with DNA available were used in this
study. Table 1 summarizes the characteristics of the 797
cases and 793 controls available for analysis.
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DNA extraction and sequencing
Genomic DNA was extracted from whole blood (in 10%
of cases from a mouthwash or saliva sample) using the
PureGene DNA isolation kit (Gentra Systems) following
manufacturer's instructions. DNA was then quantified
using PicoGreen (Molecular Probes) in a Victor2 fluores-
cence plate reader (Perkin-Elmer).

The genomic sequences for all genes were downloaded
from the UCSC genome browser [34]. All coding and
non-coding exons were sequenced, as well as 1000 base
pairs upstream of transcription start. Conserved non-cod-
ing sequence regions (CNS regions) were identified using
the VISTA genome browser [35]. The six most highly con-

served CNS regions with at least 100 base pairs of at least
70% identity with the mouse and rat homolog were also
sequenced.

Primers were selected for all amplicons using Primer3
[36]. The -21M13F (TGTAAAACGACGGCCAGT) forward
or M13R (CAGGAAACAGCTATGAC) extensions were
added to the 5' ends of the forward and reverse PCR prim-
ers, respectively, to allow uniform sequencing conditions.
PCR and sequencing reactions were carried out as previ-
ously described [37]. Primers and conditions used in PCR
reactions are listed in Additional file 1. The quality of
sequencing reads was assessed using Phred [38,39],
potential variants identified by Polyphred version 5 [40]
and all sequences assembled with reference sequences
using Phrap [41] and viewed in Consed version 12 [42].

Haplotypes of variants with minor allele frequency (MAF)
>5% in the sequence data were inferred using PHASE
v2.1.1 [43,44]. Four tagSNPs were selected for each gene
using TagSNP, version 1.1 [45]. Three additional SNPs of
potential functional relevance in NBS1 were also tested.

Genotyping
TaqMan® was used for all genotyping. Assays were
designed using the Assays-by-Design service (Applied Bio-
systems). Primers and probes used are listed in Additional
file 2. 10 ng of each sample was aliquoted in 384-well
plates and the DNA dried down at room temperature.
TaqMan reactions were carried out in 5 uL volumes as per
the manufacturer's protocols. Fluorescence data was
obtained in the ABI PRISM 7900 HT, after 10 min at
95°C, followed by 40 cycles of 92°C for 15 s and 60°C for
1 min. The SDS2.2 software (Applied Biosystems) was
used to assign genotypes to individual samples.

Statistical Analyses
Statistical analyses were carried out as described previ-
ously [32]. Briefly, all controls were tested for deviation
from Hardy-Weinberg equilibrium. Odds ratios (OR) and
95% confidence intervals were estimated using logistic
regression. These analyses were conducted using SPSS ver-
sion 15, with adjustment for sex, age group (categories:
20-49, 50-59, 60-69, 70+), residence (Vancouver or Victo-
ria), and for ethnicity (Caucasian, Asian, South Asian,
Mixed, Unknown/Refused) when all cases and all controls
were analyzed together. Heterozygotes and rare homozy-
gotes were combined for analysis when the number of
rare homozygotes was less than five. Tests were not per-
formed when the sum of the number of heterozygotes and
rare homozygotes was less than five for cases or controls.
Tests for trend were conducted when there were at least
five samples in each genotype category for both cases and
controls. Multiple testing correction was carried out by the
false discovery rate (FDR) method [46]. Because we tested

Table 1: Characteristics of the Study Population.

Cases (%) Controls (%)

Gender
Male 463 (58%) 423 (53%)
Female 334 (42%) 370 (47%)

Age group (years)
20-49 150 (19%) 208 (26%)
50-59 194 (24%) 169 (21%)
60-69 214 (27%) 206 (26%)
70+ 239 (30%) 210 (26%)

Ethnicity
Caucasian 625 (78%) 613 (77%)
Asian 80 (10%) 90 (11%)
South Asian 29 (4%) 37 (5%)
Mixed/Other 36 (5%) 34 (4%)
Unknown/Refused 27 (3%) 19 (2%)

Pathology
B-cell lymphomas

DLBCL 210 (26%) -
FL1 138 (17%) -
FL2/FL3 78 (10%) -
MZL/MALT 92 (12%) -
MCL 47 (6%) -
SLL/CLL 43 (5%) -
LPL 42 (5%) -
MISC BCL 71 (9%) -

T-cell lymphomas
MF 40 (5%) -
PTCL 29 (4%) -
MISC TCL 7 (1%) -

Total 797 (100%) 793 (100%)

DLBCL = Diffuse Large B-Cell Lymphoma, FL = Follicular Lymphoma, 
FL1 = Follicular Lymphoma grade 1, FL2 = Follicular Lymphoma grade 
2, FL3 = Follicular Lymphoma grade 3, MZ/MALT = Marginal Zone 
lymphoma/Mucosa-Associated Lymphoma Tissue lymphoma, MCL = 
Mantle Cell lymphoma, SLL = Small Lymphocytic Lymphoma, LPL = 
Lymphoplasmacytic Lymphoma, Misc. B-cell = Miscellaneous B-cell 
lymphoma, MF = Mycosis Fungoides, PTCL = Peripheral T-Cell 
Lymphoma, Misc. T-cell = Miscellaneous T-cell lymphoma.
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nineteen markers, the p-value of the most significant
marker must be below the threshold of 0.0026 to be con-
sidered significant. The haplotypes inferred were analyzed
as categorical variables and assessed for risk effect using R
version 2.1.1 [47]. Haplotypes with frequency <4.5% were
combined into a "rare" category.

Results
Re-sequencing for variant discovery
We sequenced DNA samples from 87 NHL cases to survey
the germline genetic variation in the NBS1, MRE11,
RAD50 and BLM genes in NHL patients in our popula-
tion. By using recent methods [48] the number of unseen
variants using data from deep sequencing projects (such
as ENCODE [49]) can be estimated. Using such methods,
the sequencing of 174 chromosomes in our population is
expected to have revealed 99.99% of SNPs with a MAF of
1% or more, and 76% of SNPs with a MAF of 0.5% or
more. Samples were derived from 74 cases with B-cell
NHL and 13 with T-cell NHL (see Additional file 3). The
number of amplicons bi-directionally sequenced for each
gene is shown in Table 2. In total, 63 amplicons were
used. On average, 91.6% of sample-amplicon combina-
tions produced good quality reads in both directions, and
96.6% of sample-amplicon combinations produced good
quality reads in at least one direction.

Re-sequencing revealed 114 variants (Additional file 4):
12 small deletions or insertions (10.5%), 73 (64%) tran-
sitions and 29 (25.4%) transversions. Twenty-nine vari-
ants (25.4%) were in coding regions, with 17 (58.6%)
non-synonymous mutations, 4 of which were ranked as
"probably" or "possibly damaging" by PolyPhen [50].
Only one of these, BLM_X13_(2603)_C/T, was observed
more than once, with a MAF of 5.6%. Fifty-five (48%) var-
iants were "singletons", meaning the minor allele was
only observed once in this data set of 87 samples, or 174
chromosomes. Forty-one (36%) variants were "com-
mon", with MAF of at least 5%. 59% of variants were pre-
viously described in dbSNP (build 128) [51]; their rs

numbers are included in Additional file 4. Of the com-
mon polymorphisms (MAF ≥5%), 14% were novel.

Overall, sequence variation was found at 34 of 12,352
nucleotides in coding regions (or 8 of 3,805 nucleotides
in RAD50, 13 of 2,265 nucleotides in NBS1, 2 of 2,127
nucleotides in MRE11, and 11 of 4,155 nucleotides in
BLM) and at 95 of 17,257 nucleotides in non-coding
regions (or 21 of 5,226 nucleotides in RAD50, 32 of 3,777
nucleotides in NBS1, 20 of 3,872 nucleotides in MRE11,
and 22 of 4,382 nucleotides in BLM). The Ka/Ks value for
these four genes together is 0.6 (or 0.56 for RAD50, 0.75
for NBS1, 0.50 for MRE11, and 0.54 for BLM), indicating
moderate negative selection.

Linkage Disequilibrium (LD) calculations were per-
formed in sequence data using Haploview v4.0 [52]; sin-
gletons were excluded from these calculations. r2 values
for pairwise combinations of SNPs in each gene are shown
in Additional files 5, 6, 7 &8.

Genotyping
Haplotypes were inferred using the 41 variants that were
observed more than once in the sequence data, using
PHASE v2.1.1 [43,44]. The number of haplotypes inferred
for each gene is indicated in Table 2. Haplotype tagging
SNPs (tagSNPs) were selected using TagSNP version 1.1
[45]. Nineteen variants were chosen for genotyping and
are indicated in bold in Additional file 4.

The 19 tagSNPs were genotyped in 797 cases and 793 con-
trols, with an average genotype call rate of 97.6%. Their
respective MAFs, as calculated using all 1590 samples, are
in Additional file 2. The concordance of genotypes (in the
87 samples that were sequenced) between the independ-
ent methods of sequencing and TaqMan genotyping was
complete; no discrepancies were found. As a quality assur-
ance measure, we also genotyped the 19 SNPs in DNA
samples from five three-generation CEPH families (pur-
chased from Coriell Cell Repositories, NJ, USA) and con-

Table 2: Gene statistics summary. For NBS1, 7 SNPs were genotyped - 4 chosen as tagSNPs and 3 chosen for functional interest.

Amplicons 
(bp sequenced)

Missing 
reads

Missing in 
both 

directions

SNPs found by 
re-sequencing

Coding (non-
synonymous)

Single
tons

SNPs MAF 
> 5%

Haplotypes tagSNPs 
genotyped

SNPs 
genotyped

NBS1 26 (6042) 6.4% 1.8% 36 8 (6) 14 
(39%)

14 (38.9%) 21 4 7

RAD50 34 (9031) 6.4% 2.6% 28 8 (4) 17 
(61%)

8 (28.6%) 9 4 4

MRE11 28 (5999) 12.3% 5.9% 20 2 (1) 11 
(55%)

7 (35%) 17 4 4

BLM 31 (8537) 25.4% 12.1% 30 11 (6) 13 
(43%)

12 (41.4%) 26 4 4
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firmed that the alleles segregated according to Mendelian
inheritance.

NHL association tests
We compared all European ancestry controls against all
European ancestry NHL cases, all B-cell NHL, all T-cell
NHL and major subtypes individually. One of the vari-
ants, MRE11_5UP_(-1456)_C/T, was excluded from anal-
ysis due to deviation from Hardy-Weinberg equilibrium
in controls. Results for the two most common subtypes -
diffuse large B-cell lymphoma (DLBCL) and follicular
lymphoma (FL) - and results suggestive of association
with Marginal Zone lymphoma/Mucosa-Associated Lym-
phoid Tissue (MZ/MALT) are shown in Table 3; see Addi-
tional file 9 for all results. RAD50_IVS22(+24)_A/G
showed a possible association with DLBCL that was
strong enough to influence the overall NHL analysis (p-
trend of 0.022 for DLBCL). Another example is
RAD50_IVS7(-38)_C/T in MZL, with an OR of 3.39 (95%
CI: 1.48-7.75, p = 0.004).

Analyses for all NHL were performed separately for the
Asian and South Asian cases (see Additional file 10).
NBS1_3UTR_(+273)_G/A (rs1063053) gave an OR of 5.3
(95% CI = 1.023 - 27.579, p = 0.004) in samples of South
Asian ethnicity.

Combined analyses of all samples from all ethnicities
were also performed, adjusting for ethnicity in the model
(data not shown); some SNPs (usually the same as in the
European ancestry only analysis) again showed results
suggestive of association but failed to reach p < 0.05 upon
correction for multiple testing. The ethnic diversity of our
study population could mask a real signal and so we
focused on the European subpopulation.

The haplotypes inferred from individual SNP genotypes
were also tested for association with NHL using R version
2.1.1 (data not shown). No haplotype was more signifi-
cantly associated with NHL than the individual SNPs
forming that haplotype.

Discussion
RAD50, NBS1, MRE11 and BLM were re-sequenced in 87
NHL cases to characterize the variation in these genes in
NHL cases in our population. All genes had similar num-
bers of variants and similar nucleotide diversity, albeit
slightly greater for NBS1 (Table 2). All four genes showed
evidence of negative selection, as indicated by a Ka/Ks
value of less than one (0.56 for all four genes combined),
which we would expect for genes involved in such a con-
served and critical process as DNA repair. The most varia-
ble gene, NBS1, also showed the lowest conservation.

Two SNPs in RAD50 were suggestive of association with
specific NHL subtypes (Table 3). RAD50_IVS7(-38)_C/T
was suggestive of association with MZ/MALT (p = 0.004).
The low frequency of this allele (MAF 2.6%), and the low
incidence of MZL/MALT (12% of our cases) make it diffi-
cult to conclusively implicate this marker in a single study.
Interestingly, MZL lymphomas usually develop in tissue
subjected to chronic antigenic stimulation, for example
gastric MALT lymphoma which arises as a result of chronic
Helicobacter pylori infection. Such tissue, with persistent
and accelerated cell lymphoid cell proliferation, may be
uniquely susceptible to neoplastic transformation associ-
ated with faulty DNA repair. Our results may serve to
highlight specific mechanistic hypotheses for further test-
ing in other association studies, or for in vitro functional
studies. Mechanisms of tumourigenesis, and the basis for
NHL susceptibility, may differ between NHL subtypes.
Observations such as ours, if replicable, will help us
understand the basis for the diversity of NHL types.

We did not find that variants in NBS1 conferred an
increased risk of lymphoma, as in most other studies [53-
57], although there remain some contradictory positive
reports [58-61]. In contrast, non-synonymous mutations
in NBS1 have been shown to be associated with acute
lymphoblastic leukemia in German [17] and Polish [62]
children. A study by Rollinson et al [63] of haplotypic var-
iation in NHL found no increased risk associated with
haplotypes of NBS1 and RAD50; however, they observed
the variant rs601341 in MRE11 to have a protective effect
on FL and a protective effect of an MRE11 haplotype on
DLBCL. We did not sequence the part of intron 18 where
rs601341 is located and so did not explicitly test this SNP.
The difference between our results and those of Rollinson
et al. could be the result of a SNP-specific effect, and/or the
different populations studied.

Although there have been other studies of susceptibility to
NHL looking at the genes addressed in this study, most
have relied on the genotyping of rare variants discovered
in studies of the rare recessive syndromes discussed above.
Genotyping was generally done using single-strand con-
formation polymorphisms [17,53,54,56,58,61,62] or by
TaqMan [63]. One study [63] used public databases to
collect the information on the SNPs in the regions of
interest. However, sequencing of germline DNA of
patients with sporadic lymphoma to systematically iden-
tify genetic variants had not been previously done. Our
systematic characterization of these genes provides valua-
ble information on the variation found in these genes in
individuals with NHL. Previous systematic investigations
of another double-stranded break repair gene, ATM, by
our group did not reveal any association between com-
mon variants in ATM and NHL or its subtypes [32]. In
contrast, a common SNP in the promoter region of H2AX
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Table 3: Regression analysis in European samples for all SNPs in selected subtypes.

Controls DLBCL FL MZ/MALT
SNP N N OR (95% CI) p value N OR (95% CI) p value N OR (95% CI) p value

RAD50_IVS4(+19
)G/A
G/G 384 100 1 0.896 107 1 0.474 43 1 -
G/A 187 53 1.05 (0.72 - 1.54) 0.799 55 1.08 (0.74 - 1.58) 0.677 19 1.01 (0.57 - 1.80) 0.975
A/A 27 7 0.96 (0.40 - 2.30) 0.935 10 1.31 (0.61 - 2.81) 0.492 3 1.03 (0.29 - 3.61) 0.966

G/A & A/A 214 22 1.01 (0.58 - 1.76) 0.967
RAD50_IVS7(-

38)C/T
C/C 568 153 1 - 166 1 - 58 1 -
C/T 34 9 1.01 (0.47 - 2.17) 0.983 6 0.63 (0.26 - 1.53) 0.304 8 3.02 (1.28 - 7.14) 0.012
T/T 1 0 0.00 (0.00 -) 1.000 1 3.41 (0.21 - 56.13) 0.391 1 24.77 (1.43 - 427.94) 0.027

C/T & T/T 35 9 0.97 (0.45 - 2.08) 0.941 7 0.71 (0.31 - 1.64) 9 3.39 (1.48 - 7.75) 0.004
RAD50_IVS22(+2

4)A/G
A/A 546 137 1 - 150 1 - 59 1 -
A/G 54 25 1.77 (1.05 - 2.96) 0.031 24 1.61 (0.96 - 2.71) 0.073 7 1.30 (0.55 - 3.04) 0.550
G/G 1 1 4.54 (0.26 - 78.43) 0.298 0 0.00 (0.00 -) 1.000 0 0.00 (0.00 -) 1.000

A/G & G/G 55 26 1.81 (1.09 - 3.01) 0.022 24 1.59 (0.94 - 2.67) 0.081 7 1.29 (0.55 - 3.02) 0.560
RAD50_IVS22(+6

2)A/G
A/A 601 161 - - 174 - - 67 - -
A/G 2 2 - - 0 - - 0 - -
G/G 0 0 - - 0 - - 0 - -

NBS1_5(-905)T/C
T/T 266 76 1 0.465 87 1 0.847 28 1 0.816
T/C 267 72 0.95 (0.66 - 1.37) 0.769 63 0.75 (0.51 - 1.08) 0.119 43 1.12 (0.65 - 1.93) 0.678
C/C 64 14 0.77 (0.41 - 1.46) 0.423 24 1.20 (0.70 - 2.06) 0.498 7 1.02 (0.42 - 2.48) 0.964

NBS1_5UTR_(-
352)_del(AGTA)

AGTA/AGTA 524 138 1 - 137 1 - 60 1 -
AGTA/- 58 16 1.06 (0.59 - 1.92) 0.839 18 1.08 (0.61 - 1.92) 0.785 2 0.30 (0.07 - 1.29) 0.105

-/- 2 0 0.00 (0.00 -) 0.999 3 5.57 (0.90 - 34.52) 0.065 0 0.00 (0.00 -) 0.999
AGTA/- & -/- 60 16 1.03 (0.57 - 1.85) 0.929 21 1.23 (0.71 - 2.11) 0.461 2 - -

NBS1_IVS3(+208)
G/A
G/G 241 66 1 0.672 84 1 0.466 26 1 0.818
G/A 277 76 1.00 (0.68 - 1.45) 0.977 63 0.67 (0.46 - 0.97) 0.033 30 0.97 (0.56 - 1.71) 0.935
A/A 78 19 0.86 (0.48 - 1.52) 0.596 27 1.04 (0.62 - 1.72) 0.892 10 1.14 (0.52 - 2.51) 0.744

NBS1_3UTR(+27
3)G/A
G/G 268 78 1 0.256 90 1 0.509 26 1 0.807
G/A 263 73 0.97 (0.68 - 1.40) 0.885 54 0.65 (0.44 - 0.95) 0.026 33 1.28 (0.74 - 2.23) 0.381
A/A 63 11 0.60 (0.24 - 1.19) 0.142 24 1.12 (0.66 - 1.91) 0.669 6 0.89 (0.35 - 2.29) 0.813

NBS1_X2_(102)_
G/A
G/G 266 75 1 0.521 87 1 0.935 28 1 0.698
G/A 272 72 0.95 (0.66 - 1.37) 0.782 62 0.72 (0.50 - 1.04) 0.082 33 1.15 (0.67 - 1.97) 0.615
A/A 59 13 0.79 (0.41 - 1.53) 0.486 24 1.31 (0.76 - 2.25) 0.326 7 1.09 (0.45 - 2.67) 0.849

NBS1_X5_(553)_
G/C
G/G 255 76 1 0.306 84 1 0.786 28 1 0.938
G/C 270 72 0.90 (0.62 - 1.30) 0.572 62 0.73 (0.50 - 1.06) 0.098 33 1.12 (0.65 - 1.92) 0.688
C/C 57 12 0.70 (0.36 - 1.39) 0.310 22 1.22 (0.70 - 2.13) 0.486 6 0.92 (0.36 - 2.36) 0.857

NBS1_X13_(2016
)_A/G

A/A 247 74 1 0.204 83 1 0.634 27 1 0.897
A/G 265 70 0.89 (0.61 - 1.30) 0.549 59 0.69 (0.47 - 1.01) 0.055 33 1.13 (0.65 - 1.95) 0.671
G/G 55 10 0.61 (0.29 - 1.26) 0.180 21 1.20 (0.68 - 2.12) 0.537 6 0.94 (0.36 - 2.43) 0.902

MRE11_5(-
1703)A/G
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showed a protective effect on NHL and on FL in particular
[4].

Limitations of our study include the histological heteroge-
neity of NHL, which is composed of many subtypes, many
of which are rare. Identification of genetic susceptibility
factors that differ between subtypes will be limited by the
lack of availability of adequate sample numbers for less
common subtypes. The clinical diversity of NHL enabled
us to make the strongest conclusions only for DLBCL and
FL. Our sample is also ethnically heterogeneous, and so
has reduced power to detect genetic factors that are

present only in specific ethnic groups. Future replication
of results in the context of large international consortia,
such as the InterLymph Consortium [64], will help to
overcome such limitations.

Conclusion
While the genes in this study were not significantly associ-
ated with NHL independently, it is possible that they
could modify NHL risk in combination with other vari-
ants. Larger studies would be required to detect such gene-
gene interactions. Our observation of possible associa-
tions of SNPs in RAD50 with DLBCL and MZ/MALT lym-

A/A 261 76 1 0.431 81 1 0.725 25 1 0.100
A/G 267 60 0.91 (0.63 - 1.32) 0.629 69 0.84 (0.58 - 1.21) 0.341 29 1.20 (0.68 - 2.13) 0.527
G/G 66 15 0.79 (0.42 - 1.47) 0.457 22 1.03 (0.59 - 1.78) 0.919 13 1.95 (0.93 - 4.10) 0.076

MRE11_5(-
1456)C/T

C/C 582 153 1 - 165 1 - 67 - -
C/T 21 9 1.76 (0.78 - 3.96) 0.173 9 1.38 (0.61 - 3.09) 0.441 1 - -
T/T 1 1 4.32 (0.26 - 72.48) 0.309 0 0.00 (0.00 -) 0.100 0 - -

C/T & T/T 22 10 1.87 (0.86 - 4.08) 0.115 9 1.34 (0.60 - 2.99) 0.481
MRE11_IVS2(+28)

G/A
G/G 189 51 1 0.751 54 1 0.967 17 1 0.144
G/A 277 81 1.07 (0.72 - 1.59) 0.753 85 1.10 (0.75 - 1.63) 0.623 32 1.42 (0.75 - 2.66) 0.279
A/A 124 30 0.90 (0.54 - 1.49) 0.675 34 0.99 (0.61 - 1.61) 0.959 18 1.69 (0.83 - 3.46) 0.150

MRE11_IVS9(-
60)A/T

T/T 270 82 1 0.419 77 1 0.866 27 1 0.625
T/A 255 61 0.75 (0.51 - 1.09) 0.130 79 1.15 (0.80 - 1.66) 0.453 29 1.19 (0.68 - 2.11) 0.542
A/A 70 20 0.96 (0.55 - 1.68) 0.877 17 0.82 (0.45 - 1.47) 0.498 9 1.14 (0.51 - 2.58) 0.752

BLM_IVS7(+388)
C/T
C/C 517 140 1 - 148 1 - 62 1 -
C/T 78 22 1.04 (0.62 - 1.73) 0.891 24 1.03 (0.63 - 1.70) 0.908 6 0.62 (0.26 - 1.49) 0.284
T/T 3 0 0.00 (0.00 -) 0.999 1 0.96 (0.10 - 9.65) 0.970 0 0.00 (0.00 -) 0.999

C/T & T/T 81 22 1.01 (0.60 - 1.68) 0.978 25 1.03 (0.623- 1.68) 0.915 6 0.59 (0.25 - 1.43) 0.244
BLM_IVS7(+798)i

ns(T)
T/T 528 145 1 - 156 1 - 62 1 -
T/- 69 17 0.89 (0.51 - 1.57) 0.689 17 0.90 (0.51 - 1.58) 0.702 5 0.71 (0.27 - 1.84) 0.474
-/- 4 0 0.00 (0.00 -) 0.999 1 1.09 (0.12 - 10.39) 0.939 0 0.00 (0.00 -) 0.999

T/- & -/- 73 17 0.84 (0.48 - 1.47) 0.534 18 0.90 (0.52 - 1.58) 0.722 5 0.67 (0.26 - 1.75) 0.418
BLM_IVS12(+7)T/

C
T/T 316 88 1 0.944 88 1 0.696 33 1 0.609
T/C 243 58 0.85 (0.58 - 1.23) 0.389 68 0.99 (0.69 - 1.43) 0.975 29 1.18 (0.69 - 2.02) 0.546
C/C 45 15 1.23 (0.55 - 2.32) 0.533 16 1.21 (0.65 - 2.26) 0.554 5 1.12 (0.41 - 3.07) 0.823

BLM_IVS21(-
60)_del(GAA)

GAA/GAA 237 61 1 0.968 74 1 0.727 37 1 0.026
GAA/- 283 81 1.09 (0.75 - 1.60) 0.640 75 0.87 (0.60 - 1.26) 0.452 21 0.46(0.26 - 0.82) 0.008

-/- 76 19 0.94 (0.53 - 1.69) 0.840 24 0.98 (0.58 - 1.68) 0.949 8 0.56 (0.24 - 1.27) 0.162

OR = Odds Ratio, CI = Confidence Interval, DLBCL = Diffuse Large B-Cell Lymphoma, FL = Follicular Lymphoma, MZ/MALT = Marginal Zone 
lymphoma/Mucosa-Associated Lymphoma Tissue lymphoma.
If less than 5 samples were in a category, the analysis is not valid and marked by "-". Analyses were not done for subtypes that had fewer than 5 
heterozygotes and minor homozygotes combined. Analysis is adjusted for adjusted for gender, ethnicity, age, and residence.
p-value for test for trend is shown in italic type.
p-values less than 0.05 are in bold.
All results are in Additional file 9.

Table 3: Regression analysis in European samples for all SNPs in selected subtypes. (Continued)
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phomas may contribute to the refinement of biological
hypotheses for confirmation in larger association studies
and functional studies. Mechanisms of tumourigenesis,
and the basis for NHL susceptibility, probably differ
between NHL subtypes. Specific observations such as
these will help us understand the etiological basis for the
diversity of NHL types.
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