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Background: Over the last decade, associations between Body Mass Index (BMI) and a variety of
candidate genes have been reported, but samples have almost all been limited to adults. The
purpose of the present study was to test the developmental origins of some of these associations
in a large longitudinal sample of children.

Methods: For |0 single-nucleotide polymorphisms (SNPs) in candidate genes reported to be
associated with BMI in adults, we examined associations with BMI in a sample of 5000 children
(2500 twin pairs) with BMI data at 4, 7 and 10 years. Association analyses were performed using
the Quantitative Transmission Disequilibrium Test and we corrected for multiple testing using the
False Discovery Rate.

Results: Despite having 80% power to detect associations that account for as little as 0.2% of the
variance of BMI, none of the 10 SNPs were significantly associated with BMI at any age, although
two SNPs showed trends in the expected direction.

Conclusion: The lack of association for these ten previously reported associations, despite our
large sample size, is typical of associations between candidate genes and complex traits. However,
some of the reported SNP associations with BMI might emerge as we continue to follow the sample
into adolescence and adulthood. This report highlights the importance of developmentally
appropriate candidate genes.

Background influence on individual differences in BMI and obesity [4-

The rise in obesity is not only seen in the adult population
- obesity is also becoming more prevalent in childhood
and adolescence [see e.g. [1]]. It is possible that obesity
that starts in childhood results in additional health and
psychological consequences [2,3]. Twin research, across
the lifespan, consistently points to substantial genetic

6]. Due to the rising levels of overweight and obesity in
childhood, and the obvious long-term health problems
and costs that early-onset and persistent obesity will
cause, there has been an increased interest into the devel-
opmental patterns of BMI in childhood and adolescence.
Very little is known about the developmental etiology of
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BMI and obesity in early and middle childhood. Recent
research into the prevalence of obesity and overweight in
an adolescent sample has demonstrated that weight is a
stable phenotype by this stage of development, with little
movement between groups of children classified as nor-
mal weight or overweight at age 11 and then followed up
for five years [7]. Since persistent obesity is established
before the age of 11, research into BMI and obesity should
be targeted at younger children to assess the developmen-
tal patterns and etiology of BMI and obesity [7].

Over the last decade associations between Body Mass
Index (BMI) and a variety of candidate genes have been
reported [8], but samples have almost all been limited to
adults. When genes are identified that are associated with
complex traits such as obesity, one direction for top-down
'behavioral genomic' research [9] is to explore the devel-
opmental origins of the associations such as how early in
the lifespan the associations appear. The purpose of the
present study was to test some of these associations in a
large longitudinal sample of children. We investigated
associations with BMI in a longitudinal sample of 5000
children assessed at 4, 7 and 10 years for ten polymor-
phisms previously associated with obesity [8]; (see Table
1). Because genes largely contribute to stability for com-
plex traits [10], we predicted that genes associated with
BMI in adulthood would show associations with BMI in
childhood, even as early as 4 years of age. The sample size
provides 80% power to detect associations accounting for
as little as 0.2% of the variance (p = .01; one-tailed
because we only accept results in the same direction as the
original reports) [11].

Table I: Selected candidate SNPs

http://www.biomedcentral.com/1471-2350/9/12

Methods

Sample

The sample was the Twins Early Development Study
(TEDS), a study of twins born in the UK between 1994 —
1996 [12]. The TEDS sample has been shown to be rea-
sonably representative of the UK population [12,13]. All
twins and parents involved in TEDS provide informed
consent for each stage of the study. Ethical approval for
the Twins Early Development Study has been provided by
the King's College London ethics committee, reference
number: 05/Q0706/228. Response rates based on active
families were 65%, 63%, and 65%, respectively at the
three ages. For the purposes of the current study, we
excluded from the analyses families in which at least one
member of the twin pair had a specific medical syndrome
or was an extreme outlier for perinatal problems such as
extreme low birth weight. Data was included from
monozygotic (MZ) male and female twins; dizygotic (DZ)
male and female twins, and opposite-sex DZ twins. Across
all genotypes the sample was 42% MZ (MZ female: 23%;
MZ male: 19%), 32% DZ (DZ female: 17%; DZ male:
15%), and 26% opposite-sex DZ.

The mean ages of the twins when questionnaires were
returned were 4.05 (s.d. =.16), 7.05 (s.d. =.25), and 9.93
(s.d. = .87) respectively. Zygosity was assessed through a
parent questionnaire of physical similarity, which has
been shown to be over 95% accurate when compared to
DNA testing [14]. For cases where zygosity was unclear
from this questionnaire, DNA testing was conducted.

SNP Chromosome Gene Alleles* Risk Allele Phenotype TEDS Allele Frequencies
rs|1801282 3p25.2 PPARG CI/G (Pro — Ala) G Body Mass Index [33] C=288G=.12
rs5082 1 q23.3 APOA2 CIT (5' near gene) T Waist circumference [34] C=.39T=.6l
rs1042714 5q32 ADRB2 C/G (GIn = Glu) C Body Mass Index [35] C=.56;,G=.44
rs1800206 22 ql3.31 PPARA CI/G (Val — Leu) G Body Mass Index [36] C=.93G=.07
rs6659176 | p36.11 NROB2 C/G (Ala — Gly) C Body Mass Index and waist circumference C=.92,G=.08
rs5443 12 p13.31 GNB3 CIT (Ser — Ser) T Body Mass Index [38] C=71;T=29
rs7754561 6q23.2 ENPPI AJG (3' near gene) G Body Mass Index [39] A=77,G=.23
rs1042713 5932 ADRB2 AIG (Arg — Gly) A Body Mass Index [35] A=36G=.64
rs4994 8pl2 ADRB3 C/T (Arg = Trp) C Body Mass Index [40] C=.08T=.92
rs7566605 1 2ql4.1 INSIG2 CIG (intronic) C Body Mass Index [21] C=.33G=.67

Candidate SNPs were selected based on "The human obesity gene map: the 2005 update" [8]. Nine SNPs were selected based on the following criteria: (1) Association must
have been shown in a sample with at least 500 participants. (2) Measured phenotype had to be BMl/obesity or waist circumference. (3) SNP had to have a minor allele
frequency greater than 0.1. Genotyping of these nine SNPs was performed by Kbiosciences, UK http://www.kbioscience.co.uk using the competitive allele specific PCR

(KASPar) method, on a sample of 5000 children.

* Information about the SNP function class is presented in parentheses; in the case of non-synonymous SNPs the amino acid alteration is given.
1 SNP rs7566605 was genotyped in an attempt to replicate a recent report of an association [21]; genotyping for rs7566605 was performed in-house using Tagman on a

subsample of 3000 children.

Full gene names:

PPARG/PPARA: Peroxisome Proliferator-Activated Receptors (PPARs).
APOA2: Apolipoprotein A-Il.

ADRB2/ADRB3: Beta-2-Adrenergic Receptor/Beta-3-Adrenergic Receptor.
NROB2: Nuclear receptor subfamily 0, group B, member 2.

GNB3: Guanine nucleotide-binding protein, Beta-3.

ENPP|: Ectonucleotide pyrophosphatase/phosphodiesterase |.

INSIG2: Insulin induced gene 2.
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Measures

Height and weight data were collected by postal question-
naire from the parents when their children were 4, 7 and
10 years of age. Correlations with measured heights and
weights in a sub-sample of these children at age 11 were
0.83 and 0.90. The sample included 5000 children at each
age. BMI was calculated from the height and weight data
(BMI = weight (kg)/(height (m)?)) and converted to BMI
z-scores. BMI z-scores take into consideration the child's
age and sex. They were based on 1990 UK growth refer-
ence curves [15] and were calculated using the program
ImsGrowth (available from http://homepage.mac.com/
tjcole). Children were categorized as normal weight, over-
weight or obese based on International Obesity Task Force
(IOTF) criteria [16]; which are based on age-specific and
sex-specific cut-off points linked to growth curves, and
correspond to BMI criteria for normal weight, overweight
and obesity in adults [16]. Although there are disagree-
ments about the correct cut-off for childhood obesity [see
for example [17-19]] we opted for the IOTF criteria
because it was important that the cut-offs used in this
study were internationally meaningful, in addition, we are
not using the cut-offs for clinical purposes. Finally, the
focus of our paper is not on the categorical analyses, but
on the more powerful continuous analyses.

The percentages of the sample in each category (normal
weight, overweight and obese) were 83%, 12% and 5% at
4 years; 88%, 9% and 3% at 7 years; and 86%, 11% and
3% at 10 years.

The mean raw BMI scores (i.e. unstandardized for age and
sex) were 15.83 (sd = 1.96) at 4 years; 15.73 (sd = 1.99) at
7 years; and 17.24 (sd = 2.93) at 10 years. The raw BMIs
of the 3 groups (normal weight, overweight and obese) at
each age were: 4 years: 15.19 (sd = 1.29); 18.06 (sd =
0.53); and 20.95 (sd = 1.81); 7 years: 15.22 (sd = 1.29);
18.92 (sd = 0.76); and 22.53 (sd = 1.96); and 10 years:
16.36 (sd = 1.68); 21.60 (sd = 1.41); and 27.41 (sd =
5.07).

Candidate SNP selection and genotyping

Candidate SNPs were selected based on the 2005 update
of the human obesity gene map [8]. Nine SNPs were
selected on the following criteria: i) the association must
have been shown in a sample with at least 500 partici-
pants, ii) the measured phenotype had to be BMI, waist
circumference or obesity, and iii) the SNP had to have a
minor allele frequency greater than 0.1 because statistical
power to detect associations is too low for alleles with
lower frequencies. The SNPs that were selected are shown
in Table 1, which also includes information about the
genes in which they reside, the risk allele (that is, which of
the two alleles is associated with higher BMI), and the
phenotype of interest. Genotyping of these nine SNPs was

http://www.biomedcentral.com/1471-2350/9/12

performed by Kbiosciences, UK [20] using the competitive
allele specific PCR (KASPar) method. The error rate of this
method is low (< 0.5% in our analyses of blind dupli-
cates).

In addition, SNP 17566605 was genotyped in an attempt
to replicate a recent report of an association between
1s7566605 and obesity in four out of five populations
[21], although it subsequently failed to replicate in several
studies [22]. Genotyping for 1s7566605 was performed
in-house using Tagman on a subsample of 3000 children.
The overall genotyping call rate was 93%, and we only
called the genotypes if the TagMan quality value exceeded
95. The allele frequencies for all 10 candidate SNPs are
included in Table 1; all the frequencies in our sample are
similar to those for Europeans in HapMap.

Analyses

Results were analyzed using the QTDT total association
model [23], which takes into account the twin pair struc-
ture by comparing variance between and within pairs. We
did not have parental genotypes, so were unable to
include IBD status in the model. The total association
model was chosen after we had verified that there was no
significant population stratification. In the QTDT analyses
we specifically modeled a polygenic variance component,
as well as a non-shared environment and twin-specific
environmental variance components. Variance compo-
nents were tested for significance before being included in
the model. The heritability of BMI estimated by the QTDT
analyses was 41% at 4 years, 60% at 7 years and 75% at 10
years.

Our sample of 5000 (2500 twin pairs) provides 80%
power to detect an effect size (r2) of 0.2% (p = .01, one-
tailed, as calculated using [11]). We corrected for multiple
testing using the False Discovery Rate [24]. This multiple
testing correction was applied across all ages (i.e. 30 tests)
rather than at each age separately, because the measures of
BMI at each age are not independent. We analyzed the
entire sample of 5000 in order to maximize power to
detect associations of small effect size. In addition,
because the original reports compared obese and over-
weight cases versus controls, we also divided the sample
into groups (obese, overweight, and normal) and com-
pared genotypic frequency differences between the groups
using chi-square analysis. We compared the obese group
to the normal weight group and also the obese and over-
weight groups (combined) were compared to the normal-
weight group. These analyses were done on one randomly
selected member of each twin pair.

Limitations
A specific limitation of the present study is the use of
parental reports of children's heights and weights,
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although previous research has shown that they are rea-
sonably reliable [25]. This was confirmed in our sample
on a sub-sample at 11 years: Home measurements of
height and weight, taken by trained researchers, correlated
.83 and .90, respectively, with parental report. A further
limitation is that we were only able to study BMI. It would
have been beneficial to include other measures of adipos-
ity, but this was not feasible in this large sample. In addi-
tion BMI was measured only at ages 4, 7 and 10 years. It is
possible that we could have got different results if we had
more frequent measurements of BMI during childhood,
so that we could more accurately estimate when in devel-
opment the association with the candidate gene emerged.
However, as we found no significant associations, this
limitation is unlikely to impact on the interpretation of
these results.

Finally, this analysis does not consider genetic influences
that impact on change during development. This could

http://www.biomedcentral.com/1471-2350/9/12

have been done using growth curve analyses, similar to
Podolsky et al. [26]. However, growth curve analyses are
best performed with at least four measurements, so we
were unable to include such analyses in this study. All of
the results should be interpreted in light of these limita-
tions.

Results and Discussion

We verified that none of the SNPs deviated significantly
from Hardy-Weinberg Equilibrium using the exact test in
Pedstats [27]. Table 2 shows the mean (and SD) of BMI by
genotype for each of the 10 SNPs. Table 3 presents results
from the Quantitative Transmission Disequilibrium Test
(QTDT) [23] total association test. Of 30 comparisons,
only one yielded a p-value less than .05. After correcting
the data for multiple testing using a False Discovery Rate
(FDR) of 0.05 [24], none of the associations were signifi-
cant.

Table 2: BMI z-scores (with standard deviations in parentheses) at 4, 7 and 10 years by genotype

4y N 4y BMI z-score 7y N 7 y BMI z-score 10y N 10 y BMI z-score

rs1801282

cc 3670 -0.09 (1.47) 3746 -0.11 (1.15) 3696 -0.02 (1.17)
CcG 1028 -0.07 (1.41) 1043 -0.07 (1.17) 1003 0.08 (1.15)
GG 65 0.02 (1.54) 58 0.38 (I.11) 63 0.38 (1.34)
rs5082

CcC 728 -0.14 (1.44) 796 -0.06 (1.15) 740 -0.03 (1.15)
CcT 2232 -0.10 (1.45) 2289 -0.12 (1.16) 2254 0.01 (1.19)
TT 1787 -0.06 (1.46) 1749 -0.09 (1.14) 1762 0.01 (1.15)
rs1042714

CcC 1487 -0.10 (1.45) 1520 -0.05 (1.12) 1450 0.02 (1.16)
CG 2372 -0.07 (1.44) 2389 -0.14 (1.17) 2355 -0.03 (1.16)
GG 891 -0.13 (1.48) 937 -0.07 (1.15) 956 0.06 (1.17)
rs1800206

CcC 4160 -0.09 (1.46) 4248 -0.10 (1.15) 4192 -0.00 (1.17)
CcG 597 -0.11 (1.40) 601 -0.14 (1.11) 584 0.05 (1.17)
GG 38 0.43 (1.73) 39 0.52 (1.16) 28 0.68 (1.08)
rs6659176

CcC 4033 -0.09 (1.45) 4115 -0.09 (1.16) 4056 0.02 (1.17)
CcG 726 -0.08 (1.47) 738 -0.12 (1.10) 710 -0.10 (1.14)
GG 24 0.06 (1.43) 21 -0.27 (1.43) 19 0.10 (1.01)
rs5443

cc 2388 -0.07 (1.44) 2420 -0.12 (1.13) 2406 0.01 (1.16)
CT 1977 -0.08 (1.47) 2016 -0.05 (1.18) 1977 0.00 (1.17)
TT 401 -0.19 (1.46) 423 -0.12 (1.11) 383 0.01 (1.17)
rs7754561

AA 2766 -0.11 (1.46) 2779 -0.06 (1.18) 2713 0.01 (1.18)
AG 1723 -0.08 (1.46) 1786 -0.14 (1.10) 1765 -0.01 (1.14)
GG 238 0.04 (1.41) 252 -0.20 (1.15) 246 -0.03 (1.13)
rs1042713

AA 670 -0.02 (1.38) 665 0.02 (1.12) 642 0.09 (1.13)
AG 2202 -0.10 (1.43) 2229 -0.12 (1.16) 2194 -0.03 (1.17)
GG 1933 -0.09 (1.49) 2001 -0.11 (1.15) 1965 0.02 (1.17)
rs4994

CcC 24 0.00 (1.42) 29 0.27 (1.39) 26 -0.29 (1.41)
CT 663 -0.07 (1.45) 676 -0.09 (1.10) 668 0.06 (1.20)
TT 3918 -0.10 (1.46) 3980 -0.10 (1.15) 3903 -0.00 (1.16)
rs7566605

GG 999 -0.08 (1.41) 1242 -0.10 (1.14) 1401 0.02 (1.17)
CcG 999 -0.09 (1.46) 1163 -0.11 (1.12) 1332 0.04 (1.12)
cc 259 -0.13 (1.41) 300 -0.16 (1.22) 346 -0.06 (1.16)
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Table 3: Results from QTDT for BMI z-scores at 4, 7 and 10 years
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Phenotype SNP p-value Absolute Effect Size (SD units)
4 year BMI rs1801282 0.222 0.059
rs5082 0.246 0.038
rs|1042714 0.820 0.007
rs1800206 0.777 0.017
rs6659176 0617 0.029*
rs5443 0316 0.035%*
rs7754561 0.624 0.018*
rs1042713 0.440 0.024
rs4994 0.867 0.010
rs7566605 0.697 0.017*
7 year BMI rs1801282 0.095 0.067
rs5082 0.609 0.014*
rs1042714 0.635 0.012
rs1800206 0.659 0.022
rs6659176 0.932 0.004
rs5443 0.573 0.016
rs7754561 0.033 0.065
rs1042713 0.344 0.025
rs4994 0.598 0.025
rs7566605 0.402 0.029*
10 year BMI rs1801282 0.066 0.077
rs5082 0.704 0.011
rs1042714 0.469 0.019*
rs1800206 0.168 0.073
rs6659176 0.145 0.074
rs5443 0.809 0.007
rs7754561 0.508 0.021
rs1042713 0.903 0.003
rs4994 0.683 0.021
rs7566605 0.847 0.007*

* = effect not in the expected direction.
Note. P-values uncorrected for multiple testing.

The only notable genotypic differences in Table 2
involved SNPs rs1801282 (at ages 7 and 10) and
rs1800206 (at ages 4, 7 and 10), which demonstrated
trends in the expected direction for homozygotes for the
risk allele. SNP rs1801282 showed 0.3SD greater BMI for
children homozygous for the risk allele at ages 7 and 10,
although not at age 4 and SNP rs1800206 showed a min-
imum 0.5SD greater BMI for children homozygous for the
risk allele. These differences are nominally significant in
comparisons between children homozygous for the risk
allele and the rest of the sample (p values = 0.001 -
0.028). However, although they are in the direction
expected on the basis of the previous reports, these associ-
ations could not survive a false discovery rate test. Also,
because the risk alleles for these two SNPs have low fre-
quencies (average 12% and 7%, respectively), these two
genotypes are among those with the smallest sample size
and thus have the largest standard errors.

We also ran the analyses separately for males and females
and found no gender-specific associations, although with
only half the sample we had reduced power to detect such
associations. Results from these analyses can be found in
Table 4. We present the p-value from the gender-specific
QTDT analyses (performed in the same way as the analy-
ses on the full sample). Before correction for multiple test-
ing, there were two nominally significant associations for
the female analyses (rs5082 at 4 years and 156659176 at
10 years). These significant values did not survive the cor-
rection for multiple testing. There were no significant
associations in the male analyses.

Because the original reports of association involved com-
parisons between cases and controls rather than continu-
ous variation in BMI throughout the distribution, we also
compared genotypic frequencies for obese versus normal-
weight and for obese + overweight (combined) versus
normal-weight, even though these are less powerful anal-
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Table 4: Results from gender-specific QTDT for BMI z-scores at
4,7 and 10 years

Phenotype SNP Female p-value Male p-value
4 year BMI rs1801282 0.566 0.846
rs5082 0.006 0.807
rs1042714 0.117 0.085
rs1800206 0.730 0.771
rs6659176 0.701 0.847
rs5443 0.194 0.383
rs7754561 0.234 0.497
rs1042713 0.181 0.609
rs4994 0.661 0.697
rs7566605 0.380 0.732
7 year BMI rs1801282 0.180 0.304
rs5082 0.400 0.828
rs1042714 0.615 0.983
rs1800206 0.485 0.689
rs6659176 0.479 0.505
rs5443 0.318 0.777
rs7754561 0.147 0.075
rs1042713 0.578 0.464
rs4994 0.565 0.800
rs7566605 0.512 0.579
10 year BMI  rs1801282 0.235 0.336
rs5082 0.400 0.585
rs1042714 0.752 0.336
rs1800206 0.229 0.214
rs6659176 0.045 0.788
rs5443 0.327 0.501
rs7754561 0.170 0914
rs1042713 0.739 0.642
rs4994 0.641 0.983
rs7566605 0.217 0.111

Note. P-values uncorrected for multiple testing.

yses. Chi-square analyses indicated no significant geno-
typic frequency differences after correcting for multiple
testing using FDR. There were two significant p-values (<
.05) in each set of 30 chi-square analyses. The p-values
(uncorrected for multiple testing) ranged from .019-.932
for the analysis of obese+overweight versus controls (aver-
age p-value = .46), and from .019-1.00 for the compari-
son between obese and normal weight individuals
(average p-value = .53). However, the two SNPs men-
tioned above again showed trends in the expected direc-
tion with the risk alleles showing greater genotypic
frequencies in the obese and overweight groups.

These negative results reflect the larger issue that candi-
date gene associations have proven difficult to replicate
for complex traits [28] including BMI and obesity [29]. It
is likely that some of the non-replication of candidate
gene associations is due to studies being underpowered to
detect associations of small effect [30]. But studies with

http://www.biomedcentral.com/1471-2350/9/12

large sample sizes have also failed to replicate obesity
SNPs [for example [31]], in particular SNP 187566605
[22]. Replication in multiple samples is essential (e.g., the
recent FTO gene study [32]) and may soon be a require-
ment by journals before publication.

Conclusion

Although the lack of an association between these ten can-
didate genes and BMI in our sample is typical of associa-
tion studies for complex traits, it also highlights the
importance of developmental candidate genes. We cannot
assume that the same genetic variants are influencing
complex traits, such as BMI, throughout the developmen-
tal process. Childhood BMI is marked by change, and thus
may not correspond to adult BMI, which is relatively sta-
ble over time. There is the possibility that positive associ-
ations for these candidate genes may emerge later in
development as we follow these children through adoles-
cence and into adulthood.
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