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Abstract

Background: To examine methylation of the peroxisome proliferator-activated receptor y (PPARy) gene and its

relationship with child weight status, at birth and 9 years.

Methods: We measured PPARy methylation across 23 CpG sites using the Infinium lllumina 450 k array for children
from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) cohort at birth (N=373)

and 9 years (N = 245).

Results: Methylation level correlation patterns across the 23 PPARy CpG sites were conserved between birth and 9-year
ages. We found high inter-CpG correlations between sites 1-3 (methylation block 1) and also between sites
18-23 (methylation block 2) for both time points, although these patterns were less pronounced at 9 years.
Additionally, sites 1-3 (north shore) had the highest intra-CpG correlations over time (r=0.24, 042, and 0.3; P=0.002,
P <0001, P<0.001, respectively). PPARy methylation levels tended to increase with age, and the largest differences
were observed for north shore sites (7.4%). Adjusting for sex, both site 1 and site 20 (gene body) methylation at birth
was significantly and inversely associated with birth weight (3 =-0.13, P=0.033; 3 =-0.09, P=0.025, respectively).
Similarly, we found that site 1 and site 20 methylation at 9 years was significantly and inversely associated with 9-year
BMI z-score (B =—041, P=0015; B =—-0.23, P=0.045, respectively).

Conclusion: Our results indicate that PPARy methylation is highly organized and conserved over time, and highlight
the potential functional importance of north shore sites, adding to a better understanding of regional human
methylome patterns. Overall, our results suggest that PPARy methylation may be associated with child body size.
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Background

It has been hypothesized that prenatal environmental
exposures may cause lasting epigenetic changes during
child development, leading to adverse health outcomes
in later life [1, 2]. Epigenetics refers to heritable changes
regulating gene expression that do not affect the DNA
base pair sequence. DNA methylation is the most com-
monly studied epigenetic mark [3—6]. This modification
involves attachment of a methyl group to the cytosine
base within cytosine-guanine dinucleotides, also known
as ‘CpG methylation’. Higher CpG methylation

* Correspondence: ninah@berkeley.edu

Center for Environmental Research and Children’s Health (CERCH), School of
Public Health, University of California, 733 University Hall, Berkeley, CA
94720-7360, USA

( ) BiolVled Central

(hypermethylation) within the promoter region of a gene
can reduce gene expression [7].

Our understanding of how the human methylome is
organized is rapidly evolving and current literature out-
lines a classification system for CpG sites, highlighting
that their function may be intimately related to their
location in the gene [8, 9]. For example, approximately
70% of gene promoter regions are thought to contain a
CpG island — a region with densely concentrated CpGs
that typically have low levels of methylation [10]. CpG
sites flanking the island are located in regions termed
north shore (upstream, 5° end) and south shore
(downstream, 3’ end) and are thought to be particu-
larly important in regulating gene expression [6, 9].
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There is a growing interest in examining interactions
between environmental and genetic factors on differen-
tial CpG methylation. A classic example is from animal
studies on the Agouti mouse, where hypomethylation of
the intracisternal A particle (IAP) increases expression
of the Agouti gene, resulting in yellow coat color and
obese phenotype. Using this model, Waterland et al. [11]
showed that inheritance of the Agouti gene was associ-
ated with trans-generational amplification of obesity and
that maternal methyl-donor supplementation could pre-
vent this effect.

In humans, DNA methylation has been proposed to
mediate direct intra-uterine associations between mater-
nal and offspring phenotypes. Differential DNA methyla-
tion has been reported when assessing offspring exposed
in utero to extreme maternal undernutrition [12, 13],
maternal morbid obesity [14] and less extreme maternal
underweight and maternal obesity [15]. However, several
important challenges remain. There is an ongoing effort
to determine the causal direction between DNA methy-
lation and an offspring phenotype. In their 2016 study,
Richmond et al. apply a causal framework to parse out
whether HIF3A methylation has a causal effect on BMI
or vice versa [16]. Their results argue for the potential of
a phenotype to affect methylation status and highlight
the potential for inter-generational influence of maternal
BMI on offspring methylation, possibly confounding the
offspring HIF3A methylation and obesity association.

Another important challenge has been replication of re-
sults from epigenome-wide association studies (EWAS)
studies. For example, the EWAS study by Sharp et al
identified 28 CpGs in newborns that were associated with
maternal pre-pregnancy BMI. Four of these hits had previ-
ously been reported in literature, but their results did not
replicate the direction and magnitude of the earlier
analyses [17]. Additionally, in their EWAS, Aslibekyan
et al. found only 8 CpGs in 3 genes (CPTI1A, PHGDH,
CD38) associated with body mass index (BMI) in adults
that withstood replication and multiple testing adjust-
ment [18].

To avoid the limitations of multiple testing, candidate
genes can be selected a priori. With respect to obesity
development, the peroxisome proliferator-activated re-
ceptor y (PPARy) gene may play a critical role, function-
ing as the only gene that is both necessary and sufficient
for fat cell production [19, 20]. PPARy upregulation has
been linked to improvement of critical metabolism-
related hormones (increased adiponectin and decreased
leptin) and increased insulin sensitivity at the expense of
greater body weight in adults [21] and animals [22-24].
Importantly, while methylation affects PPARy expression
in animal and in vitro studies, only limited human data
on PPARy methylation, its relationship with obesity and/
or with perinatal factors are available [25, 26].
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In the Center for the Health Assessment of Mothers
and Children of Salinas (CHAMACOS) cohort, we have
previously examined a subset of PPARy CpG sites and
their relationship with gene expression in a cohort of
children with a high prevalence of obesity [27]. We re-
ported that hypomethylation of the PPARy CpG site
cg10499651 was associated with increased PPARy ex-
pression as measured by both real-time polymerase
chain reaction (RT-PCR) and nCounter assays. In the
current investigation, we build on this finding and add
to current data gaps on PPARy methylation and its rela-
tionship with obesity. We use the Illumina 450 k assay
to examine methylation of 23 CpG sites spanning the
PPARy promoter and gene body regions in children at
birth (N=373) and at 9 years (N =245) and 1) analyze
the correlation structure between the 23 PPARy CpG
sites, 2) characterize associations between perinatal fac-
tors, including maternal pre-pregnancy BMI, and PPARy
methylation at birth and at 9 years, and 3) examine asso-
ciations between PPARy methylation, child birthweight
and BMI at 9 years.

Methods

Subject and study design

The CHAMACOS study is a longitudinal birth cohort de-
signed to assess the health effects of pesticides and other
environmental exposures on growth and development of
primarily Mexican-American children living in Salinas
Valley, an agricultural region of California [28, 29].
Mothers were enrolled during pregnancy between Oc-
tober 1999 and October 2000, with 537 mother-child
pairs in the study at delivery and 327 pairs participat-
ing at the 9-year visit. Eligible women were =18 years
of age, <20 weeks gestation at enrollment, English or
Spanish speaking, eligible for low-income health insurance
(Medi-Cal) and planning to deliver at the county hospital.
Women were interviewed twice during pregnancy, shortly
after delivery, and when their children were 6 months,
and 1, 2, 3%, 5, 7, and 9 years of age. This study used a
subset of the CHAMACOS cohort (373 children at birth
and 245 children at 9 years) who had blood samples
available for methylation analyses. Study protocols
(2010-01-620 & 2010-03-949) ethics were approved by
the University of California, Berkeley Committee for
Protection of Human Subjects. Written informed con-
sent was obtained from all mothers and assent was
provided by the children at the 9-year assessment.

Questionnaire data

Interviews were conducted in Spanish or English by bi-
lingual, bicultural trained interviewers. Maternal age was
assessed during the first prenatal interview at 14 +
5 weeks gestation. Maternal pre-pregnancy BMI was cal-
culated using the mother’s self-reported pre-pregnancy
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weight and measured height. Data on infant birth weight
and gestational age were obtained from delivery medical
records abstracted by a registered nurse.

Anthropometric measurements

An electronic scale (Tanita Mother-Baby Scale Model
1582, Tanita Corp.) was used to measure child weight at
the 9-year visit. Child 9-year height was measured in
triplicate using a stadiometer (Seca 222) and the average
of measurements was used. Child height and weight
were converted to age- and sex-specific BMI z-scores
using the 2000 Centers for Disease Control and Preven-
tion (CDC) child growth data and children were catego-
rized as normal weight, overweight, or obese using the
sex and age-specific cutoffs (85th and 95th percentile,
respectively) [30]. Monthly rate of weight gain during
the first 6 months of life was calculated as weight at the
6-month visit minus birth weight divided by exact age in
months at the 6-month visit and reported in 100 grams/
month. This approach to examining infancy weight gain
has been previously validated [31].

Child CpG methylation measurement

DNA was isolated from blood clots previously collected
and stored at —-80 °C using the QIAamp DNA blood
maxi kit (Qiagen, CA). To measure CpG methylation,
we used the Infinjum Illumina 450 k array, which is
based on multiplexed genotyping of bisulfite converted
genomic DNA. This technology is currently considered
the leading method to measure genome-wide methylation,
providing both broad and dense coverage, in total interro-
gating 485,577 CpQG sites over 99% of RefSeq genes. The
workflow involves bisulfite conversion of DNA, performed
using Zymo Bisulfite Conversion Kits (Zymo Research,
Orange, CA). Subsequently, each sample is whole-genome
amplified, enzymatically fragmented, purified and applied
to the BeadChips according to the Illumina methylation
protocol. BeadChips were processed with robotics and an-
alyzed using the Illumina Hi-Scan system at the Genomics
Core. Samples included in the analysis had detection
P values below 0.01 for 95% of CpG sites and poor
performing CpG sites with P value > 0.01 were excluded.
Raw signal intensities were background corrected and
then normalized for color-channel bias using the all sam-
ple mean normalization method as described by Yousefi
et al. (2013) [32]. Beta mixture quantile normalization was
also applied to make interpretation between type I and
type II probes comparable [33]. One of the CpG sites in
our analysis (CpG site 13, cg04632671) was found to have
a common single nucleotide polymorphism (SNP), minor
allele frequency > 5%, within 50 base pairs in the Mexican
ancestry in Los Angeles, California, (MXL) HapMap
population. In our sensitivity analysis, excluding this site
had no impact on our results and a decision was made to
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retain this site. Additionally, although we did not have
data on the rs1801282 Prol2Ala PPARy SNP, adjusting
our analyses for potential effects of admixture did not
affect the relationships between PPARy DNA methylation
and birthweight or BMI in our study.

Cell composition

To examine the relationship of blood cell composition
with CpG methylation in PPARy CpG sites, we per-
formed differential cell counts in a subset of cord samples
(N=111) as described previously [34]. To prepare hepa-
rinized whole blood smears, we used the “gold standard”
Wright-Push blood smearing technique followed by stain-
ing utilizing a DiffQuikVR staining kit [35]. At least 100
cells were scored for each slide, and a percentage of each
cell type (lymphocytes, monocytes, neutrophils, eosino-
phils, and basophils) was used for data analysis. The coef-
ficient of variation (CV) for the repeat scoring in this
subset was less than 10%.

Whole blood smears were not available for differential
cell count in 9-year-old CHAMACOS children. For
these children we used the Bioconductor R package
minfi (v1.10.2) to estimate the distribution of six differ-
ent white blood cell types (CD8+ T and CD4+ T lym-
phocytes, CD56+ natural killer cells, CD19+ B cells,
CD14+ monocytes, and granulocytes) based on their
methylation signatures in 450 k data [36]. We did not
use minfi to estimate cell composition at birth as we
have previously shown that proportions of white blood
cells in newborns are significantly different from the
adult reference samples on which minfi estimates are
based [34, 37, 38].

For comparison of cell type composition in cord bloods
to those estimated by minfi in 9-year-olds, we used pro-
portions of lymphocytes, granulocytes, and monocytes.
For minfi estimates, this required summation of the fre-
quencies for CD8+ T, CD4+ T, natural killer cells, and B
cells to calculate the proportion of lymphocytes. For dif-
ferential cell count, proportions of neutrophils, eosino-
phils, and basophils were summed to give an estimate of
granulocytes.

Additionally, we used data from four separate cohorts,
including Bakulski et al. 2016 [39], characterizing cell
composition in cord blood in relation to DNA methyla-
tion [40—42]. Re-running our analysis using data from
these four cohorts as a reference did not change our
findings.

Statistical analyses

Our statistical analyses used methylation levels expressed
as M-values, which are calculated as the log, ratio of the
intensities of methylated probe to unmethylated probe,
M-value = log,(beta/(1-beta)) [43]. In addition, we also
presented relative methylation betas (% methylation) in
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some of the tables for ease of interpretation. Importantly,
these untransformed values were not used in analyses
given the reported heteroscedasticity for highly methyl-
ated or unmethylated CpG sites [43]. To analyze PPARy
methylation structure across the 23 sites, we plotted
methylation levels by site and examined inter-site correla-
tions at birth and 9 years using Pearson’s correlation coef-
ficients (r). Linkage disequilibrium (LD) methylation
blocks were established based on several criteria slightly
modified from Shoemaker et al. (2010) and Liu et al.
(2014): (i) they had to contain at least 3 contiguous CpG
sites and (ii) at least 50% of the CpG@ site pairs had to have
methylation levels that were highly correlated with each
other (r? > 0.4) [44, 45]. Additionally, we calculated correl-
ation coefficients for each CpG site comparing values at
birth to 9 years and tested whether PPARy methylation
levels changed from birth to 9 years using generalized esti-
mating equations (GEE) and whether methylation levels
differed at each site and at each age by sex using Student’s
t-Test. We examined associations between PPARy methy-
lation at birth and child birthweight and PPARy methyla-
tion at 9 years and 9-year BMI z-score for each of the 23
CpG sites. We used directed acyclic graphs (DAGs) to se-
lect our covariates for multiple regression models. We ex-
amined whether methylation levels varied by gestational
age, maternal age, maternal BMI, parity, and weight gain
in the first six months of life [46—50]. Bonferroni correc-
tion was used to account for multiple testing. Testing for
associations between 23 CpG sites with 4 variables at birth
and 5 variables at the 9-year time point comprises 207
tests. Thus for this analysis, we used an adjusted alpha of
0.05/207 = 2.4E-4. Statistical analyses were conducted
using STATA 12 (College Station, TX) for Windows and R
statistical software (R Foundation for Statistical Comput-
ing, Vienna, Austria).

Results

Maternal and child characteristics

Our study sample included a total of 444 children who
had DNA samples available for methylation analysis at
birth and/or age 9 in addition to birthweight and BMI
at 9 years. Of these children, 174 had samples available
at both time points, 199 had samples only at birth, and
71 had samples at age 9 only. Overall, there were 373
children available for analyses at birth and 245 children
at 9 years.

At pregnancy, mothers tended to be young (25.6 years,
95% CI 25.1, 26.1 years) and overweight or obese (61%),
with an average BMI of 27.0 kg/m> (95% CI of 26.5,
27.5 kg/m?). Of the 444 children in this study, there were
similar numbers of boys (N =221) and girls (N =223)
(Table 1). Mean gestational duration was 38.9 weeks (95%
CI 38.7, 39.0 weeks) and mean birthweight was 3.46 kg
(95% CI 3.41, 3.5 kg). Their average weight gain in the first
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Table 1 CHAMACOS maternal and child characteristics

Cohort Characteristics Number  Mean  Range 95% Cl
Sex (male/female) 221/223 — — —
Gestational age (weeks) 444 389 33-42 38.7,39.0
Parity 444 13 0-9 11,14
Birth weight (kg) 444 346 1.93-4.89 341,350
Weight gain in 1% 229 0.73 0.34-1.22 0.71,0.75
6 months (kg)

BMI at 9 years (kg/mz) 240 20.7 13.9-338 20.1,213
BMI z-score 240 .11 -157-270 098,124
Maternal age at 444 256 18-43 25.1, 26.1
pregnancy (years)

Maternal pre-pregnancy 444 270 17.7-57.3 265,275

BMI (kg/m?)
BMI body mass index

6 months of life was 0.73 kg (95% CI 0.71, 0.75 kg). At
9 years, the majority of children were overweight or obese
(56%), with mean BMI of 20.7 kg/m?* (95% CI of 20.1,
21.3 kg/m®) and mean BMI-z-score of 1.11 (95% CI of
0.98, 1.24). We did not find any statistically significant dif-
ferences between the maternal and child characteristics,
including anthropometric measures, in this subset com-
pared to the overall CHAMACOS dataset.

PPARy methylation

Additional file 1: Figure S1 shows the distribution of 23
CpG sites (red squares) measured by the Illumina Methyla-
tion 450 k array across the PPARy gene promoter and
body. Blue squares indicate all other CpG sites (N = 183).
This figure was generated using the DNA sequence
provided in the Genome Reference Consortium Human
Build 38 patch release 2 (GRCh38.p2) and serves as a
visual reference showing the relative locations of the
23 CpG sites. Illumina annotation classifies sites 1-3 as
north shore (cg01412654, cg25929976, and cgl18063278),
4-15 as island (cg26364899, cg27095527, cg06573644,
€g21946299, g23514324, ¢g04748988, cgl5722404,
cg13518792, cg09405169, cg04632671, cg07556134, and
cg18887186), 16—17 as south shore (cg21859053 and
¢g04908300), 18 as south shelf (cg16827534), 19 as 5" un-
translated region (5° UTR) (cgl6197186), and 20-23 as
PPARy gene body (cgl18537222, cg07895576, cg07676920,
and cg10499651) [8, 9].

Figure 1 shows methylation M-Values across the 23
PPARy CpG sites at birth and 9-years. As expected, CpG
sites in the north shore (average beta 61.4% at birth,
68.8% at 9 years), south shore (average beta 12.5% at
birth, 18.8% at 9 years) and shelf (average beta 88.2% at
birth, 89.5% at 9 years), 5'UTR (average beta 91.2% at
birth, 91.9% at 9 years) and gene body (average beta
76.5% at birth, 78.0% at 9 years) tended to be highly
methylated while island sites had significantly lower
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methylation (average beta 4.5% at birth, 4.6% at 9 years).
Interestingly, we observed a highly conserved pattern of
methylation across the 23 sites comparing both time
points. For example, sites 21, 22, 23 follow the same pat-
tern of decreasing methylation at birth (90.2%, 85.1%,
and 78.9%, respectively) and at 9 years (90.7%, 85.7%,
and 77.7%, respectively).

PPARy methylation blocks

There is a growing body of literature showing that
neighboring CpG sites are often highly correlated with
each other [45, 51]. We examined inter-CpG correla-
tions for the 23 PPARy sites and our results are pre-
sented in Fig. 2. Both at birth and 9-years, we identified
two methylation blocks. Block 1 was comprised of north
shore sites 1-3 spanning approximately 1 kilobase (kb)
pairs. Block 2 contained sites 18—23 located in the south
shelf, 5’"UTR, and gene body, and spanned approximately
130 kb. Additionally, we noted that correlations within the
blocks were consistently stronger at birth compared to
9 years. At birth, correlations ranged from 0.66 to 0.79
and from 0.21 to 0.79 for blocks 1 and 2, respectively,
while at 9 years, block 1 ranged from 0.55 to 0.69 and
block 2 ranged 0.12 to 0.57. Interestingly, we also found
that CpG site 1 was highly correlated with methylation at
gene body sites 20-23 at both birth (»=0.74, 0.54, 0.31,
and 0.59, all P<0.001) and 9-years (r=0.66, 0.50, 0.30,
and 0.53, all P <0.001).

PPARy methylation by age

Figure 3 shows correlations for PPARy CpQ sites between
the birth and 9-year time points. We found significant
correlations for all three of the north shore sites (r = 0.24,
0.42, and 0.31; P = 0.002, <0.001, and < 0.001, respectively).

Island CpG sites 5 and 8 (r=0.18 and 0.28; P =0.02
and <0.001, respectively), south shore site 16 (r=0.18;
P=0.02), and gene body site 23 (r=0.3; P<0.001)
were also significantly correlated over time. We used GEE
to account for repeated measures over time and found
that for all regions (north shore, island, south shore, south
shelf, 5"'UTR and gene body) methylation values had sta-
tistically significant increases with age. The greatest in-
creases were observed for north and south shore sites,
7.4% and 6.3%, respectively. Averaging over all 23 sites,
methylation levels had a statistically significant increase of
2% over the 9-year span. Increases in methylation
remained statistically significant for all regions adjusting
for cell composition (data not shown).

PPARy methylation by sex

Table 2 shows methylation betas for all 23 PPARy CpG
sites stratified by sex at both the birth and 9-year time
points. For all three north shore sites, females had signifi-
cantly higher methylation betas compared to males at both
birth (site 1: 67.8 vs. 65.8, P = 0.002, site 2: 58.1 vs. 55.6,
P <0.001, site 3: 62.1 vs. 59.1, P<0.001) and 9 years
(site 1: 73.1 vs. 71.5, P = 0.018, site 2: 65.4 vs. 62.5, P < 0.001,
site 3: 71.1 vs. 68.3, P < 0.001). Females also had significantly
higher methylation at 9 years at site 17 (25.7 vs. 24.8,
P =0.03) and at birth at site 18 (88.6 vs. 87.8, P = 0.021).

Associations between perinatal factors and PPARy
methylation

Additional file 2: Table S1 and Additional file 3: Table S2
show regression results for testing associations between
the selected perinatal characteristics and PPARy methy-
lation at birth and 9 years, respectively. Of note, at both
birth and 9 years, methylation at PPARy site 22 was
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Fig. 2 Correlations for the 23 PPARy CpG sites spanning the promoter and gene body region at (a) birth and (b) 9 years. White/yellow squares
represent none/poor correlations, while orange/red squares represent moderate/high correlations. Two methylation blocks were identified for both
time points, Block 1 consists of north shore sites 1-3 and Block 2 consists of south shelf, 5" untranslated region (5UTR), and gene body sites 18-23

inversely associated with maternal pre-pregnancy BMIL.  respectively). Similarly, we found methylation at 9 years
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whether methylation at birth at either of these sites was
Relationship between PPARy methylation and birth associated with 9-year BMI z-score but did not find any
weight and 9-year BMI z-score significant associations. Adjusting for cell composition did

Table 3 summarizes our analysis of the relationships be-  not appreciably change results of these analyses.

tween PPARy methylation and child birthweight and
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importance of island-flanking CpG sites, our analyses In this study, we aimed to address several knowledge
were focused on sites 1-3 and 16-23. Adjusting for sex, gaps on the 1) correlation structure of PPARy methyla-
we found that methylation at birth for both site 1 and tion, 2) relationships between perinatal factors and
site 20 was significantly and inversely associated with  PPARy methylation, and 3) associations between PPARy
birth weight (p=-0.13, P=0.033; p=-0.09, P=0.025, methylation, birth weight and child BMI. We found that
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Table 2 PPPPARy methylation by sex

Page 7 of 11

PPARy CpG Classification® Methylation at birth (%) Methylation at 9 years (%)

Site lllumina 1D Male (N =188) Female (N=185) P value® Male (N=113) Female (N=132) P value®
1 cg01412654 North Shore 65.8 67.8 0.002 715 73.1 0018
2 €g25929976 North Shore 556 58.1 <0.001 62.5 654 <0.001
3 cg18063278 North Shore 59.1 62.1 <0.001 683 71. <0.001
4 €g26364899 Island 6.3 6.3 0931 6.0 6.2 0.156
5 €g27095527 Island 43 45 0.289 4.0 46 0.380
6 €g06573644 Island 6.2 64 0434 5.8 58 0.887
7 €g21946299 Island 9.0 89 0445 9.1 9.0 0.724
8 €g23514324 Island 80 80 0.943 74 7.3 0.626
9 €g04748988 Island 23 23 0.636 20 20 0570
10 €g15722404 Island 28 27 0430 2.8 27 0.119
" cg13518792 Island 1.0 1.0 0.297 1.0 1.0 0.564
12 €g09405169 Island 19 1.8 0.550 2.1 2.1 0.707
13 €g04632671 Island 1.0 1.1 0.115 14 12 0.054
14 cg07556134 Island 13 1.3 0.797 1.5 1.5 0457
15 €g18887186 Island 9.8 99 0372 125 12.5 0.709
16 €g21859053 South Shore 94 9.5 0459 12.3 124 0.657
17 €g04908300 South Shore 154 159 0.107 248 257 0.030
18 cgl6827534 South Shelf 87.8 88.6 0.021 89.7 894 0.506
19 €g16197186 5"UTR 91.1 913 0.398 920 919 0.996
20 €g18537222 Gene Body 515 52.1 0.612 571 584 0.345
21 cg07895576 Gene Body 90.1 90.3 0.244 90.7 90.6 0.707
22 €g07676920 Gene Body 85.1 85.0 0.930 859 854 0513
23 €g10499651 Gene Body 79.0 788 0.632 771 782 0.084

PPARy peroxisome proliferator-activated receptor gamma

UTR untranslated region

#Based on lllumina 450 K annotation

bStudent’s t-Test

PPARy methylation displays a highly conserved pattern
and report on two methylation blocks comprised of sites
1-3 (block 1) and 18-23 (block 2) present at both birth
and 9-year time points. Additionally, we observed high
intra-CpG correlations comparing the birth to 9-year
time points for all three north shore CpG sites. With
respect to aim 2, we found that none of the perinatal
variables examined, including gestational age, parity,
maternal age and pre-pregnancy BMI and in addition,
for 9 years, weight gain in the first 6 months, were
significantly associated with PPARy methylation at either
birth or 9 years. Further, we observed that girls had signifi-
cantly greater methylation at north shore sites 1-3 com-
pared to boys at both time points. Adjusting for sex, we
found that methylation at birth for sites 1 and 20 was sig-
nificantly and inversely associated with birth weight. Simi-
larly, we found that methylation at these sites at 9 years
was also significantly and inversely associated with 9-year
BMI z-score. Taken together, these results indicate that

Table 3 Associations between PPARy methylation and child size

at birth and 9 years of age

CpG Site Birth Weight (kg) 9-Year BMI i-Score
Birth (N=373) (N=240)

Beta® P value Beta P value
1 -0.13 0.033 -041 0.015
2 -0.06 0.367 0.11 0514
3 0.01 0.825 -0.08 0.625
16 -0.11 0.191 043 0.099
17 -0.04 0.537 040 0.151
18 -0.02 0.739 -0.05 0.689
19 -0.05 0.400 -0.16 0.260
20 -0.09 0.025 -0.23 0.045
21 -0.01 0917 -0.05 0.825
22 0.04 0517 -0.17 0.293
23 -0.01 0.987 -0.14 0.380

PPARy peroxisome proliferator-activated receptor gamma

BMI body mass index
?Adjusted for sex
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PPARy methylation may be involved in regulating child
body size and highlight the potential functional import-
ance of north shore sites.

PPARy CpG organization is typical of many other
genes, with its promoter region containing a CpG island
flanked by north and south shore sites [52]. Additionally,
in agreement with studies showing complex inter-CpG
correlations over both short and long regions, PPARy
contained two methylation blocks spanning 1 kb over
the north shore (block 1) and 130 kb over the south
shore, 5" UTR, and gene body (block 2) [45, 53]. Inter-
estingly, we also found that north shore CpG site 1 from
block 1 was correlated with methylation at sites 20-23
from block 2. There is a growing understanding that the
location of a particular CpG site may be functionally im-
portant and several studies have highlighted the role of
shore sites in gene expression, tissue differentiation, and
overall phenotype [9, 54, 55]. For example, Doi et al
(2009) showed that CpG shore methylation distinguished
between several cell lines, including brain, liver, spleen
cells, their pluripotent stem cells and parental fibroblasts
[54]. Similarly, Irizarry et al. (2009) showed that most
methylation changes associated with colon cancer oc-
curred in CpG shores [9]. Our observations of methyla-
tion blocks surrounding the PPARy CpG island and high
correlations between the north shore and gene body
sites add evidence that shore sites may be of particular
relevance in regulating biological pathways.

With respect to changes in CpG methylation over
time, although some reports indicate stable methylation
patterns [53, 56] others do not [57-59]. In their analyses
of blood samples from the Netherlands Twin Register,
Talens et al. (2010) showed that of 8 regions examined,
5 displayed stable methylation patterns for up to 20 years
[56]. Additionally, using Illumina 450 k data, we have
previously shown that methylation across 16 paraoxo-
nase 1 gene (PONI) shore, shelf, and island sites was
highly conserved comparing birth and 9-year time points
[53]. On the other hand, Fraga et al. (2004) showed that
while 3-year-old monozygotic (MZ) twins showed rela-
tively few epigenetic differences, there was considerably
larger variability in older twin pairs [57]. Our results in-
dicate that PPARy methylation is stable over the birth to
9-year period and that even minute differences between
CpG sites are conserved.

Although the pattern of CpG sites remained similar over
time (Fig. 1), we found that north shore sites had slightly
but significantly higher beta values (7.4%) at 9 years com-
pared to birth. Previous literature has identified both hypo
and hyper-methylation changes with age and taken to-
gether, these findings suggest that different genomic re-
gions may have varying stability over time [5, 28, 60, 61].
Additionally, we observed small differences by sex, with
girls having slightly higher methylation compared to boys,
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at both birth and 9-year time points. However, these dif-
ferences were limited to north shore sites 1-3. Although
the significance of this remains unclear, our previous work
using 450 k data identified that overall ~ 3% of CpG sites
are differentially methylated by sex and are enriched for
genes related to nervous system development and behav-
ior [53]. Interestingly, Hall et al. (2014) showed that
genome-wide CpG methylation in pancreatic islets differ-
entially clustered between males and females, suggesting
that methylation may be involved in sex-specific metabolic
differences [62]. Our results are in line with this and over-
all show that PPARy CpG methylation is carefully main-
tained, emphasizing its potentially important role in
regulating PPARy function.

In addition to data gaps on methylation structure and
organization, very little is known about the epigenetic
changes that accompany obesity development. Our report
of an inverse relationship between PPARy methylation
and body size is consistent with the idea that higher
methylation downregulates PPARy, suppressing adipogen-
esis. To date, few studies have examined these relation-
ships in PPARYy, providing mixed results [63, 64]. Yan et al.
(2014) examined PPARy gene expression and methylation
in offspring of dams exposed to polycyclic aromatic hy-
drocarbons (PAHs), reporting that increased PAH expos-
ure was associated with increased weight, fat mass, higher
gene expression of PPARy and lower PPARy CpG methy-
lation [64]. In contrast to this inverse relationship between
PPARy methylation and weight, Drogan et al. (2015) ana-
lyzed subcutaneous adipose tissue (SAT) samples, showing
that tissues from individuals with higher visceral fat mass
had increased PPARy CpG methylation [63]. Additionally,
Nilsson et al. (2014) found differential PPARy methylation
in adipose tissues from subjects with type 2 diabetes com-
pared to controls but did not report on this relationship’s
direction [65]. We did not find that PPARy methylation at
birth could predict 9-year BMI z-score and more work is
needed to further elucidate its role in PPARy function and
adipogenesis over time. Of note, site 1 was located in the
north shore, further emphasizing the potentially critical
role of north shore sites in regulating gene expression.

Lastly, there are several important points to consider
with respect to our analyses. We measured methylation in
blood samples, which can introduce bias if cell heterogen-
eity affects both methylation and obesity. However, our
sensitivity analyses accounting for differences in cell com-
position did not substantially alter associations between
PPARy methylation and child size. Furthermore, our data
displayed a consistent pattern of CpG methylation in
blood samples over both birth and 9-year time points
suggesting that heterogeneity of blood cell types may not
significantly affect PPARy methylation.

Nevertheless, whether PPARy methylation in blood is a
suitable marker for its activity in adipocytes remains
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unknown. Several studies have indicated that molecular
changes in blood do reflect pathological changes in the
body and gene expression in blood is highly concordant
(>80%) with expression in other tissues [66, 67, 68—70].
With respect to body size, Ghosh et al. (2010) used princi-
pal components analysis to show that blood-based gene
expression signals could distinguish between obese and
lean subjects [71]. Interestingly, Charriere et al. (2003)
found that based on transcriptome profiling, pre-
adipocytes were more closely related to macrophages than
adipocytes [72]. Further, a large genome-wide association
study found that BMI was associated with methylation of
HIF3A in both blood and adipose tissue [70]. Taken to-
gether, these data suggest that assessing PPARy function
in blood may be biological relevant however more work is
needed to determine this in the context of methylation.
Additionally, although we had previously shown that
methylation at PPARy site 23 (gene body) was associated
with PPARy gene expression [27], this site was not sig-
nificantly associated with child birth weight or BML
Reasons for this inconsistency remain unclear and fur-
ther research is warranted to examine relationships be-
tween CpG location and potential effects on gene
expression. Overall, while our research argues that
PPARy methylation has a relationship with child body
weight and that north shore sites may be of particular
functional importance, key questions remain on factors
that influence site-specific methylation and whether it
can be used to predict metabolic outcomes over time.

Conclusion

In summary, PPARy CpG methylation is highly orga-
nized and conserved over time. We found high inter-
CpG correlations between sites 1-3 (methylation block
1) and also between sites 18—23 (methylation block 2)
for both birth and 9-year time points. Additionally, we
report that methylation at birth for sites 1 (north shore)
and 20 (gene body) was significantly and inversely asso-
ciated with birth weight. Similarly, we found that methy-
lation at these sites at 9 years was also significantly and
inversely related to 9-year BMI z-score. Taken together,
these results indicate that PPARy methylation may be
associated with child body size.

Additional files

Additional file 1: Figure S1. PPARy Promoter and Gene Body CpG Sites.
Figure S1 shows the distribution of 23 CpG sites (red squares) measured
by the lllumina Methylation 450 K Array. Blue squares indicate all other
CpG sites (N=183). Numbers in the DNA sequence, such as “2100" are
shorthand for number of base pairs. (PPTX 295 kb)

Additional file 2: Table S1. Associations between perinatal
characteristics and PPARy methylation at birth. (PNG 42 kb)

Additional file 3: Table S2. Associations between perinatal
characteristics and PPARy methylation at 9 years. (PNG 50 kb)
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