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Abstract

Background: Methylmalonic acidemia (MMA), a common organic aciduria, is caused by deficiency
of the mitochondrial localized, 5'deoxyadenosylcobalamin dependent enzyme, methylmalonyl-CoA
mutase (MUT). Liver transplantation in the absence of gross hepatic dysfunction provides
supportive therapy and metabolic stability in severely affected patients, which invites the concept
of using cell and gene delivery as future treatments for this condition.

Methods: To assess the effectiveness of gene delivery to restore the defective metabolism in this
disorder, adenoviral correction experiments were performed using murine Mut embryonic
fibroblasts and primary human methylmalonyl-CoA mutase deficient hepatocytes derived from a
patient who harbored two early truncating mutations, E224X and R228X, in the MUT gene.
Enzymatic and expression studies were used to assess the extent of functional correction.

Results: Primary hepatocytes, isolated from the native liver after removal subsequent to a
combined liver-kidney transplantation procedure, or Mut murine fibroblasts were infected with a
second generation recombinant adenoviral vector that expressed the murine methylmalonyl-CoA
mutase as well as eGFP from distinct promoters. After transduction, [I-14C] propionate
macromolecular incorporation studies and Western analysis demonstrated complete correction of
the enzymatic defect in both cell types. Viral reconstitution of enzymatic expression in the human
methylmalonyl-CoA mutase deficient hepatocytes exceeded that seen in fibroblasts or control
hepatocytes.

Conclusion: These experiments provide proof of principle for viral correction in methylmalonic
acidemia and suggest that hepatocyte-directed gene delivery will be an effective therapeutic
treatment strategy in both murine models and in human patients. Primary hepatocytes from a liver
that was unsuitable for transplantation provided an important resource for these studies.
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Background

Methylmalonic acidemia (MMA) is a common organic
aciduria characterized by elevated levels of methyl-
malonic acid in the fluids and tissues of the body [1].
Affected patients have a well-recognized clinical pheno-
type [2,3], characterized by acute metabolic decompensa-
tion, and a guarded long-term prognosis [4-7]. The
metabolic disorder commonly results from mutations in
the methylmalonyl-CoA mutase (MUT) gene [8,9]. This
enzyme catalyzes the formation of succinyl-CoA from L-
methylmalonyl-CoA, a critical intermediate step in the
conversion of propionyl-CoA to succinyl-CoA. Two enzy-
matic phenotypes of mut methylmalonic acidemia are rec-
ognized. Fibroblasts from mut® patients have no
detectable or residual enzyme activity in their fibroblasts
[10] while those from mut patients have enzyme activity
that is markedly reduced but typically cobalamin-respon-
sive in vitro [11,12].

The precise etiology of the complications seen in methyl-
malonic acidemia are uncertain, and even patients under
treatment are at risk for intermittent metabolic decom-
pensation, pancreatitis[13], infarction of the basal gan-
glia[14,15], and renal failure[7,16]. The main treatment
of vitamin B-12 non-responsive methylmalonic acidemia
includes nutritional management and alkali replacement
[2,3] as well as carnitine supplementation[17]. Despite
restriction of dietary precursors, many patients exhibit
metabolic fragility that can be life-threatening. Some indi-
viduals have undergone liver and combined liver-kidney
transplantion to eliminate the metabolic instability that is
characteristic of the condition [18-21]. Liver and liver-kid-
ney transplant recipients do not experience life-threaten-
ing ketoacidotic attacks, but remain at risk for renal
disease [20] and infarction of the basal ganglia[21]. While
the timing, indications, efficacy and outcomes of patients
undergoing these procedures have not been fully defined,
the metabolic stability conferred after liver transplanta-
tion indicates that the liver plays a critical role in methyl-
malonyl-CoA metabolism. This suggests that hepatocyte-
directed viral or cell therapies may provide viable alterna-
tives to liver transplantation in MMA patients who cannot
find a donor organ or for whom the risk of transplanta-
tion is prohibitive. Hepatocyte transplantation has been
used clinically and has been shown to provide partial or
complete correction of several liver based metabolic dis-
eases [22] and may represent a viable alternative to trans-
plantation in affected MMA patients.

Previous attempts to use viral mediated gene delivery to
correct the metabolic defect in mut® primary fibroblasts
were inefficient and required multiple cycles of retroviral
infection and selection to restore propionate flux[23]. In
this report, we describe the generation of a versatile aden-
oviral vector that co-expresses the methylmalonyl-CoA
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mutase gene and an eGFP reporter from independent pro-
moters. The virus efficiently restored propionate metabo-
lism in methylmalonyl-CoA mutase deficient murine
fibroblasts as well as human hepatocytes derived from a
patient with mut® methylmalonic acidemia and was easily
tracked by in vivo fluorescence after direct intraheptic
injection in mice. The results demonstrate the efficacy of
viral correction of the enzymatic defect in varied cell types
from mouse and man and provide evidence for viral based
gene delivery approaches to treat methylmalonic
acidemia. The extent of correction achieved in primary
mut? hepatocytes was greater than that seen in fibroblasts
or control hepatocytes and suggests that hepatocyte-
directed gene delivery will be an effective therapeutic strat-
egy in both murine models and in human patients.

Methods

Patient medical history

Human hepatocytes used in viral correction experiments
were derived from the discarded liver of a 5 year old boy
with muto class methylmalonic acidemia undergoing a
combined renal and hepatic transplant procedure. The
patient initially presented with hyperammonemia and
metabolic crisis in the presence of extreme methylmalonic
acid elevations on the second day of life. Complementa-
tion and [1-14C] propionate incorporation studies on skin
fibroblasts indicated a mut© lesion. Subsequent sequenc-
ing of the MUT gene revealed two early nonsense muta-
tions, E224X and R228X][9]. At the age of five, the patient
underwent a combined liver kidney transplant from a
deceased donor in which the whole organ liver and left
kidney allografts were implanted in one procedure.

Cell lines
Mut and wild-type murine embryonic fibroblasts have
been described[24,25] and were isolated after a timed
mating between mice carrying a targeted deletion of the
Mut gene.

Hepatocytes from the affected patient were isolated after
the liver was removed as part of elective combined liver-
kidney transplantation. The liver was considered a dis-
carded surgical specimen because it was not suitable for
transplantation and was donated by the family for
research use. Patient studies were conducted in compli-
ance with the Helsinki Declaration and were approved by
the National Human Genome Research Institute Institu-
tional Review Board as part of NIH study 04-HG-0127
"Clinical and Basic Investigations of Methylmalonic
Acidemia and Related Disorders" after informed consent
was obtained. Hepatocyte isolation from resected liver
specimens was approved by the University of Pittsburg
Institutional Review Board (IRB Number 0411142).
Immediately upon surgical removal of the native liver the
organ was flushed with ice-cold University of Wisconsin

Page 2 of 10

(page number not for citation purposes)



BMC Medical Genetics 2007, 8:24

solution and shipped on wet ice to the University of Pitts-
burgh cell isolation facility established as part of the NIH-
funded Liver Tissue Procurement and Distribution Sys-
tem. Hepatocytes were isolated from as described by
Strom et al. [26,27], with some minor changes described
here. Briefly, cells were isolated from the entire liver by a
3-step collagenase perfusion protocol. Catheters were
sewn in place into the 3 of the large hepatic veins and the
liver was placed in a sterile plastic bag, and connected to
a pump that delivered perfusate at approximately 80 mls/
minute/catheter. The liver was sequentially perfused with
1 liter of calcium and magnesium-free HBSS (Cambrex,
Walkersville, MD) containing EGTA (1 mM), 1 liter of
HBSS without EGTA. Finally, 1 liter of Minimum Essential
Medium Eagle (EMEM, Cambrex, Walkersville, MD) con-
taining 250 mg collagenase (Type XI, Sigma, St. Louis,
MO) and 50 mg of DNAase (Sigma, St. Louis, MO) was
recirculated until the tissue was digested (approximately
29 minutes). Following digestion, tissue was placed in a
sterile beaker, covered in ice-cold buffer EMEM and thor-
oughly chopped with a sterile scissors. Buffer and cells
were decanted through sterile gauze covered funnels.
Hepatocytes were enriched relative to nonparenchymal
cells by 3 consecutive centrifugation steps at 75 x g for 5
minutes each. The final cell pellet was resuspended in
hepatocyte maintenance medium (HMM, Cambrex,
Walkersville, MD) and the viability was assessed by trypan
blue exclusion. Visual inspection revealed greater than
95% parenchymal hepatocytes that were then plated on
six well plates as described [26]and allowed to attach for
4 hr, washed twice in serum-free media to remove dead
and unattached cells and maintained thereafter by daily
changes with serum-free HMM media. Control hepato-
cytes were isolated from a second donor, a 63 year old
Male, not suspected to have primary liver disease or meth-
ylmalonic acidemia.

Adenoviral vector construction and production

A murine methylmalonyl-CoA mutase ¢cDNA that con-
tained a consensus Kozak sequence and minimal untrans-
lated regions was isolated from C57/BL6 liver RNA after
RT-PCR, sequenced and tested for enzymatic activity after
expression in yeast using the succinate-thiokinase linked
assay|25]. The gene was then cloned as an EcoRI fragment
into the polylinker of pShuttle between the CMV pro-
moter and the Sv40 polyadenylation signal (ViraQuest
Inc., North Liberty, IA). This E1 shuttle expressing Mut
from the CMV promoter was then used in the RAPAd®
(U.S. Patent #6,830,920) adenovirus construction system
with an RSV eGFP expressing E3 backbone[28]. The dual-
expressing virus was derived by recombination after co-
transfection of the E1 shuttle and backbone into HEK293
cells. 7-10 days after the appearance of viral foci, the
plates were harvested and amplified, and then virus parti-
cles were isolated by two rounds of CsCl gradients and
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dialyzed against storage buffer (ViraQuest Inc., North Lib-
erty, IA). Vector genomes and plaque forming units (PFU)
were measured in the final adenoviral preparations. Ani-
mal studies were reviewed and approved by the National
Human Genome Research Institute Animal User Commit-
tee. The cell culture correction experiments used virus at a
multiplicity of infection (MOI) of 1000. Direct intrahe-
patic injections of 1.0 x 1010 particles (3.3 x 108 PFU) of
the adenovirus in mixed background (C57Bl6xSv129Ev)
neonatal mice were accomplished using a 32 gauge Ham-
ilton syringe. The animals were sacrificed 4 days later for
dissection and analysis of eGFP expression.

Incorporation studies

Methylmalonyl-CoA mutase activity was determined by
measuring [1-14C] propionate incorporation into macro-
molecules as described[29]. All propionate incorporation
assays were performed in triplicate. [1-14C] Sodium propi-
onate was purchased (Perkin Elmer, Boston, MA) as a cus-
tom preparation at a specific activity of 55.0 mCi/mmol
(2 mCi/ml).

Western blotting

Whole cell extracts from the cell lines were analyzed by
immunoblotting and probed with affinity purified, rabbit
polyclonal antisera raised against the murine methylmal-
onyl-CoA mutase enzyme or beta-actin (Abcam, Cam-
bridge, MA). The anti-mutase antibody was used at a
dilution of 1:750, and beta-actin was used at 1:5,000.
Goat anti-rabbit (Chemicon, Temecula, CA) was used as a
secondary antibody at a dilution of 1:10,000 with chemi-
luminescent detection (Pierce Biotechnology, Rockford,
IL). Recombinant murine methylmalonyl-CoA mutase
enzyme was used as a positive control in Western blot
analysis experiments. Human liver extracts were prepared
from an anonymous liver donor not known to have meth-
ylmalonic acidemia or the mut® patient described above.

Results

Bifunctional adenoviral construction

Transfection and recombination in HEK293 cells using
the RAPAd® adenovirus method was used to produce rep-
lication deficient adenovirus particles that express the
murine methylmalonyl-CoA mutase gene in the E1 region
and eGFP from the E3 region[28]. The resulting replica-
tion deficient adenovirus expresses both genes from two
independent promoters, Mut from the CMV and eGFP
from the RSV (Figure 1). The virus was expanded, ampli-
fied and concentrated to an infectious titer of 1.2 x 1012
particles/ml (corresponding to 4.0 x 101° PFU/ml), indi-
cating its stability during growth and replication. The
strong viral promoters were selected to promote high-
level expression in a wide spectrum of tissues types, in vivo
and in vitro.
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Schematic overview of the helper-dependent
advenovirus that expresses methylmalonyl-CoA mutase

and eGFP.

Paclt — CMV 9.2-16.1 mu

25\ eGFP pA — Pac1

Figure |

Schematic of adenovirus. An overview of the recombination strategy used to construct the El, E3 replaced adenovirus. CMV —
cytomegalovirus promoter. MMCoA — murine methylmalonylCoA mutase. 9.2—16.1 mu — region of homologous recombina-
tion. RSV — Rous sarcoma virus promoter. eGFP — green fluorescent protein. PA — Sv40 polyadenylation signal.

Reporter expression in the murine liver

The bifunctional adenovirus was delivered by direct
hepatic injection into the liver of one day old wild-type
mice (N = 8). A total of 1.2 x 1019 (3.3 x 108 PFU) adeno-
viral particles were administered in a total volume of 10
microliters. Four days post injection the animals were sac-
rificed and the organs were inspected for fluorescence
using a dissecting microscope equipped with a GFP filter.
The GFP expression was easily visualized, with a higher
concentration of signal seen in the lobe that was likely the
direct target of injection (Figure 2A). The presence of
green fluorescence, not observed in the uninjected mice,
indicates that the RSV-eGFP promoter functioned in vivo.
Other organs, such as the heart and kidney, lacked signal
and GFP expression was not observed in the uninjected
mice. None of the wild type mice injected at this dose per-
ished, suggesting that the virus and procedure were well
tolerated.

Adenoviral correction of methylmalonyl-CoA mutase
deficient murine embryonic fibroblasts (MEFs)

Mut MEFs derived from methylmalonyl-CoA mutase
knock-out mice were used to determine the efficacy of
gene correction from the virus[24]. Methylmalonyl-CoA
mutase protein and mRNA are not detectable in these cells
(Figure 3 Lane 4; Chandler et al, submitted). The virus was
incubated at a multiplicity of infection of 1000 for 16
hours. The cells were washed and then used to determine
the extent of correction by Western blotting 72 hours post
transduction. In parallel, enzymatic function was meas-
ured using macromolecular [1-14C] propionate incorpora-
tion. A wild-type murine fibroblast cell line served as a
positive control in these experiments. Previous studies on
the same cells using an E1 replaced, eGFP expressing ade-
novirus at the same MOI showed no effect on [1-14C] pro-
pionate incorporation and no gross cellular toxicity
(Chandler et al, data not presented).

After correction, expression at the protein level was com-
pletely restored in the knock-out MEFs that had been
infected. Figure 3A (Lane 4) shows that the Mut cells make
no detectable methylmalonyl-CoA mutase protein com-
pared to the wild type control (Lane 3), which has a single
band migrating at 78 kDa. This band corresponds to the
expected size of the murine enzyme after processing and
is the same size as recombinant murine methylmalonyl-
CoA mutase (Figure 3A, Lane 2). When normalized to
actin, the enzymatic expression level in infected cells
appears increased over wild type cells (compare Figure 3A
Lane 5 to Lane 3).

We also measured the activity of the methylmalonyl-CoA
mutase enzyme by evaluating propionate metabolism in
Mut fibroblasts and compared it to Mut MEFs exposed to
the virus. As demonstrated in Figure 3B, the [1-14C] propi-
onate incorporation in the transduced cells nearly corrects
to the levels observed in wild type cells, demonstrating
that viral directed expression provides functional enzy-
matic correction.

Adenoviral correction of methylmalonyl-CoA mutase
deficient primary hepatocyte cell line

The native liver from a patient with mut® methylmalonic
acidemia was harvested as part of a combined liver-kidney
transplantation. Hepatocytes were isolated using colla-
genase perfusion. Cells were plated at a density of 5 x 10>
per well on collagen-coated 6-well plates (Falcon) and
appeared large, hexagonal and healthy. Control hepato-
cytes, derived from an 63 year old anonymous male
donor, were prepared in an identical fashion and were
used to measure native [1-14C] propionate in an inde-
pendent experiment.

The hepatocytes were infected at a MOI of 1000, as previ-
ously described. Twenty-four hours after infection the
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Invivo (A) and in vitro (B) delivery of GFP

Figure 2

In vivo delivery of GFP to the murine liver and in vitro expres-
sion in primary mut® human hepatocytes. A. A wild-type neo-
natal mouse was treated on the first day of life by direct
intrahepatic injection. The liver was harvested on the fourth
day. The green-areas represent tissue that expresses eGFP.
B. eGFP expression in primary mut® human hepatocytes 24
hours after infection with the bi-functional adenovirus.

cells exhibited uniform GFP expression (Figure 2B). To
access viral mediated correction, functional studies were
performed on the hepatocytes with and without exposure
to the adenovirus for 48 h. Compared to a control human
liver extract (Figure 4A, lane 1), extracts derived from the
human mute liver (Figure 4A, lane 2) and uninfected hepa-
tocytes (Figure 4A, lane 3) revealed no cross reactive mate-
rial even after prolonged exposure of the Western blot.
Genetic studies on this patient previously identified two
nonsense mutations (E224X and R228X)[9] and these
experiments confirmed that there was no read through.
Post-infection, 10 micrograms of the mut° corrected hepa-
tocyte extract exhibited a large increase in immunoreac-
tive enzyme as assessed by Western blotting (Figure 4A,
Lane 4). When compared to the control human liver
extract (Figure 4A, Lane 1), which contained 20 micro-
grams of protein, the corrected cells (Figure 4A, Lane 4)
have a substantially larger band, suggesting an increased
capacity in the virally infected cells for expression of the
methylmalonyl-CoA mutase enzyme, even if normaliza-
tion to actin is not considered in the comparison.

Enzymatic studies revealed a greatly increased metabolic
capacity of the mutant hepatocytes after viral correction
(Figure 4B). [1-14C] propionate incorporation in the virus
exposed mut? hepatocytes increased to approximately 20
nmol/mg/18 h (a factor of 7) over the uninfected cell line
and exceeded the activity of control primary hepatocytes
(Figure 4B). It should be noted that the control hepato-
cytes were derived from an older patient and hence may
have a reduced propionate capacity compared with what
might be observed in hepatocytes from a child, because of
issues such as growth rate and/or other age related phe-

http://www.biomedcentral.com/1471-2350/8/24

nomenon. Unfortunately, an age and sex matched liver
was not available for similar studies. The greatly increased
[1-14C] propionate incorporation displayed by the mute
cell line after viral correction indicates that hepatocytes
have a large capacity for propionate metabolism and is
consistent with the robust expression observed in the
Western studies. In all the adenoviral delivery experi-
ments, the infected cells appeared morphologically nor-
mal at the time enzymatic and Western studies were
performed.

Discussion

In these studies, we developed and tested adenoviral gene
delivery in murine Mut fibroblasts and human mut® hepa-
tocytes. The virus allowed the expression of a linked but
distinctly transcribed cis eGFP minigene for rapid visual
tracking of infectivity. After direct hepatic injection and
incubation of primary human hepatocytes and MEFs
(data not presented) with the virus, green fluorescence
was readily apparent, demonstrating that the reporter
functioned well in vivo and in vitro. Highly concentrated
and purified virus allowed for small delivery volumes in
vivo without adverse effects in the doses administered and
was highly active in murine and human cell culture sys-
tems.

Murine, as opposed to human, Mut cDNA was selected for
viral correction experiments because previous studies
demonstrated the ability of the murine gene to correct
human mut® fibroblasts[30], despite the divergent
sequence of its mitochondrial importation signal[31].
This is in contrast to other cross-species correction studies
that have demonstrated the need for a species-specific
mitochondrial importation signal[32]. Additionally,
proof of principle studies using the mouse gene to correct
murine mutant cells are needed before gene therapy
experiments proceed in animal models of methymalonic
acidemia. Retroviral delivery of the methylmalonyl-CoA
mutase gene followed by selection has been used to cor-
rect a mutant methylmalonyl-CoA mutase deficient cell
line but required multiple rounds of viral superinfection
and selection to restore propionate metabolism[23].
Delivery with selection may represent an option suitable
for retroviral or transposon mediated correction strategies
but the rapidity of symptom onset in the Mut mice sug-
gests that correction must be accomplished very early to
be effective, possibly even in utero [33,34]. Adenoviral vec-
tors can deliver a large dose of bioactive material quickly
with highly efficient uptake and expression in the liver.
The vector described here does not carry a selectable
marker or provide permanent correction. Nevertheless, it
may rescue neonatal Mut animals so that they can be stud-
ied at a later age. In this fashion, the treated mutants can
serve as models for investigating the development of late,
MMA-related pathophysiology such as basal ganglial inf-
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Figure 3

Expression and functional studies of methylmalonyl-CoA mutase in Mut murine embryonic fibroblasts. A. Western analysis of
protein lysates from MEFs probed with methylmalonyl-CoA mutase antibody (78 kDa, labeled mutase) and cross-reactive beta-
actin loading control (47 kDa, labeled actin). All wells had 10 micrograms of total protein loaded. Lane I: Marker; Lane 2:
Recombinant murine methylmalonyl-CoA mutase; Lane 3: Wild-type MEF; Lane 4: Murine methylmalonyl-CoA mutase knock-
out MEFs; Lane 5: Adenoviral-corrected murine methylmalonyl-CoA mutase knock-out MEFs. B. Murine methylmalonyl-CoA
mutase knock-out murine embryonic fibroblasts (uncorrected and corrected with adenovirus) were assayed for [1-14C] propi-
onate incorporation over 18 hours. Activity was normalized to total protein content of the extracts. The samples were ana-
lyzed in triplicate. The bars around the average represent +/- one standard deviation.
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Expression and functional studies of methylmalonyl-CoA mutase in primary mut® human hepatocytes. A. Western analysis of
protein lysates from primary human hepatocytes probed with methylmalonyl-CoA mutase antibody (78 kDa, labeled mutase)
and cross-reactive beta-actin loading control (47 kDa, labeled actin). Lane |: human control whole liver extract (20 micro-
grams) Lane 2: mut° whole liver extract (20 micrograms); Lane 3: human primary mut° primary human hepatocytes (10 micro-
grams); Lane 4: adenoviral corrected mut° primary human hepatocytes (10 micrograms). B. Human hepatocytes (wild type, mut®
and mut° corrected with adenovirus) were assayed for [|-'4C]-propionate incorporation over |8 hours after viral incubation
for 48 hrs. Activity was normalized to total protein content of the extracts. The samples were analyzed in triplicate. The bars
around the average represent +/- one standard deviation.
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arction, pancreatitis and renal disease and also be used to
assess other cell and viral based therapies.

In these studies, adenoviral correction of primary human
mut® heptocytes was especially effective. Other authors
have demonstrated that hepatocytes possess an increased
basal capacity for propionate metabolism[23,35] as our
results also suggest. Furthermore, when individual murine
tissues were examined for methylmalonyl-CoA mutase
activity, the liver possessed a large amount of active
enzyme, with an total activity of > 1400 nmol succinate
formed/h per mg of protein|31]. Taken together with the
observations that mut liver transplant recipients are quite
stable  despite  having massive = methymalonic
acidemia[20,36,37], the concept of targeting the liver for
gene delivery appears attractive.

Our results show that adenoviral mediated gene delivery
can greatly increase propionate metabolism in mutant
hepatocytes. The genetic background of the Mut murine
MEFs and human mut° hepatocytes is similar because both
are null at the protein level as confirmed by Western anal-
ysis (Figures 3 and 4). Although many affected mut®
patients harbor missense mutations [8,9] and interallelic
effects are a well recognized phenomenon|[38], the extent
of correction we achieved is likely to be influenced only by
gene expression from the viral cassette, not partial rescue
or stabilization of a mutant protein due to the nature of
the nonsense mutations present in the patient.

Liver transplantation has been used to augment medical
therapy for both methylmalonic[39] and propionic
acidemia[40]. Affected individuals can have mild steatosis
and transaminitis but maintain normal synthetic liver
function|2]. However, when these patients have under-
gone hepatic transplantation, the native livers have not
been used in a domino fashion, as has been done in other
metabolic disorders of branched chain aminoacid oxida-
tion, such as maple syrup urine disease[41]. Most methy-
malonic  acidemia  patients  undergoing liver
transplantation will have the organ harvested and dis-
carded or sent to pathology. We have demonstrated that
an otherwise functionless liver can be used for scientific
studies that have relevance to hepatocyte therapy and
gene delivery and suggest that, in the future, the disposi-
tion of harvested organs from methylmalonic acidemia
and other patients be carefully considered. Mutant human
hepatocytes isolated from otherwise unusable donor liv-
ers, particularly those affected by metabolic disorders,
might also be used to create hepato-specific genetic
mosaic animals by transplantation approaches[42]. This
approach would allow the in vivo propagation of affected
human cells in mice and might permit experiments not
possible in either species. Future efforts will focus on ade-
noviral mediated gene delivery to rescue the neonatal
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lethal phenotype seen in Mut knock-out mice, an
approach that now has firm experimental evidence of effi-

cacy.

Conclusion

Our results demonstrate, for the first time, efficacious viral
mediated gene correction in primary murine and human
methylmalonyl-CoA mutase deficient cell lines. Primary
hepatocytes derived from an affected patients liver that
was unsuitable for transplantation provided an important
resource for these studies. In the future, hepatocyte-
directed gene therapy should provide an effective thera-
peutic treatment in both murine models and in human
patients.
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