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Abstract

Background: Genetic dissection of complex diseases requires innovative approaches for
identification of disease-predisposing genes. A well-known example of a human complex disease
with a strong genetic component is Type 2 Diabetes Mellitus (T2DM).

Methods: We genotyped normal-glucose-tolerant subjects (NGT; n = 54), subjects with an
impaired glucose metabolism (IGM; n = I11) and T2DM (n = 142) subjects, in an assay (designed
by Roche Molecular Systems) for detection of 68 polymorphisms in 36 cardiovascular risk genes.
Using the single-locus logistic regression and the so-called haplotype entropy, we explored the
possibility that (1) common pathways underlie development of T2DM and cardiovascular disease -
which would imply enrichment of cardiovascular risk polymorphisms in "pre-diabetic" (IGM) and
diabetic (T2DM) populations- and (2) that gene-gene interactions are relevant for the effects of risk
polymorphisms.

Results: In single-locus analyses, we showed suggestive association with disturbed glucose
metabolism (i.e. subjects who were either IGM or had T2DM), or with T2DM only. Moreover, in
the haplotype entropy analysis, we identified a total of 14 pairs of polymorphisms (with a false
discovery rate of 0.125) that may confer risk of disturbed glucose metabolism, or T2DM only, as
members of interacting networks of genes. We substantiated gene-gene interactions by showing
that these interacting networks can indeed identify potential "disease-predisposing allele-
combinations".

Conclusion: Gene-gene interactions of cardiovascular risk polymorphisms can be detected in
prediabetes and T2DM, supporting the hypothesis that common pathways may underlie
development of T2DM and cardiovascular disease. Thus, a specific set of risk polymorphisms, when
simultaneously present, increases the risk of disease and hence is indeed relevant in the transfer of
risk.
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Background

Genetic strategies for dissection of complex diseases
require innovative approaches for identification of dis-
ease-predisposing genes or -combinations of polymor-
phisms. The development and progression of complex
diseases involve interplay of genetic and environmental
factors. This implies involvement of several susceptibility
genes in the development of a complex disease, and an
interaction between these genes and the environment, e.g.
lifestyle habits [1]. Not only gene-environment interac-
tions, but also gene-gene interactions may be highly rele-
vant for development of a complex disease.

Type 2 Diabetes Mellitus (T2DM) is an example of a com-
plex, multigenic disorder with a high prevalence in man
[2,3]. A large number of candidate susceptibility genes
and loci for T2DM have been proposed and some of those
have been replicated in more than one study population
using linkage analysis (reviewed by Stern [4]).

It becomes increasingly clear that simple assessment of
the contribution of individual genes to T2DM susceptibil-
ity via analysis of the individual effects of common poly-
morphisms may not be sufficient for identification of the
processes and genes involved in T2DM. Indeed, genetic
interactions in T2DM have been described for some pairs
of genes or SNPs [5-7]. Therefore, these polymorphisms
should be studied both individually and as members of
genetic networks. To address complex relations between
potential susceptibility genes, Zhang et al. [8] developed a
method for detecting complex haplotype interactions (or
allele coupling) among a set of polymorphisms, which
may influence the susceptibility to a complex disease. The
advantage of this method over single-locus analyses lies in
the fact that it allows for identification of the combined
presence of specific (functional) SNPs in disease. This
approach has shown to be very effective for the analysis of
gene-gene interactions, where genetic polymorphisms do
not reside on the same chromosome, i.e. are evidently
physically unlinked, but interact with each-other to con-
tribute to the risk of complex disease [9]. The rationale
behind this approach is that simultaneous presence of
particular gene variations, even when physically unlinked,
may predispose to disease because some variations may
affect the "local environment" (e.g. insulin resistance or
glucose homeostasis) in a way that affects the conse-
quences of other variations (e.g. reduced beta-cell func-
tion).

T2DM is known to be associated with increased risk of car-
diovascular disease and we hypothesize that the increased
cardiovascular risk in T2DM implies common metabolic
pathways for development of T2DM and cardiovascular
disease and, hence, that "pre-diabetic" (IGM) and diabetic
(T2DM) populations will be enriched in cardiovascular
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risk polymorphisms. This motivated us to use an assay for
candidate markers of cardiovascular risk designed by
Roche Molecular Systems [10] for our current analyses.

For this study we determined a set of known cardiovascu-
lar risk polymorphisms in the CODAM (Cohort Study on
Diabetes and Atherosclerosis Maastricht) population [11].
We used both single locus-based logistic regression and
the method developed by Zhang et al. [8] to explore the
possibility that complex haplotype interactions (or allele
coupling) in this set of cardiovascular risk polymorphisms
can be implicated in risk of glucose intolerance or T2DM.

Methods

Description of subjects

The Cohort study of Diabetes and Atherosclerosis Maas-
tricht (CODAM) is a prospective population-based cohort
study in The Netherlands [10]. Inclusion criteria were: age
40-70 years and Caucasian descent (i.e. four Caucasian
grandparents), and in addition either a body mass index
(BMI)>25 kg/m2, and/or a positive family history for
T2DM, and/or a history of gestational diabetes, and/or the
use of antihypertensive medication, and/or a postprandial
blood glucose larger than 6.0 mmol/l and/or glucosuria.
All subjects were genetically independent (i.e. unrelated)
and the NGT, IGM and T2DM phenotype was assigned
based on the results of an oral glucose tolerance test. IGM
subjects were either impaired glucose tolerant or had
impaired fasting glucose levels. A majority of the subjects
(>85%) were unaware of their glucose tolerance status
prior to inclusion in this cohort. The study was approved
by the local Medical Ethical Committee of the Maastricht
University/Maastricht University Hospital and all subjects
gave written informed consent. All subjects with disturbed
glucose metabolism (i.e. subjects who were IGM or who
had T2DM) and a random sample of the control (NGT)
individuals were included in the current study. A sum-
mary of the characteristics of these subjects is provided in
Table 1.

Table |: Basic characteristics of the subjects.

NGT IGT T2DM
Noé 54 111 141
male subjects (%) 57 % 58 % 66 %
Age (Yrs)* 58879 595+ 6.6 60.8 6.2
BMI (kg/m2)* 27.6 + 4.1 288 + 4.0 304+ 46
Mean arterial pressure 1133 +13.6 1209+ 154 1249+ 148
(mm Hg)*
Fasting Glucose (mM)* 53+04 59+0.5 80+1.8
Fasting Insulin (uU/L)* 87 +49 11.0+6.2 143 £ 8.9
HDL-cholesterol (mM)* 1.2+£0.3 1.1 £0.3 1.0+£03
Triglycerides (mM)* 14+07 1.7+£0.8 2.1 £ 1.5
Coronary heart disease 17 % 13 % 13 %
(%)
* mean * standard deviation.
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Genotyping

Research assays for cardiovascular disease genetics
designed by Roche Molecular Systems [11] were used to
genotype 68 SNPs in genes in pathways of lipid and
homocystein metabolism, regulation of blood pressure
and coagulation, inflammation, cellular adhesion, and
matrix integrity (listed in Table 2). DNA samples of the
subjects included in the study were genotyped by using
the polymerase chain reaction (PCR). This led to 309 gen-
otypes of 68 loci that can each be assigned to one of the
following three groups: a NGT (control) group (n = 54), a
glucose intolerant group (n = 111 IGM subjects), and a
T2DM group (n = 142 patients). Each genotype can be
divided into 16 blocks according to their chromosome
identities. See Table 2. A cut-of value of > 21% for "heavy
missing" was selected on the basis of experience [8]. We
decided not to include the APOE(Arg158Cys) locus in the
logistic regression analyses because it had a missing rate of
41.7% (= 21%). All other loci had less than 10% missing,.

Phase I: Detection of main individual effects of the
polymorphisms

To evaluate the main effects of the polymorphisms on
insulin resistance or T2DM, without taking into account
the genotype for the other 67 polymorphisms, single
locus logistic regression analyses were performed. Four
polymorphisms (i.e., ACE, ADRB2, GNB3, APOC3) that
provided significant results in these analyses were subse-
quently evaluated together in a multiple logistic regres-
sion model to determine of these effects were
independent of one-another. We applied the procedure of
Storey and Tibshinari [12] for controlling the overall error
rate of multiple testing. In this procedure a statistical sig-
nificance measure called false discovery rate (FDR) was
defined, which is the expected proportion of false posi-
tives among the tests called significant [12,13].

Phase 2: Detection of gene-gene interactions

To detect the haplotype interactions that influence the
susceptibility to IGM and T2DM, we performed the fol-
lowing haplotype entropy procedure on every pair of SNP
blocks and on every SNP pair.

Consider the unphased genotype data G = {G,,..., G,} on
the n subjects at m loci from any two SNP blocks or two
SNPs, where G; = (Gjy,..., G;,,) and G;; takes values 0, 1, 2
according to whether its genetic haplotype at the locus j is
homozygous with allele 0, or homozygous with allele 1,
or heterozygous. Additional categories are created for
missing two alleles (G;; = 9) and the presence of only one

missing allele (G;; = 7 when allele 0 is missing at locus j
and G;;= 8 when allele 1 is missing). Each G; can be parti-

tioned into two sub-genotypes G; = (Gl(l), Gi(z)). We want
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to test the null hypothesis that the above two SNP blocks
or two SNPs are independent. In the case of testing the
independence between two SNPs, the problem can be
viewed as testing the independence of two single SNP
blocks with m = 2. Note that for m loci, the number of pos-
sible genotypes is 3™, much higher than 2™, the number of
possible haplotypes. This means that the genotype space
involved in modelling the dataset G has a much lower
dimension than would be the corresponding haplotype
space. Therefore, using haplotype frequencies to test the
above null hypothesis would be more efficient than using
the genotype-based #2 test and Fisher exact test in contin-
gency tables. However, these haplotype frequencies are
not directly available because the underlying haplotype
pairs for these genotypes are unknown.

In an effort to tackle these limitations, Zhang et al. [8] pro-
posed a haplotype-based test which takes into account
both the haplotype-genotype relationship and unknown
phases of these genotypes. It can be described as follows.
Let H = {H,,..., H,} denote n candidate haplotype pairs
that form the genotype dataset G, where H; = {H,;, H;,},
H; = (Hyy,..., Hy,)., Hij € {0,1}, s = 1,2. Given G, under

isj
the assumption of Hardy-Weinberg equilibrium, the like-
lihood L(G|p,H) is proportional to

n ky
| JECHECHE J ECH
i=1 k=1

as the function of unknown parameters p = ( P1sees P, )

and H, where H,, 1 <k <k are all the different haplotypes

in H, sy,..5$, denote their respective frequencies,

p= (pl,...,pmo) denotes population frequencies of m,

possible haplotypes compatiable with G, and p(H;;) and
p(H;,) are the population frequencies of haplotypes H;;
and H,,, respectively. Maximizing L(G|p, H) with respect

to p under the contraints Zpk =1,p,20,1<k<k,, we
k

ko S
obtain what is called profile likelihood H ( %) " for H.
le=1

Taking the minus of the logarithm of this profile likeli-
hood and dividing it by 2n, we obtain the entropy of the

frequencies sy,..., s;, , namely

k,

s s
e(G|H)=—22—I:llog2—’;.
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Table 2: Polymorphisms used in genotyping assay.
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Block and SNP (symbol) Location Gene name (OMIM #)* Missing rate (%)
I:

Ce677T (VI) 1p36.3 MTHFR (MIM 607093) 0.32
Met235Thr (V2) 1q42 AGT (MIM 106150) 0.32
G664A (V3) 1p36.2 NPPA (MIM 108780) 0.32
T2238C (V4) 1p36.2 NPPA 0.32
Arg506GIn (V5) 1923 F5 (MIM 227400) 0
Ser|28Arg (V6) 1923 SELE (MIM 131210) 0.32
Leu554Phe (V7) 1923 SELE 0.32
2:

Thr71lle (V8) 2p24 APOB (MIM 107730) 0.32
Arg3500GiIn (V9) 2p24 APOB 0.32
3:

Prol2Ala (VI10) 3p25 PPARG (MIM 601487) 0
Al166C (VI1) 3q21-25 AGTRI (MIM 106165) 0.32
4

Gly460Trp (V12) 4pl6.3 ADDI (MIM 102680) 0.32
G-455A (V13) 4q28 FGB (MIM 124830) 0.32
5:

Argl6Gly (V14) 5q32-34 ADRB2 (MIM 109690) 0.32
GIn27Glu (V15) 5q32-34 ADRB2 0.32
G873A (VI6) 5q23-31 ITGA2 (MIM 192974) 0.32
6:

C93T (VI7) 6q27 LPA (MIM 152200) 1.94
GI21A (VI8) 6q27 LPA 1.29
Thr26Asn (V19) 6p21.3 LTA (MIM 153440) 0
Thr26Asn (V24) 6p21.3 TNFb 0
G-376A (V20) 6p21.3 TNF (MIM 191160) 0.32
G-308A (V21) 6p21.3 TNF 1.62
G-244A (V22) 6p21.3 TNF 1.62
G-238A (V23) 6p21.3 TNF 0

7:

Met55Leu (V25) 7q21.3 PONI (MIM 168820) 0
GInl92Arg (V26) 7q921.3 PONI 0
Ser3|1Cys (V27) 7q21.3 PON2 (MIM 602447) 0.32
A-922G (V28) 7q36 NOS3 (MIM 163729) 0.32
C-690T (V29) 7q36 NOS3 0.32
Glu298Asp (V30) 7q36 NOS3 0.32
5G-6754G (V31) 7q21.3-22 PAIl (MIM 173360) 0.32
GI11053T (V32) 7q21.3-22 PAII 0

8:

Trpé64Arg (V33) 8pl2-11.2 ADRB3 (MIM 109691) 1.62
T-93G (V34) 8p22 LPL (MIM 238600) 2.59
Asp9Asn (V35) 8p22 LPL 0
Asn291Ser (V36) 8p22 LPL 0.32
Ser447Ter (V37) 8p22 LPL 0

9:

Thr347Ser (V38) 11923 APOA4 (MIM 107690) 0.65
GIn360His (V39) 11923 APOA4 2.91
C-641A (V40) 11923 APOC3 (MIM 107720) 9.06
C-482T (Vv41) 11923 APOC3 0.65
T-455C (V42) 11923 APOC3 0.32
CI1100T (V43) 11923 APOC3 1.29
C3175G (V44) 11923 APOC3 0.32
T3206G (V45) 11923 APOC3 0.32
SA(-1171)6A (V46) 11923 MMP3 (MIM 185250) 0.32
G20210A (V47) Ipll-ql2 F2 (MIM 176930) 0
10:

Trp493Arg (V48) 12p13 SCNNIA (MIM 600228) 0.32
Ala663Thr (V49) 12p13 SCNNIA 0.65
C825T (V50) 12p13 GNB3 (MIM 139130) 0.32
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Table 2: Polymorphisms used in genotyping assay. (Continued)
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-323 10-bp Del/lns (V51) 13q34 F7 (MIM 227500) 0.32
Arg353GlIn (V52) 13q34 F7 0.32
12:

C-480T (V53) 15q21-23 LIPC (MIM 151670) 0
13:

C-631A (V54) 16q21 CETP (MIM 118470) 0.32
C-629A (V55) 16q21 CETP 0.32
lle405Val (V56) 16921 CETP 0.32
Asp442Gly (V57) 16921 CETP 0.32
Interon 14 G+1A (V58) 16q21 CETP 0
Intron 14(+3)Tins (V59) 16q21 CETP 0
Intron | TaqlB +/- (V60) 16q21 CETP 0
14:

Intron 16 Ins/Del (V61) 17923 ACE or DCPI (MIM 106180) 6.5
Leu33Pro (V62) 17q21.32 ITGB3 (MIM 173470) 0.32
15:

Cysl12Arg (V63) 19q13.2 APOE (MIM 107741) 9.06
Argl58Cys (V64) 19q13.2 APOE 41.7
Ncol+/- (V65) 19p13.2 LDLR (MIM 606945) 0.97
Gly214Arg (V66) 19p13.3-13.21 ICAMI (MIM 147840) 0
16:

844 68bp-/Ins (V67) 21q22.3 CBS (MIM 236200) 0.32
11e278Thr (V68) 219223 CBS 0.32

* See http://www.ncbi.nlm.nih.gov/Omim/.

Taking notice of the uncertainty of H, we define the hap-
lotype-entropy e(G)of these genotypes as the minimal
value of ¢(G | H) when H is running over all the possible
sets of candidate-haplotype pairs. That is, e(G) is the value
of ¢(G | H) when H attains the maximum of the above
profile likelihood [9]. Zhang et al. [8] demonstrated that
the smaller the haplotype-entropy, the stronger the inter-
action between the above two SNP blocks would be. This
implies that when two SNP blocks are interacting, the
haplotype entropy of their combined genotypes will be
expected less than those generated from two independent
blocks. Note that when the two SNP blocks are independ-
ent, exchanging the labels among sub-genotypes in one
block would not change the distribution of ¢(G). To take
advantage of this property in calculating the null distribu-
tion of ¢(G)(i.e., the distribution when the two blocks are
independent), we conducted a permutation 7 only on the

labels of sub-genotypes Gl(l),l <i<n, which leads to a
permutated genotype sample

G, = {(fol()i),Glgz)),i =1,..,n} with the haplotype-
entropy ¢(G,) Repeating this permutation procedure say
200 times, we obtained a permutation distribution of
e(G) as an approximation to the null distribution of e(G).
The P-value of for an observed value of ¢(G) is then
defined as the proportion of the times that ¢(G) is larger
than e(G,). A Z-score can be also defined as in [8].

Our haplotype entropy procedure involves two stages: In
the first stage the above permutation procedure is per-
formed on each of three individual groups for interactions
between and within haplotype blocks defined in Table 2.
The glucose intolerance and T2DM predisposing interac-
tions are found in the second stage by contrasting the
interaction patterns observed for patients with the interac-
tion patterns for controls. Thus, significant interaction
between polymorphisms in one glucose intolerance state,
but not in the others, implies is up- or down-interaction.

Here, the up-interaction means two blocks (or two poly-
morphisms) are independent in controls (NGT subjects)
but become dependent blocks in cases (IGM or T2DM
subjects). Similarly, we can define the down-interaction.
The up-interactions would suggest that those interactions
lead to a susceptibility to the disease, whereas the down-
interactions could imply that the related interactions may
have a protective effect on developing the disease [8].

Significant up- or down-interaction between two poly-
morphisms was established according to the criteria P <
0.05/P > 0.145). This was guided by a simulation study
using a coalescent-based program called MS, by R Hudson
[14]. We simulated genotypes for the three different situ-
ations (i.e., closely linked with a low mutation rate,
weakly linked with a low mutation rate, and weakly
linked with a high mutation rate) described by quantities
(6 R)=(4,4),(4,20), and (16,16). Here =4N, R = 4N,r,
N, is the effective population size, u is the total per-gener-
ation mutation rate across the region sequenced, and r is
the genetic distance, in morgans, between loci. For each
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setting of (6, R), we generated 20 samples of size 20 as
control samples from a population in which the underly-
ing two genotype blocks are independent, and 20 samples
of size 20 as case samples from a population in which the
two genotype blocks are dependent. We then applied our
testing procedure to these data sets. The accuracy of our
procedure can be measured by the quantities F, and F,,
where F, is the proportion of false positives when the
underlying two blocks in genotypes are independent, and
F, is the proportion of successes in identifying an up- or
down-interaction. Note that F, and F, can be roughly
viewed as the type I error rate and the power of our testing
procedure. For (6, R) = (4,4),(4,20), and (16,16), (F,, F,)
= (0.10,0.80),(0.05,0.80),(0.00,0.85) respectively. The
results imply that if we use the thresholds P < 0.05/P >
0.145 in our multiple testing procedure, the overall type |
error rate could be reasonably controlled at the level of
0.10 or less for the above simulated situations.

Unfortunately, since the above coalescent model may be
biased against our data, the true type I error could be sig-
nificantly different from 0.10. We have addressed this
issue by correcting for multiple testing using the so-called
Bayesian FDR-controlling procedure of Storey and Tib-
shirani [12].

The interactions that have been found in the above two
stages may facilitate understanding of the pathological
mechanisms involved in the diseases, as well as the further
identification of some SNP blocks that provide significant
association with the diseases only when their interactions
with other blocks are taken into account. Note that the sig-
nificant interactions between two polymorphisms
detected in stage 1 of these analyses may be present irre-
spective of the insulin resistant state (i.e. is present in

http://www.biomedcentral.com/1471-2350/9/36

NGT, IGM and T2DM). These polymorphisms can be con-
sidered to be in complete association in this Caucasian
study population. Such interactions cannot be directly
used to discriminate between insulin resistant states (see
also Table 4 and 5).

Phase 3: Disease-predisposing allele combinations

The data obtained in Phase 2 of the study only provide
information on which combinations of polymorphisms
may be related to disease-risk, but this procedure does not
identify risk-alleles. We have further analysed the gene-
pairs identified in phase 2 to specify which combinations
of alleles may actually be predisposing to disease. For this,
frequencies of allele combinations in NGT, IGM and/or
T2DM subjects were analysed using (comparisons of pro-
portions; 2 tests).

Statistical analyses of phase 1 and 3 studies were done
using SPSS 9.0 (Chicago IL, USA). The analyses in phase 2
were done using C and Splus 7.0 (Insightful Corp).

Results

The general characteristics of the subjects (Table 1) show
the expected metabolic differences between the NGT, IGM
and T2DM subjects such as higher BMI, glucose, insulin,
triglycerides and blood pressure and lower HDL (high
density lipoprotein)-cholesterol in the T2DM patients.
The groups did not differ with respect to gender and age.
The NGT, IGM and T2DM groups were also comparable
with respect to the presence of coronary heart disease.

Phase I: Main individual effects of polymorphisms

The results of logistic regression analyses (Table 3) suggest
that the heterozygous genotype of ACE(ins/del) and
ADRB2(gln27glu) and the homozygous genotype of the

Table 3: Polymorphisms with main effects as independent predictors of disease status. g-value is the adjusted P-value using the

procedure of Storey and Tibshirani [12].

Frequency major/minor allele (%)

NGT + IGM (0) vs T2DM (1)

NGT (o) vs IGM + T2DM (1)

Exp (B) P-value (g-value) Exp (B) P-value (g-value)
ACE 54.21/39.6 D Il I (ref) n.a. | (ref) n.a.
(I/D)b ID 1.6 0.14 (0.189) 4.0 0.001 <(0.006)
DD 0.9 0.85 (0.535) 24 0.07 (0.110)
ADRB2 55.9 C/44.1 CC | (ref) n.a. | (ref) n.a.
(GIn27Glu)b G CG 1.8 0.042 (0.079) 39 0.002 <(0.007)
GG 1.1 0.75 (0.506) 1.0 1.0 (0.591)
GNB3 723 CRITT CC | (ref) n.a. | (ref) n.a.
(C825T)b CT 0.7 0.18 (0.189) 0.8 0.6 (0.473)
TT 0.07 0.0007 <(0.006) 0.7 0.5 (0.430)
APOC3 45.9 C/45.3 CC | (ref) n.a. | (ref) n.a.
(C-641A)b A CA 0.6 0.16 (0.189) 1.1 0.7 (0.507)
AA 1.4 0.32 (0.302) 4.1 0.008 (0.018)

3|f total of minor + major alleles < 100%, this means that there were some missing genotype data;® The 4 polymorphisms that had a P-value < 0.05 in
individual logistic analyses were entered in this logistic regression analysis simultaneously, hence the effects of these polymorphisms are adjusted for one-
another; ¢ The expected proportion of false positives among these significant findings is 10% (FDR = 0.1).
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AA allele of APOC3 (C-641A) may predict disturbed glu-
cose metabolism (i.e. subjects who were IGM or who had
T2DM; P = 0.001, P = 0.002 and P = 0.008, respectively).
A homozygous genotype for the minor allele of GNB3
(C825T), on the other hand, predicts protection from
T2DM with a P-value that may be considered borderline

http://www.biomedcentral.com/1471-2350/9/36

significant (P = 0.0007). Applying the FDR-controlling
procedure of Storey and Tibshirani [12] to these P-values
in Table 3, we found that the expected proportion of false
positives among our findings for ACE (ins/del), APOC3
(C-641A), GNB3(C825T) and apoC3 (C-641A) is 10%.

Table 4: Haplotype Interactions between Blocks, i.e. interactions between polymorphisms in genes that are located on different
chromosomes. Significant up- or down- interaction is indicated with bold typeface.

Block Pair/Chrom.Loc.Or SNP Pair/Gene Pair NGT (control) IGM T2DM
P Value Z Score P Value Z Score P Value Z Score
(1,5)/(1,5) 0.025 “2.01 0.440 -0.17 0.145 -1.00
(V2:V15)/(AGT:ADRB2) 0.005 -3.80 0.055 -1.73 <0.001 -5.62
(V4:V15)/(NPPA:ADRB2) 0.015 -3.00 0.455 0.11 0.410 -0.35
(V7:V16)/(SELE:ITGA2) 0.900 I.14 0.365 -0.78 <0.001 -0.44
(1,6)/(1,6) 0.025 -1.80 0.860 2.55 0.925 1.46
(V3:V21)/(NPPA:TNF) 0.060 -2.29 0.835 0.17 0.975 0.17
(2,3)/(2,3) 0.010 -2.45 0.890 1.13 0.890 1.17
(2,10)/(2,12) 0.030 -1.91 0.585 0.29 0.200 -0.66
(V8:V49)/(APOB:SCNNIA) 0.010 -3.12 0.595 0.20 0.340 -0.24
(V8:v50)/(APOB:GNB3) 0.195 -0.71 0.245 -0.82 0.005 -0.73
(2,13)/(2,16) 0.240 -0.61 0.865 1.15 0.005 -3.19
(V8:V56)/(APOB:CETP) 0.760 0.80 0.915 1.14 0.005 -0.70
(3,5)/(3,5) 0.660 0.38 0.825 0.97 <0.001 -2.72
(3,16)/(3,21) 0.170 -0.75 0.410 -0.15 0.030 -2.12
(5,16)/(5.21) 0.615 0.41 0.910 1.26 0.025 -2.35
(V15:V67)/(ADRB2:CBS) 0.515 0.33 0.610 0.17 0.000 -4.06
(6,10)/(6,12) <0.001 -3.70 0.755 0.71 0.915 1.26
(V18:v50)/(LPA:GNB3) 0.020 -3.05 0.905 0.90 0.935 0.97
(V21:V48)/(TNF:SCNNIA) 1.000 0.75 0.035 -4.20 0.086 0.09
(6,11)/(6,13) 0.205 -0.58 <0.001 -3.45 0.700 0.59
(V18:V51)/(LPA:F7) 0.695 0.38 0.010 -2.44 0.825 0.50
(V18:V52)/(LPA:F7) 0.370 -0.21 0.005 -3.57 0.900 0.18
(6,16)/(6,21) <0.001 -5.76 0.335 -0.34 0.155 -1.08
(V18:V67)/(LPA:CBS) <0.001 -10.38 0.670 -0.20 0.740 -0.07
(7,12)/(7,15) 0.205 -0.81 0.545 0.07 0.020 -2.29
(V28:V53)/(NOS3:LIPC) 0.570 0.37 0.215 -0.94 0.025 -0.94
(V30:V53)/(NOS3:LIPC) 0.045 -1.96 0.715 0.56 0.105 -0.53
(8,14)/(8,17) 0.415 -0.13 0.010 -2.65 0.190 -0.88
(V34:V62)/(LPL:ITGB3) 1.000 0.66 0.045 -0.62 0.895 -0.14
(V37:v62)/(LPL:ITGB3) 0.600 -0.32 0.890 0.8l 0.050 -0.30
9, 11)/(11,13) 0.515 0.04 0.160 -1.10 0.030 -1.99
(V39:V51)/(APOA4:F7) 0.925 -0.01 0.575 -0.58 0.020 -2.54
(V39:V52)/(APOA4:F7) 0.760 -0.53 0.705 -0.13 0.030 -2.38
(V41:V51)/(APOC3:F7) 0.050 -0.66 0.460 -0.32 0.285 -0.59
(V43:V51)/(APOC3:F7) 0.005 -1.43 0.895 1.14 0.790 0.68
(V43:V52)/(APOC3:F7) 0.055 -0.72 0.770 0.71 0.790 0.75
(12,13)/(15,16) 0.005 -2.54 0.620 0.07 0.815 0.96
(V53:V56)/(LIPC:CETP) 0.025 -2.55 0.835 -0.13 0.585 -0.06
(V53:V60)/(LIPC:CETP) 0.040 -2.13 0.580 0.21 0.100 -1.48
(13,15)/(16,19) 0.575 0.25 0.665 0.45 0.005 -2.51
(V56:V64)/(CETP:APOE) 0.865 0.85 0.270 -1.07 0.020 -2.90
(V54:V65)/(CETP:LDLR) 0.215 -0.84 0.525 0.42 0.045 -1.78
(V55:V65)/(CETP:LDLR) 0.035 -2.51 0.820 0.82 0.255 -0.90
(V56:V63)/(CETP:APOE) 0.205 -0.90 0.030 -2.84 0.885 0.85
(V60 :V65)/(CETP:LDLR) 0.040 -2.23 0.935 1.05 0.055 -1.87
(14,16)/(17,21) 0.600 0.27 0.030 -2.20 0.600 0.44
(V62:V67)/(ITGB3:CBS) 0.185 -0.59 0.005 -5.61 0.695 -0.28
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Table 5: Haplotype Interactions within Blocks, i.e. interactions between polymorphisms that are located on one chromosome. Hence
substantially more polymorphisms are in complete association than in Table 4. Significant up- or down interaction is indicated with

bold typeface.

Block/Chrom.Loc. Or SNP Pair/Gene Pair NGT (control) IGM T2DM

P Value Z Score P Value Z Score P Value Z Score
1/1
(V1:V4)/(MTHFR:NPPA) 0.005 -2.35 <0.001 -5.01 <0.001 -7.45
(V2:V4)/(AGT:NPPA) 0.705 0.16 0.095 -1.58 0.055 -2.12
5/5
(V14:V15)/(ADRB2:ADRB2) <0.001 -18.56 <0.001 -28.55 <0.001 -24.69
6/6
(V19:V21)/(LTA:TNF) <0.001 -2.38 <0.001 -20.07 <0.001 -23.57
(V20:V23)/(TNF:TNF) 0.005 -10.08 <0.001 -22.33 <0.001 -11.91
717
(V31:v32)/(PAII:PAII) <0.001 9.16 <0.001 -17.77 <0.001 -27.53
8/8
(V34:V35)/(LPL:LPL) <0.001 -00 <0.001 -25.74 <0.001 -24.56
9/11
(V38:V40)/(APOA4:APOC3) <0.001 -11.90 <0.001 -10.55 <0.001 -15.97
(V38:V41)/(APOA4:APOC3) 0.015 -2.700 <0.001 -1.49 <0.001 -6.33
(V38:V42)/(APOA4:APOC3) <0.001 -10.50 <0.001 -4.48 <0.001 -23.90
(V38:V43)/(APOA4:APOC3) 0.145 -1.53 0.025 -3.00 0.010 -0.61
(V39:V40)/(APOA4:APOC3) 0.405 -0.69 0.005 -4.26 <0.001 -4.37
(V39:V42)/(APOA4:APOC3) 0.715 -0.34 0.035 -0.51 0.050 -0.33
(V40:vV41)/(APOC3:APOC3) <0.001 -12.81 <0.001 -10.77 <0.001 -21.46
(V40:vV42)/(APOC3:APOC3) <0.001 -11.49 <0.001 -7.39 <0.001 -50.76
(V40:V44)/(APOC3:APOC3) 0.015 -3.97 <0.001 -6.40 <0.001 -3.98
(V41:vV42)/(APOC3:APOC3) <0.001 -5.74 <0.001 -25.00 <0.001 -36.81
(V41:V43)/(APOC3:APOC3) <0.001 -1.00 <0.001 -7.29 <0.001 -0.90
(V41:V44)/(APOC3:APOC3) <0.001 -10.40 <0.001 -13.19 <0.001 -13.75
(V42:V43)/(APOC3:APOC3) 0.800 0.15 <0.001 -3.47 0.925 1.08
(V42:V44)/(APOC3:APOC3) <0.001 -6.68 <0.001 -9.03 <0.001 -5.75
(V43:V44)/(APOC3:APOC3) 0.005 -5.92 <0.001 -16.54 <0.001 -7.07
10/12
(V48:V49)/(SCNNIA:SCNNA) 0.585 -0.84 0.010 -0.51 0.045 -0.76
11/13
(V51:V52)/(F7:F7) <0.001 -24.90 <0.001 -33.99 <0.001 -48.37
13/16
(V54:V55)/(CETP:CETP) 0.005 -4.14 0.005 -4.78 <0.001 -0.73
(V54:V58)/(CETP:CETP) 1.000 1.00 0.005 -7.65 1.000 1.00
(V54:V60)/(CETP:CETP) 0.025 -2.64 0.015 -4.02 <0.001 -5.04
(V55:V56)/(CETP:CETP) 0.025 -2.30 <0.001 -4.71 <0.001 -8.17
(V55:V60)/(CETP:CETP) <0.001 -21.23 <0.001 -43.59 <0.001 -55.84
(V56:V60)/(CETP:CETP) 0.050 -1.73 0.015 -2.68 <0.001 -5.72

Criteria for significant up- or down- interaction are P < 0.05 and P > 0.145. Thus, for instance, in the NGT subjects there is significant interaction
between NPPA and ADBR2 (P = 0.015), which is absent in the IGM (P = 0.455) and the T2DM (P = 0.410; Table 4). Hence, IGM and T2DM status
(i.e. a disturbed glucose metabolism) are associated with down-interaction between NPPA and ADRB2. When significant interactions between two
polymorphisms is detected irrespective of the insulin resistant state (i.e. is present in NGT, IGM as well as in T2DM), this means that these
polymorphisms are in complete association, for example, interaction between MTHFR and NPPA is P = 0.005 in the NGT subjects, P < 0.001 in the
IGM subjects and P < 0.001 in the T2DM subjects (Table 5). This association is, by itself not informative for the insulin resistance state but may
indicate involvement of the genes via a transitive interaction (see results section)

Phase 2: Gene-gene interactions

We sought for pair-wise interactions between the 16 SNP
blocks and between the polymorphisms. An up-interac-
tion between two polymorphisms is claimed to be associ-
ated with disturbed glucose metabolism if significant
evidence of the interaction between these two polymor-

phisms was found in the whole group of subjects with a
disturbed glucose metabolism (those who were IGM or
had T2DM) but not in the control (NGT) subjects. An up-
interaction associated with T2DM is claimed if the interac-
tion between these two polymorphisms was found signif-
icant in the T2DM subjects but not in the NGT or IGM
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subjects. Similarly we can define a down-interaction asso-
ciated with disturbed glucose metabolism or associated
with T2DM.

This revealed interacting pairs of genetic polymorphisms
that are described in Table 6 (underlying data are in Table
4 and 5). Noteworthy, three of the four polymorphisms
that were identified as potential main factors in the previ-
ous section, i.e. ADRB2(gln27glu), APOC3 (C-641A),
GNB3(C825T), were also a member of one of these net-
works. If we accepted a FDR of 0.125, then 14 pairs of pol-
ymorphisms were detected to be associated with either
IGM or with T2DM or with both (Table 6). This implies
about 14xFDR = 1.75 pairs are expected to be false posi-
tive in these 14 pairs. Two important groups of networks
can be identified. The first group, which might influence
susceptibility to disturbed glucose metabolism (i.e. IGM
and T2DM combined), was formed by down-interactions
between LPA(G121A) and CBS(844 68bp-/Ins), between
APOC3(C1100T) and F7(-323 10-bp Del/Ins), and
between APOB(Thr7Ile) and SCNN1A(Ala663Thr) and
up-interactions between APOA4(GIn360His) and
APOC3(C-641A). The second group, which was found to
be potentially associated with T2DM only, consisted of

up-interactions  between  SELE(Leu554Phe)  and
ITGA2(G873A),  between  APOB(Thr71lle) and
GNB3(C825T), between = APOB(Thr71lle) and
CETP(Ile405Val), between ADRB2(GIn27Glu) and

CBS(84468bp-/Ins), and between APOA4(Thr347Ser)
and APOC3(C1100T). In summary, at the FDR level of
0.125, polymorphisms in 7 genes (LPA, CBS, APOC3, F7,
APOB, SCNN1A, APOA4) are involved in susceptibility to
a disturbed glucose metabolism (subjects who were IGM
or who had T2DM), and susceptibility polymorphisms in
9 genes (SELE, ITGA2, APOB, GNB3, CETP, ADRB2, CBS,
APOA4, APOC3) may predispose to T2DM. Moreover,
polymorphisms in 6 genes (ITGB3, CBS, LPA, F7,
SCNN1A, APOC3) are involved in different networks that
are IGM specific. If we relax the FDR level to 0.461 (in
which P-values less than 0.05 are called significant), then
18 extra pairs of interacting polymorphisms can be iden-
tified (Table 6), but 32 x 0.461 = 14.75 of those pairs are
expected to be false positive.

In addition to these data on up- and down-interaction, we
found that the following polymorphisms were in com-
plete association with some members of the interaction
networks (i.e., these polymorphism pairs are significantly
interacting in the all three groups, NGT, IGM, T2DM):
MTHFR(C677T), AGT(Met235Thr), LPL(Asp9Asn), F7(-
323 10-bp Del/Ins), APOA4(Thr347Ser), APOC3(C-
482T), APOC3(T-455C), APOC3(C3175), CETP(C-
628A), CETP(Intron 1 TaqIB +/-) (see Table 5). This indi-
cates that, besides the above-mentioned direct interac-
tions via allele-coupling, additional polymorphisms may

http://www.biomedcentral.com/1471-2350/9/36

Table 6: Interactions between polymorphisms in genes that are
associated with IGM or T2DM at the three FDR levels.

Block Pair/Chrom.Loc. Or SNP
Pair/Gene Pair

FDR =0.125 FDR = 0.461

IGM  T2DM IGM  T2DM
(1,5)/(1,5)
(V4:V15)/(NPPA:ADRB2) - - Down Down
(V7:V16)/(SELE:ITGA2) - Up - Up
(2,10)/(2,12)
(V8:V49)/(APOB:SCNN | A) Down Down Down Down
(V8:v50)/(APOB:GNB3) Up - Up
(2,13)/(2,16)
(V8:V56)/(APOB:CETP) - Up - Up
(5,16)/(5,21)
(V15:V67)/(ADRB2:CBS) Up - Up
(6,10)/(6,12)
(V18:V50)/(LPA:GNB3) - -- Down Down
(V21:V48)/(TNF:SCNN | A) - - Up
6,11)/(6,13)
(V18:V51)/(LPA:F7) Up - Up -
(V18:V52)/(LPA:F7) Up - Up -
(6,16)/(6,21)
(V18:V67)/(LPA:CBS) Down Down Down Down
(7,12)/(7,15)
(V28:V53)/(NOS3:LIPC) - - - Up
(V30:V53)/(NOS3:LIPC) - -- Down -
(8,14)/(8,17)
(V34:V62)/(LPLITGB3) - - Up -
(V37:V62)/(LPL:ITGB3) - - - Up
O,10)/(11,13)
(V39:V51)/(APOA4:F7) - - - Up
(V39:V52)/(APOA4:F7) - - - Up
(V41:V51)/(APOC3:F7) Down Down
(V43:V51)/(APOC3:F7) Down Down Down Down
(12,13)/(15,16)
(V53:V56)/(LIPC:CETP) Down Down
(V53:V60)/(LIPC:CETP) Down
(13,15)/(16,19)
(V56:V64)/(CETP:APOE) - - - Up
(V54:V65)/(CETP:LDLR) - - - Up
(V55:V65)/(CETP:LDLR) - -- Down Down
(V56:V63)/(CETP:APOE) - - Up
(V60 :V65)/(CETP:LDLR) Down
(14,16)/(17,21)
(V62:V67)/(ITGB3:CBS) Up - Up
9.9)/(11,11)
(V38, V43)/(APOA4:APOC3) - Up Up Up
(V39:V40)/(APOA4:APOC3) Up Up Up Up
(V39:vV42)/(APOA4:APOC3) - - Up Up
(V42:vV43)/(APOC3:APOC3) Up - Up -
(10,10)/(12,12)
(V48:V49)/(SCNNIA:SCNNIA) Up - Up Up
# Pairs implicated in either IGM or 14 32

T2DM or both (disturbed glucose
metabolism)

The indications Up and Down are associated with IGM if they are
located in the IGM columns, and with T2DM if they are located in the
T2DM columns. The FDR values indicate the expected proportion of
false positives among the called significantly interacting pairs in the
corresponding columns respectively.
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also, but perhaps indirectly, contribute to the interaction
networks. For example, MTHFR is in complete association
with NPPA (Table 5), AGT is in complete association with
ADRB2 (Table 4), and NPPA is down-interacting with
ADRB2 (Table 4). This implies MTHFR and AGT are tran-
sitively down-interacting with effects on susceptibility to a
disturbed glucose metabolism.

Phase 3: Disease-predisposing allele combinations

To substantiate the applicability of the data obtained in
phase 2 of this study, we analysed the allelic distribution
in the gene-pairs that were identified in phase 2. For the
gene-pairs that were significantly associated with T2DM,
ADRB2(GIn27Glu)-CBS(11e278/Ins), APOB(Thr71le)-
CETP(lIle 405Val), APOA4(Thr347Ser)-APOC3(C1100T),
APOB(Thr7Ile)-GNB(C825T), ITGA2(G873A)-SELE(Leu
554Phe), we found that when the C-allele of APOB was
present, the distribution of the C and T alleles of GNB3
differed between T2DM (n = 207 of which 15.9% were T)
and non T2DM (n = 222 of which 26.6% were T, P =
0.007). When the T allele of APOB was present, the distri-
bution of the GNB3 alleles did not differ between T2DM
(n=106;35.4%T)and nonT2DM (n=79;47.2%T, n.s.).
In other words, the allelic distribution of GNB3 between
T2DM and non-T2DM is related to a specific genetic back-
ground for the APOB polymorphism, which implies gene-
gene interaction. Likewise, we found that when the T-
allele of SELE was present, the distribution of the A and G
alleles of ITGA2 differed between T2DM (n = 12; 100% A)
and non T2DM (n = 8; 62.5% A; P = 0.02). When the C-
allele of SELE was present, the distribution of the ITGA2
alleles did not differ between T2DM and non T2DM. The
gene-pairs that were significantly associated with IGM or
T2DM subjects, APOB(Thr7Ile)-SCNN1A(Ale663Thr),
F7(-323 10-bp Del/Ins)-APOC3(C1100T), APOA4(GIn36
OHis)-APOC3(C-641A), LPA(G121A), CBS(Ile278/Ins)
were analysed in a similar way. The distribution of the C
and T alleles of APOC3 differed between disturbed glu-
cose metabolism subjects (n = 71; 57.7% C) and NGT
subjects (n = 16; 25.0% C, P = 0.018) when the insertion
was present in F7, but not when the deletion was present.
The distribution of the A and G alleles of LPA differed
between subjects with a disturbed glucose metabolism (n
= 68; 89.7% G,) and NGT (n = 12; 33.3% G, P < 0.001)
when the insertion was present in CBS, but not when it
was absent. The distribution of the C and A alleles of
APOCS3 differed between disturbed glucose metabolism
(n=422; 53.4% A) and NGT (n = 89; 36.0% A, P = 0.003)
when the G allele of APOA4 was present, but not when
the T allele was present. For the other gene-pairs we could
not identify interaction using this approach.

Discussion
The rationale behind the current study is that the effects of
various risk genes on development of a complex disease

http://www.biomedcentral.com/1471-2350/9/36

will most likely not be independent from one-another.
Therefore, such genes should be studied both individually
and as members of genetic networks. T2DM is a well-
known example of a complex disease and, in our view, the
increased cardiovascular risk in T2DM implies that com-
mon metabolic pathways may be involved in develop-
ment of T2DM and cardiovascular disease. We explored
this possible involvement - including the possibility that
gene-gene interactions are relevant for the effects of risk
polymorphisms- in normoglycaemic, "pre-diabetic"
(IGM) and diabetic (T2DM) subjects. Of note, the preva-
lence of coronary heart disease (CHD) was not different
between the three disease groups. The involved risk genes
and gene-gene interactions for subjects with a disturbed
glucose metabolism (i.e. who were IGM or who had
T2DM) or T2DM only, that we report here will therefore
not result from imbalance in the distribution of coronary
heart disease between the groups, but rather be related to
their glucose tolerance status.

In phase 1 we performed single locus-based logistic
regression analyses to identify main independent predic-
tors for risk of a disturbed glucose metabolism or T2DM.
This may be considered a more "traditional" approach. In
phase 2 we used a novel approach to detect complex hap-
lotype interactions (or allele coupling) among a set of pol-
ymorphisms to evaluate their effects on risk of glucose
intolerance or T2DM. This resulted in identification of
several networks of interacting genes. In phase 3 we
assessed the applicability of data as obtained in phase 2 by
constructing "disease predisposing allele combinations",
thus showing that these add valuable information to that
obtained in phase 1.

Twelve (LPA, CBS, APOC3, F7, APOB, SCNN1A, APOA4,
SELE, ITGA2, GNB3, CETP, ADRB2) of the genes that we
report here to be associated with susceptibility for a dis-
turbed glucose metabolism and/or T2DM alone (when
FDR = 0.125), actually reside on chromosomal regions
that have previously been implicated in T2DM or related
traits or have directly or indirectly been implicated in
"diabetes associated" traits (for more detailed informa-
tion see Tables 7 and 8). Our present findings may there-
fore be carefully considered to be duplications/
confirmations of those previously published results. We
propose that the fact that most of these genes/polymor-
phisms do not confer risk "on their own" but rather via
interaction with other susceptibility genes may be one of
the reasons for the apparent inconsistency in replication
of the disease predisposing effects of several diabetes risk
genes. In other words, the contribution of genetic poly-
morphisms to risk of human diseases with a complex
genetic background such as T2DM may preferably be eval-
uated within their own genetic environment, i.e. while
taking into account the genotype of other relevant poly-
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Table 7: Known effects of the genes and polymorphisms involved in susceptibility for disturbed glucose metabolism (i.e. subjects who
were IGM or who had T2DM, with the false discovery rate of 0.125), with focus on parameters that are directly related to an insulin

resistance and T2DM.

Gene Gene or Chromosomal area was implicated in: Variation Polymorphism was implicated in:
LPA 6q27 * The metabolic syndrome [I5] which is characterised by insulin ~ GI2IA
resistance
CBS 21q22.3 * Hyperhomocysteinemia [16] which, in turn, is related to 11e278Thr  « Homocysteinuria [18].
diabetic nephropathy [17].
APOB 2p24 Thr7llle * Interaction between ApoB (Thr7llle) and
glucose tolerance on lipid parameters [19]
SCNNIA [2p13 + Same chromosomal region as GNB3 Thré63Ala  « SCNNIA(Thré63Ala) was associated with
fasting insulin levels, even after correction for
BMI [20].
APOC3 1123« Well-known diabetes region [21]. C-641A
* APOC3(C-482T) was associated with fasting insulin [22] and in
interaction with LIPC -514 C>T also on glucose tolerance [23].
APOA4 1923  « Contained in the same region as Apo C-llI GIn360His « Plasma glucose in women [24].
APOC3 11923  * Well-known diabetes region [21]. C1100T
* APOC3(C-482T) was associated with fasting insulin [22] and in
interaction with LIPC -514 C>T also on glucose tolerance [23]
F7 13q34 * Chromosomal area implicated in the insulin-response-to- -323 10-
glucose in DM2 [25]. bp Ins/Del

morphisms carried by an individual. The approach
described in phase 2 and 3 of this study provides a
method for this.

For 2 of the 5 gene-pairs that were significantly associated
with T2DM, we could show that the distribution of poly-
morphism A between T2DM and non-T2DM was depend-

ent on which allele of polymorphism B was present. This
indicates significant gene-gene interaction. Also for 3 of
the 4 gene-pairs that were significantly associated with a
disturbed glucose metabolism we could show gene-gene
interaction. For the other gene-pairs we could not identify
gene-gene interaction using this approach. One reason for
this could be that the method used in phase 2 is more sen-

Table 8: Known effects of the genes and polymorphisms involved in susceptibility for T2DM only (with the false discovery rate of
0.125), with focus on parameters that are directly related to insulin resistance and T2DM.

Gene Gene or Chromosomal area was implicated in: Variation Polymorphism was implicated in:
ADRB2 5q32-34 + Susceptibility to DM2 [26], also in interaction with GIn27Glu  « Independent contributor in the development
chromosome 10q23.3 [27]. of type 2 DM [28]
CBS 21q22.3 » Hyperhomocysteinemia [16] which, in turn, is related to 11e278Thr  » Homocysteinuria [18].
diabetic nephropathy [17].
APOA4 | 1q23 * Contained in the same region as Apo C-llI Thr347Ser < Plasma glucose in women [24].
APOC3 11q23 * Well-known diabetes region [21]. CliooT
* APOC3(C-482T) was associated with fasting insulin [22] and in
interaction with LIPC -514 C>T also on glucose tolerance [23]
APOB 2p24 Thr7llle * Interaction between ApoB(Thr7Ille and
glucose tolerance on lipid parameters [19]
GNB3 I12p13 * Age-of-onset of DM2 [29]. C825T * Implicated as independent contributor in
development of DM2 [30]
* Insulin resistance [31].
* Insulin-mediated vasodilation [32].
APOB 2p24 Thr7llle * Interaction between ApoB(Thr71lle and
glucose tolerance on lipid parameters [19]
CETP 16q21 » CETP (Intron | TaqlB +/-) appeared to help significantly in lle405Val
identification of DM2 [33]
* In our present study, CETP (Intron TaqlB+/-) was in LD with
a.0. CETP(C-630A) and (lle405Val).
SELE 1923-25 * Chromosomal area was implicated in the metabolic syndrome  Leu554Ph
[34]. e
ITGA2 5q23-31  + The ITGA2 C807T polymorphism may be associated with an ~ G873A * Risk factor for retinal vein occlusion [36].

increased risk of diabetic retinopathy [35]

Page 11 of 14

(page number not for citation purposes)



BMC Medical Genetics 2008, 9:36

sitive to networks that interact at a more complex level.
Some of the gene-gene interactions may be more subtle
than just pair-wise interactions, e.g. in predisposition to
T2DM, there are pair-wise interactions between
APOB(Thr7Ile) and CETP(Ile 405Val), but also between
APOB(Thr7Ile) and GNB(C825T), so CETP and GNB3
polymorphisms may influence each-other via the APOB
polymorphism or, alternatively, the effect of the APOB
polymorphisms may be influenced by variations in both
CETP and the GNB3.

Although the above results represent statistical associa-
tion, the actual risk can hold true at the functional level.
For instance, in our current analyses the gene-gene combi-
nations that are involved in susceptibility for a disturbed
glucose metabolism (Table 7) all include at least one gene
involved in plasma lipid/lipoprotein metabolism. This
suggests that disturbances in lipid metabolism may pre-
dispose to insulin resistance that is aggravated by the
simultaneous presence of another polymorphism in a dif-
ferent gene. In the gene-gene combinations that predis-
pose to T2DM (Table 8), this holds true for 3 out of the 5
combinations.

A comparison with previous data on type 1 diabetes
(T1DM) that were obtained with a highly similar genotyp-
ing assay, unveiled that the gene-gene interaction network
that was identified by Zhang et al. [8] as a potential
genetic aetiology to T1DM, is different from the network
for T2DM we present here. However, these networks do
share a common set of polymorphisms including:
NPPA(T2238C), APOB(Thr7lle), ADRB2(GIn27Glu),
NOS3(A-922G), APOA4(GIn360His), APOC3(C-641A),
SCNN1A(Ala663Thr), LIPC(C-480T), LDLR(Ncol+/-),
ACE (Intron 16 Ins/Del), and CBS(1le278/Ins). This sug-
gests that genes that predispose to T1DM may, especially
in combination with other gene polymorphisms, add to
the risk of T2DM and vice versa. This may relate to genes
affecting beta cell function (e.g. NOS, ADRB2) and the
effects of lipids on insulin secretion, the so-called lipo-
toxic effect on beta cells. (e.g. apoB, apoA4, apoC3, LIPC,
LDL-R). These relations require further investigation.

The main limitation of the current study is the fact that,
due to the small sample size, the epistatic interactions
between SNPs must be quite strong to be detected. This
also caused our selection of main effects of individual
SNPs from the logistic regression to be only marginally
significant. On other hand, although we have done some
simulation study on the power of the haplotype entropy-
based test, the issues on the power of haplotype entropy
based SNP networking study and on an appropriate sam-
ple size for such a study have not been addressed. Despite
of this limitation, we believe our study provides further
evidence to support the hypothesis that the genetic basis

http://www.biomedcentral.com/1471-2350/9/36

of a disturbed glucose metabolism and T2DM is complex
with many genes acting in concert in the transfer of risk.

Conclusion

Our current approach to explore the presence of complex
haplotype interactions (or allele coupling) among a set of
polymorphisms has led to identification of several inter-
acting networks of genes that may be relevant in predispo-
sition to disturbed glucose metabolism or T2DM. Our
current data thus imply that the combined presence of a
specific set of risk polymorphisms, when simultaneously
present, increases the risk of disease is indeed relevant in
the transfer of risk. Such interacting polymorphisms may
represent (functional) polymorphisms on different, phys-
ically independent genes. Simultaneous analysis of multi-
ple risk polymorphisms located on different genes may be
an important step in the identification of gene-gene inter-
action, and identification of the metabolic routes that are
influenced by the "disease-predisposing allele combina-
tions" may prove to be instrumental in further identifica-
tion of the processes that underlie development of T2DM.
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