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Abstract
Background: PITX2 is a bicoid-related homeodomain transcription factor that plays an important
role in asymmetric cardiogenesis. Loss of function experiments in mice cause severe heart
malformations, including transposition of the great arteries (TGA). TGA accounts for 5–7% of all
congenital heart diseases affecting 0.2 per 1000 live births, thereby representing the most frequent
cyanotic heart defect diagnosed in the neonatal period.

Methods: To address whether altered PITX2 function could also contribute to the formation of
dTGA in humans, we screened 96 patients with dTGA by means of dHPLC and direct sequencing
for mutations within the PITX2 gene.

Results: Several SNPs could be detected, but no stop or frame shift mutation. In particular, we
found seven intronic and UTR variants, two silent mutations and two polymorphisms within the
coding region.

Conclusion: As most sequence variants were also found in controls we conclude that mutations
in PITX2 are not a common cause of dTGA.

Background
With a frequency of up to 1%, congenital heart disease
represents one of the most common major congenital
anomalies [1-3]. Transposition of the great arteries (TGA)
accounts for 5% of all congenital heart defects [4]. TGA
manifests during the early fifth week of development

affecting the septation of the common outflow tract into
aorta and pulmonary arteries, and has been suggested to
represent a laterality defect of the heart [5]. The more
common dTGA (dextro-looped TGA) represents a com-
plete inversion of the great vessels (atrioventricular con-
cordance and ventriculoarterial discordance). In the less
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common lTGA (laevo-looped TGA), both atrioventricular
and ventriculoarterial discordance is present. Despite the
high prevalence and clinical importance of TGA, we are
just beginning to unravel the etiology of this heterogene-
ous disease. Up to now, three genes have been suggested
to be involved in the etiology of dTGA in humans:
PROSIT240, a novel TRAP240-like gene, has been recently
isolated and several mutations are suggested to be respon-
sible for a subset of TGA patients [6]. Isolated mutations
in ZIC3 [7] and CFC1 (human CRYPTIC gene) [8,9] have
also been detected in patients with TGA. ZIC3 and CFC1
have been shown before to be involved in laterality
defects in humans [8,10]. However the total number of
mutations detected so far within these three genes is not
sufficient to explain the high incidence of dTGA and point
towards strong heterogeneity.

As cardiac neural crest cells contribute to the formation of
the outflow septum that divides the common outflow
tract, an association between neural crest disturbance and
TGA has been suggested. Extirpation experiments in chick
could show that neural crest cells contribute to normal
aorticopulmonary septation. Deletion of those cells
causes malformation of the aorticopulmonary septum
resulting in common arterial outflow channels or transpo-
sition of the great arteries [11,12]. Pitx2, a bicoid-related
homeodomain transcription factor involved in eye, heart
and craniofacial development and establishment of left-
right asymmetry, is expressed in several tissues of the
developing mouse embryo including neural crest derived
organs [13]. In humans, PITX2 haploinsufficiency causes
Axenfeld-Rieger Syndrome (ARS), an autosomal domi-
nant disorder involving ocular, dental and umbilical
defects [14] and, in some patients with unknown muta-
tions, also cardiac defects [15,16]. Most interestingly,

Pitx2 loss of function experiments in mice cause severe
cardiovascular defects including transposition of the great
arteries [17-20]. Kioussi et al. reported that Pitx2-/- mice,
that survive up to E15, invariantly exhibit major cardiac
outflow tract abnormalities, amongst which 30% show
incomplete septation of the great arteries, that may
develop with double outlet right ventricle (DORV) or
transposition of the great arteries [20]. Deletion of the
Dvl2 gene [21], which is regulated by the same pathway as
Pitx2, leads to the same severe outflow tract malforma-
tions, indicating a strong implication of this pathway in
the outflow tract phenotype. These lines of evidence
prompted us to investigate whether PITX2 mutations in
humans can also contribute to the etiology of TGA.

Methods
Human subjects and genomic DNA
Peripheral-blood samples were taken from healthy indi-
viduals and patients with simple dTGA after informed
consent had been obtained, after approval by the institu-
tional review board of ethics of the Medical Department
of the University of Heidelberg and the Newcastle and
North Tyneside Health Authority Joint Ethics Committee.
Genomic DNA was prepared using the Puregene DNA Iso-
lation Kit (Gentra, Inc., USA).

PCR and mutation screening
Amplifications were performed using the High Fidelity
System (Roche) according to the manufacturer's protocol.
Primers were designed according to the PITX2 sequence
gene bank accession number AF238048 and respective
sequences are given in table 1. Mutation screening was
performed using denaturing high performance liquid
chromatography (DHPLC). A WAVE DNA-Fragment
Analysis System (Transgenomic Inc., Cheshire) was used.

Table 1: Primer pairs used for mutation analysis, covering the coding region of PITX2.

exon primer name sequence 5'> 3' TA°C reference

2 PITX2-exon2for:
PITX2-exon2rev:

tag tct cat ctg agc cct gc
gcg att tgg ttc tga ttt cct

60 Ref: [25] this paper

3 PITX2-exon3bfor:
PITX2-exon3brev:

ttg ctc ttt gtc cct ctt tct cct
cgg agt gtc taa gtt caa gca gca

60 this paper

4a PITX2-exon4afor:
PITX2-exon4arev:

ccg cct ctg gtt tta aga tg
gca aag acc ccc ttc ttc tc

60 this paper

4b PITX2-exon4bfor:
PITX2-exon4brev:

ctt gac act tct ctg tca gg
aag cgg gaa tgt ctg cag g

60/56/52* Ref: [25]

5 PITX2-exon5for:
PITX2-exon5rev:

cag ctc ttc cac ggc ttc t
ttc tct cct ggt cta ctt gg

60 Ref: [25]

6 PITX2-exon6for:
PITX2-exon6rev:

gta atc tgc act gtg gca tc
agt ctt tca agg gcg gag tt

65 Ref: [25]

TA: Annealing temperature
* step down PCR was performed with three temperatures for 10/10/15 cycles.
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Sequencing
Sequencing was performed on a MegaBACE sequencer
(Amersham Bioscience, Piscataway) using the
DYEnamic™ ET terminator Cycle Sequencing Kit follow-
ing the manufacturer's protocol. Sequencing reactions
were performed on both DNA strands. Sequences were
analyzed using the Clustal program (German Cancer
Research Center, Biocomputing Facility HUSAR,
Heidelberg).

Results and Discussion
96 patients with dTGA were analyzed for mutations in
PITX2 by DHPLC and direct sequencing. All coding exons
of PITX2 (exon 2 to 6, including both alternatively spliced
exons 4a and b) were amplified by intron-specific exon-
flanking primers to screen exon-intron junctions (table 1,
figure 1). Non-coding regions (exon 1 and the 3'part of
exon 6), intronic regions beyond the intronic sequences
covered by the amplification, and promoter elements

were not examined. We identified seven intronic and UTR
variants, two silent mutations and two polymorphisms
within the coding region. Most of these variants were
found also in similar frequencies in 100 control individu-
als and are therefore unlikely to be of functional rele-
vance. The missense mutation detected in exon 4b
(204C>A, P65T) most likely represents a polymorphic
variant compared to the sequence in the database, as the
heterozygous form was invariantly detectable in all tested
patients and controls. This finding also excludes large
deletions in the patients affecting the whole gene locus.
Three intronic (IVS2+7A>G, IVS3+11G>T, IVS4a-62C>A)
and one silent mutations (30G>C Ser10Ser) were not
detectable in 100 controls. One variant in the 5'UTR (2–
40T>C) and one missense mutation (30C>T S27F) were
only found once in control individuals (table 2).

We report on the mutation screening of PITX2, as we con-
sidered it to be an interesting candidate gene for TGA due

Schematic diagram of PITX2 isoforms a, b, c and dFigure 1
Schematic diagram of PITX2 isoforms a, b, c and d. The genomic organization of the PITX2 gene is given on top, exons are num-
bered, 5' and 3' UTRs of the different possible transcripts are indicated by striped boxes and the homeodomain is shaded in 
dark grey. Modified from Cox et al, 2002 [24]. The regions of the PITX2 gene included in the mutational screening are indicated 
as orange bars at the very top of the scheme.
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to its role in regulating asymmetric cardiac morphogene-
sis [22] and interesting data from mouse studies. Impaired
Pitx2 function in mice leads to severe cardiac malforma-
tions [17-20]. It has been suggested that altered PITX2
expression in the outflow tract could underlie either TGA
or DORV [22].

PITX2 comprises three major isoforms, formed by differ-
ential splicing or alternative promotor usage: PITX2a, b, c,
as well as one minor isoform PITX2d (Fig 1). We have
included all coding exons in our screening as all forms
exhibit a differential expression pattern [18,19]. Pitx2c is
of special interest, as only this isoform is asymmetrically
expressed within the lateral plate mesoderm and the heart
and governs asymmetric organ morphogenesis in a dose-
dependent manner [23,19]. Furthermore, the newly iden-
tified minor isoform, PITX2d, that in fact does not bind to
DNA, was included in the study since it may influence
expression levels of the other splice variants and also reg-
ulate the transcriptional activity of the major isoforms on
protein level [24]. As only low amounts of PITX2 are
required for normal cardiac development and as the dif-
ferent isoforms can possibly compensate for each other in
some cell populations, it might require a combination of
different sequence variants within different isoforms of
the gene to dramatically reduce PITX2 function and there-
fore manifest a cardiac phenotype.

Conclusion
To address whether altered PITX2 function could also con-
tribute to the formation of dTGA in humans, we screened
the coding regions as well as exon-intron boundaries of
the PITX2 gene for mutations in 96 patients with dTGA.
The majority of detected variants, however, were also

found in controls with comparable frequency. Three
intronic and one silent mutation could not be detected in
100 controls. As they were only found once in the cohort
of 96 patients and as none of the variants was found
within the evolutionary conserved homeodomain, we
consider them to be rare polymorphisms rather than func-
tional mutations, although we cannot totally exclude the
latter possibility. Further investigations will have to evalu-
ate whether these sequence variants might change splicing
processes. Due to the study design we can also not exclude
mutations in the very 5'and 3' UTRs and within introns as
well as the promoter regions of the gene. Nevertheless, we
conclude that the detected mutations in PITX2 are not a
common cause of dTGA.
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Table 2: Summary of PITX2 sequence variations in the dTGA study cohort

patients (n = 96) controls

type of variation: specific variation variant frequency (%) number of controls frequency (%)

intronic/UTR 
variations:

2–40T>C (5'UTR exon 2)
2–18T>C (5'UTR exon 2)
IVS2+7A>G (intron 2)
IVS2-106C>A (intron 2)
IVS3+11G>T (intron 3)
IVS4a+11G (intron 4a)
IVS4a-62C>A (intron 4a)

10 (10.4%)
0 (0%)

1 (1.04%)
17 (17.7%)
1 (1.04%)

30 (31,25%)
1 (1.04%)

100
100
100
100
100
100
100

12 (12%)
1 (1%)
0 (0%)

20 (20%)
0 (0%)

39 (39%)
0 (0%)

silent mutations: 30G>C (S10S) (exon 2)
63C>T (A21A) (exon 4b)

1 (1.04%)
1 (1.04%)

100
100

0 (0%)
2 (2%)

polymorphism within 
coding region:

30C>T (S27F) (exon 3)
204C>A (P65T) (exon 4b)

0 (0%)
96 (100%)

100
100

1 (1%)
100 (100%)

UTR: untranslated region
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