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Abstract
Background: Cystic fibrosis (CF) lung disease manifest by impaired chloride secretion leads to
eventual respiratory failure. Candidate genes that may modify CF lung disease severity include
alternative chloride channels. The objectives of this study are to identify single nucleotide
polymorphisms (SNPs) in the airway epithelial chloride channel, CLC-2, and correlate these
polymorphisms with CF lung disease.

Methods: The CLC-2 promoter, intron 1 and exon 20 were examined for SNPs in adult CF dF508/
dF508 homozygotes with mild and severe lung disease (forced expiratory volume at one second
(FEV1) > 70% and < 40%).

Results: PCR amplification of genomic CLC-2 and sequence analysis revealed 1 polymorphism in
the hClC -2 promoter, 4 in intron 1, and none in exon 20. Fisher's analysis within this data set, did
not demonstrate a significant relationship between the severity of lung disease and SNPs in the
CLC-2 gene.

Conclusions: CLC-2 is not a key modifier gene of CF lung phenotype. Further studies evaluating
other phenotypes associated with CF may be useful in the future to assess the ability of CLC-2 to
modify CF disease severity.

Background
Although greater than 1000 mutations of the CF gene
product, CFTR are known, none of these can be used to
make predictions about the occurrence of common com-
plications, the severity, or course of pulmonary disease.
The identification of a gene, which modifies the pheno-
typic expression of CF would be very important for under-

standing this complex disease. Because CF is a disease of
chloride transport in respiratory epithelia, alternative
chloride channels present in the airway may be able to
partially compensate for the CF defect.

CLC-2 is one candidate alternative chloride channel in
respiratory epithelia. Localization to the luminal surface
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of the airway and perinatal downregulation of CLC-2 in
mammalian lung suggests a role in lung morphogenesis
[1,2]. Persistent expression of CLC-2 mRNA and protein
in tissues unaffected in CF suggests that CLC-2 may com-
pensate for defects in CFTR expression [1]. CLC-2 has the
capacity to conduct chloride in mature respiratory epithe-
lia [3,4]. The rat CLC-2 promoter has SP-1 domains that
are important for gene regulation [5]. A splice variant of
CLC-2 skipping exon 20 occurs in rat lung, suggesting that
alternative splicing may have functional significance in
this tissue [6]. Because investigation of human CLC-2
genomic structure would be important for studies of gene
regulation, we sought to identify single nucleotide poly-
morphisms in potential regulatory domains of human
CLC-2. Genomic DNA was isolated from CF adults with
severe and mild obstructive lung disease in order to deter-
mine if SNPs segregate with CF lung phenotype.

Methods
CLC-2 protein expression in CF nasal polyps
Nasal polyps from CF patients were obtained at the time
of elective surgery from 1989 to 1996. Genotypes of CF
mutations for each patient was available, but not clinical
status, according to approval by the Johns Hopkins Medi-
cal Institution Review Board. At harvest, the tissue was
washed 3 times in HBSS, and incubated at 4°C overnight
in Protease XIV (Sigma). Epithelial cells were isolated by
gentle agitation and filtered through a 70-µm nylon cell
strainer (Becton Dickinson; Franklin Lakes, NJ). Cells
were grown on 1% collagen coated 35 mm dishes for 1
week. Cell lysates were prepared using 2% sodium
dodecyl sulfate (SDS) at 65°C and a cell scraper. Equiva-
lent amounts of total protein from primary CF nasal polyp
cultured cell lysates were loaded onto an SDS-polyacryla-
mide gel electrophoresis (PAGE) system, electrophoresed
and transferred to a nitrocellulose membrane. CLC-2 pro-
tein levels were detected using the polyclonal chicken
anti-CLC-2 antibody and the enhanced chemilumines-
cent reaction as previously described [2].

Population studied for CLC-2 polymorphisms
Variable expression of CLC-2 protein in nasal cell lysates
(see Results) suggested that CLC-2 is differentially
expressed in adults and that examination of human CLC-
2 genomic structure would be important to investigate
this differential expression. Identification of volunteers
for nasal epithelial cell culture was not permitted with the
original IRB consent process. Therefore, a cohort of CF
patients was recruited for polymorphism analysis. A
review of the Johns Hopkins Medical Institution CF center
database was conducted in 1998 to identify patients that
had reached adulthood (age > 18 years), homozygous for
the most common CF genotype delF508, so that the affect
of various CFTR genotypes would not affect the investiga-
tion of CLC-2 polymorphisms. Status of obstructive lung

disease was defined using most recent pulmonary func-
tion studies. Those patients with spirometry FEV1 ≤ 40%
predicted were classified as severe, those with spirometry
FEV1 ≥ 70% predicted as mild in order to classify 2 sever-
ity levels of CF lung disease. Of 74 eligible subjects (age >
18 years, del F508 homozygous), 43 had FEV1 ≥ 70%, 9
had FEV1 = 41–69%, and 22 had FEV1 ≤ 40%; 31 were
recruited during routine visits to the CF center from June
1998 to January 2000. With informed consent, partici-
pants provided blood samples for genomic DNA isola-
tion. This study was approved by the Institutional Review
Board at Johns Hopkins Medical Institution. DNA was
isolated from lymphocytes using standard procedures.

Identification of CLC-2 polymorphisms
The genomic structure of rat CLC-2 has been previously
published [5,6]and has important sites for gene regula-
tion. The human CLC-2 genomic sequence, however, was
largely unknown at the start of this study. Promotors are
an important site to examine for SNPs, which might affect
regulation of a gene. The first intron of a gene also can
function as an important regulatory domain. Because the
rat lung has a splice variant that deletes exon 20 [6] due to
an unusually high CT content in the upstream intron 19
and a rare AAG acceptor site, this region was also exam-
ined for polymorphisms.

Primer pairs were thus chosen from rat [accession
gi|4406230] and human CLC-2 sequence [accession
S7770] to amplify the promoter, intron 1 and exon 20
from adult CF subjects homozygous for delF508.
Sequencing of the human CLC-2 promoter initially from
one human genomic sample was performed by polymer-
ase chain reaction using the 5'-flanking region of rat
hpolE1 (dTCC GGG TCA ATA TCC TTC ACA TCG), which
is approximately 2000 base pairs upstream from the rat
CLC-2 coding sequence [5] and the 3'-hCLC-2 promoter
primer (dCGC CCG TGG CTC CAT CCC TTC), which cor-
responds to sequence from the N-terminus of the hCLC-2
coding region [accession S7770 [7]]. PCR amplification
was performed using the MasterAmp™ PCR Optimization
Kit buffer J (Epicentre Technologies, Madison, WI) due to
the high GC rich content of this region in the rat [5]. The
amplified product was cloned into the TA cloning Vector
(Invitrogen), plasmid DNA grown in E. coli, and DNA iso-
lated using the Mini-prep kit (Qiagen, Valencia, CA)
according to the manufacturer's instructions. The
sequence of this ~2000 bp product yielded genomic DNA
for design of primer pairs that would yield overlapping
PCR-amplified DNA fragments of the promoter.

Sequencing and identification of human CLC-2 promoter
polymorphisms in 15 CF patients with severe obstructive
lung disease (FEV1 ≤ 40% predicted) and 16 CF patients
with mild disease (FEV1 ≥ 70% predicted) were
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performed by polymerase chain reaction using overlap-
ping primers designed from the initial hCLC-2 clone. The
only product that yielded a SNP was amplified using
primers 15F dGTC CCA GGA GTA GAC TTC C and 16R
dCAC TGC CCT CTG GCC TC providing a 760 base pair
product, using cycling conditions of 94°C 6 mins, 35
cycles of 94°C 30 s, 59°C 30 s, 72°C 30 s and 72°C 6
min. A nested reaction with 20 uM primers 17F dTCC CCT
CCG GCC TAC CCC TTC CGG T and 18R dGGA AGG ATT
CGG AGA GGG TTG GGG C amplified both a 150 and
300 bp product using Epicentre MasterAmp™ buffer J
(Madison, WI) with cycling conditions 94°C 6 mins, 35
cycles of 94°C 30 s, 64°C 30 s, 74°C 30 s and 74°C 6
min.

Because regulation of a gene may occur also through its
first intron we amplified this region from all subjects
using primers 1F' dCGC TGC AGC ACG AGC AGA C and
1R' dCCC AAG GTC CTG AGT GTA CC, which yielded a
product 2273 bp product. Cycling conditions were 95°C
6 mins, 35 cycles of 95°C 30 s, 63°C 30 s, 72°C 3 minutes
and 72°C 6 min. Finally, because exon 20 is alternatively
spliced in rat lung [6] we examined whether or not SNPs
existed in this region including parts of exon 19 and 21
and the intervening introns using primers 20F dGCC TCT
TCT GTG GCA GTC C and 20R dCTT CAG GGC TCA TCT
CGC C using PCR amplification conditions of 92°C 6
mins, 30 cycles of 92°C 30 s, 55°C 30 s, 72°C 30 s and
72°C 6 min These amplify a 481 bp fragment covering the
3' end of E19 to 5' end of E21.

With PCR amplification of all 31 genomic CF samples
using primers listed in Table 1, the presence of amplified
products was confirmed on agarose gels. Amplified DNA
and primers were separated using Millipore filters. The

purified PCR products were sequenced in both directions
using the same primers used for amplification and Big
Dye cycle sequencing kit (ver. 2 or 3.1, ABI) in accordance
with the manufacturer's instructions. The fluorescently
labeled products were separated and detected using either
an ABI 377 or 3700 or 3730xl Automatic Sequencer (ABI).
The trace files were read using Phred [8,9] and Phrap [10].
Each potential polymorphism was confirmed by visual
inspection.

Results
Expression of CLC-2 protein in CF nasal cells
CLC-2 protein is nearly undetectable in postnatal rat lung
[2], however we hypothesized that postnatal expression of
CLC-2 in CF individuals might confer a protective advan-
tage for the respiratory epithelium of CF individuals. We
examined human CLC-2 protein expression using lysates
from primary nasal cells obtained from elective

Table 1: Primers used to amplify CLC-2 polymorphisms

Primer oligomer expected size (bp)

rat hpolE1 dTCC GGG TCA ATA TCC TTC ACA TCG
2128

hClC-2 promoter dCGC CCG TGG CTC CAT CCC TTC
15F dGTC CCA GGA GTA GAC TTC C

760 bp
16R dCAC TGC CCT CTG GCC TC
17F dTCC CCT CCG GCC TAC CCC TTC CGG T

147 + 300 bp
18R dGGA AGG ATT CGG AGA GGG TTG GGG C
Intron 1F dCGC TGC AGC ACG AGC AGA C

2273
Intron 1R dCCC AAG GTC CTG AGT GTA CC
Exon 20F dGCC TCT TCT GTG GCA GTC C

481
Exon 20R dCTT CAG GGC TCA TCT CGC C

ClC-2 expression by Western blot of nasal polyp lysates from CF adults with the following genotypesFigure 1
ClC-2 expression by Western blot of nasal polyp lysates 
from CF adults with the following genotypes: Lanes 1,3,6 
dF508/dF508; Lane 2: dF508/d559T; Lane 4: unknown; Lane 
5: S549N/R553X; Lane 7,9: dF508/unknown; Lane 8: F508/
W1282X.; Lane 10, IB3-1 cell line, genotype F508/W1282X. 
Arrow identifies CLC-2 bands.

1      2       3      4       5        6       7      8      9     10 
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polypectomy of CF patients with a variety of CFTR muta-
tions. Similar amounts of total protein from nasal lysates
electrophoresed on an SDS-PAGE system had variable
amounts of CLC-2 protein detected [figure 1]. High levels
of CLC-2 protein were expressed in some lysates, but CLC-
2 protein was nearly undetectable in others suggesting
that CLC-2 expression is variably regulated in humans.
CFTR genetic mutation information was available for
these patients and did not correlate with levels of CLC-2
protein expressed [figure 1]. In addition, the expression of
ClC-2 protein was diminished in transformed bronchial
epithelial IB3-1 cells [11] (lane 10, figure 1), which were
derived from primary nasal epithelial cells of a subject
with delF508/ W1282X (lane 8, figure 1). While data
about the genetic mutations of the CFTR were available on
these patients, information about their clinical status was
not according to an agreement with the Johns Hopkins
Institutional Review Board.

Single nucleotide polymorphisms in CLC-2
In order to minimize the confounding of genotype, race
and age, all individuals were homozygous for delF508
mutation of CFTR, Caucasian, and over 17 years old.
FEV1% determined 2 cohorts, one with mild CF lung dis-
ease with average FEV1% of 77.4 ± 3.18 SEM (Table 2, n =
16, 9 male). The group with severe lung disease had an
average FEV1% of 35.6 ± 3.13 SEM (n = 15, 9 male). The
mean age of the mild and severe groups was not signifi-

cantly different (22.6 ± 1.37 years vs. 24.7 ± 1.56 years
mean ± SEM). Because CLC-2 expression could be regu-
lated through the promoter, for each patient's DNA, we
amplified the CLC-2 promoter, primers that produced
overlapping sequences that were examined for SNPs. In
addition, intron1 and exon 20 were investigated for SNPs
because of their potential role in CLC-2 expression.

Promotor
PCR amplified a 2128 bp promotor product confirmed by
agarose gel. Sequence comparison revealed that bp 21 to
2128 of the amplified sequences was compatible with bp
317320 to 319427 of ref|NT_0292533|Hs_29412 and
that there were no differences between the two sequences.
Examination of these products determined that the
upstream region was RPB8 exons 1–3 of the human gene
polr2H (gi|8052522|) as expected from the rat genomic
structure [5]. Human CLC-2 promoter is 69% GC rich and
contains 4 GC boxes in the 225 bp upstream from the

Diagram of alignment of human CLC-2 promoter and mammalian homologues (H = human, R = rat, M = mouse, GP = guinea pig, and Rb = rabbitFigure 2
Diagram of alignment of human CLC-2 promoter and mammalian homologues (H = human, R = rat, M = mouse, GP = guinea 
pig, and Rb = rabbit. CLC-2 translation initiation site in all 5 species is denoted by "start". One single nucleotide polymorphism 
(SNP) is present at nt -693 (human). Hpol is a polymerase whose gene product is on the complementary strand, upstream 
from the CLC-2 promoter.

             -1900        -1700       -1500      -1300      -1100        -900        -700         -500        -300         -100 

                                                                                                                                                                                 H 

                                                                                                          R 

           M 

                                                      GP 

  hpol                                                                   SNP                                    Rb 

                                                                                                          Start ClC-2       

Table 2: Demographics of study subjects.

FEV1 Gender Age (years) (± SEM)

Severe 35.6 (3.13) 9 M / 6 F 24.7 (1.56)
Mild 77.4 (3.18) 9 M / 7 F 22.6 (1.37)
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ATG start site (sequence to submit to GenBank). This area
is very similar to rat ClC-2 promotor, where binding of
transcription factors Sp1 and Sp3 occurs [5]. Human CLC-
2 promotor sequence is very conserved with as much as
82% sequence identity with rat (gi 4406230) and 77%
with mouse (gi 28494743). Guinea pig genomic sequence
(gi 5001715) aligns with approximately 100 bp of the ter-
minal end of human CLC-2 promoter and rabbit (gi
642465) only with 19 bp upstream of the coding
sequence (Figure 2a and 2b). One G/A polymorphism
was identified in the 5' upstream sequence of human
CLC-2. This SNP is -693 relative to the ATG start site of
hCLC-2 (figure 2b, asterisk, genbank S7770), and has not
previously been identified. The -693 G/A polymorphism
is a putative AP-2 binding site, predicted by TESS and
MATINSPECTOR [12,13], which may affect regulation of
the gene.

There were five subjects with severe CF lung disease (FEV1
< 40%), who had the genotype A/G, whereas eleven had
G/G at position -693 (Table 3). Of the individuals with
mild CF lung disease (FEV1 > 70%), 6 had A/G and 9 had
G/G. By Fisher's test analysis there was no difference in the
frequency of the promotor polymorphism between the
severe and mild groups (p = 0.72).

Intron 1
The first intron of human CLC-2 was amplified and the
2273 bp product confirmed by gel electrophoresis. This
sequence correlates with bp 319453 to 321725 of
ref|NT_0292533|Hs_29412. Human CLC-2 intron 1 has
regions with as much as 74% sequence identity with rat
(gi 2873366) and 85% with mouse (gi28494743) (Figure
3a and 3b). Examination of 31 human CF samples
revealed four SNPs: 358 G/C, 427 A/G, 1089 T/C and
1909 G/C (Figure 3a). There is complete linkage disequi-
librium between SNP 358 and 427. Two CF subjects with
severe lung disease (FEV1 < 40%) had 358 G/C, 2 had 427
A/G, and 6 had 1089 C/T, 0 had 1909 G/C (Table 3). Of
the mild subjects (FEV1 > 70%), 3 of 14 had 358 G/C, 3
of 14 had 427 A/G, 10 of 16 had 1089 C/T, and 2 of 14
had 1909 G/C. By Fisher's test analysis there was no

difference in the frequency of any one of the intron 1 pol-
ymorphisms between the severe and mild groups (Table
3, p = 0.32, 0.32, 0.21, and 0.22 for SNPs 358, 427, 1082
and 1902 respectively).

Exon 20
Primers used to examine the potential exon 20 splice var-
iant region in hCLC-2 amplified a 481 bp fragment that
correlates with bp 328123 to 328556 of human genomic
sequence NT_0292533 and 2446 to 2617 of hCLC-2
cDNA (accession S7770). There were no SNPs identified
using all 31 patient samples.

Conclusions
With an autosomal recessive pattern of inheritance, CF
was long considered a monogenic disease with 1 mutant
allele inherited from each parent. While CF neonatal
screening is offered in several states of the U.S., counseling
of families has been difficult, because CF genotyping does
not easily predict onset and severity of pulmonary compli-
cations [14]. Strategies to identify modifier genes for the
CF phenotype are important for defining disease progno-
sis and developing new strategies to prevent progression
of the disease.

There are several chloride conductances, which have been
characterized in the mammalian lung: the cAMP-depend-
ent cystic fibrosis transmembrane conductance regulator
(CFTR) [15], the Ca++-dependent chloride channel
(CaCC) [16-18], the outwardly rectifying chloride chan-
nel (ORCC) [19], the purinergic receptor-mediated chlo-
ride channel [20,21], and the voltage- and volume-
regulated, ClC family of chloride channels [3,22-24].

One or more of the chloride channels present in the respi-
ratory epithelium may be able to partially compensate for
defects in another. For example, there was no lung pathol-
ogy in the first CF knock-out mouse models, where there
is enhanced activity of a Ca++-dependent chloride channel
[25-27], however lung disease is present when alternative
chloride channels are absent [26]. The CF mouse,
however, develops severe intestinal disease leading to

Table 3: Promotor & Intron 1 hClC-2 polymorphisms

Promotor Intron 1

-693 358 427 1089 1909
FEV1 <40 AG (5) GG (13) AA (13) TT (9) GG (15)

GG (11) GC (2) AG (2) CT (6) GC (0)
FEV1 >70 AG (6) GG (11) AA (11) TT (6) GG (12)

GG (9) GC (3) AG (3) CT (10) GC (2)
P-value 0.72 0.32 0.32 0.21 0.22
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Sequence alignment of human, rat, mouse, guinea pig, and rabbit CLC-2 promoterFigure 3
Sequence alignment of human, rat, mouse, guinea pig, and rabbit CLC-2 promoter. Site of human SNP at position -693 shown 
with asterisk. Conserved GC boxes underlined.

hClC2 -1691 ggccctactgcgccctcttcagaggccgggttccgaagactggaatgcgtgggggcctaa -1633 

rat         ggctctacggcgcccccttcagaccgtggatcccgaagcgtggaaagcgaggctacctaa        

mouse       ggctcgacggcgccctcttcagactgtggatcccaaagcgtggaaagcttgggggcctaa 

       GGC C AC GCGCCC CTTCAGA    GG T CC AAG  TGGAA GC  GG   CCTAA            

                                                             

hClC2 -1632 cccaggcagggaccttgatccttggcccagagaagccgggccctagccctaccccgccgg -1573 

rat         cccagccaggaaccttgatccttggcccagagaagcccggccctagcccttccctg-cag  

mouse       cccagccaggaaccttgatccttggcccagagaagcccggccctagcccttccctg aag 

      CCCAG CAGG ACCTTGATCCTTGGCCCAGAGAAGCC GGCCCTAGCCCT CCC G   G 

                                                                       

hClC2 -1572 tccgcgtgcccgccgagggcacagtccgcgccgagggcaggtggagcagaaccccgccc -1514 

rat         tccgcgtgcgggtcgagggcacagtccac-ctgcaggcaggtggagcagaaccccgccc  

mouse       tccgcgtgccggccgagggcacagtccgcgctgcaggcaggtggagcagaaccccgccc   

       TCCGCGTGC  G CGAGGGCACAGTCC C C G  GGCAGGTCCAGCAGAACCCCGCCC  

hClC2  -793 cccgcgtcccaggagtagacttcccggcacctggagctcccttccctccggcct-acccc -735 

rat         cccgcctcccaggagcggcctcccccgcaccaatagctcccttccctcgggcctcacccc  

mouse       cccgcctcccaggagcggcctcccccgcaccaatagctcccttccctcgggcctcacccc 

      CCCGC TCCCAGGAG  G CT CCC GCACC   AGCTCCCTTCCCTC GGCCT ACCCC             

                                       *                     
hClC2  -734 ttccggtgccctccccaacctccacccccg-cacaccccgcaGgcccggttgctccaagt -676 

rat         ttcccgtcccctccc--acctccacctccgcccctctttccaggcctagctgttccaggt       

mouse       ttcccgtcccctccc  acctccacctccgcccctctttccaggcctagccattccaggt 

       TTCC GT CCCTCCC  ACCTCCACC CCG   C C    CAGGCC  G    TCCA GT              

                                     

hClC2  -675 gcacctacccacgggagccccgagaaaaggaaggatgagga -635 

rat         gcaccttcccgggggaaccaggaggaaaggaagggaaaaga    

mouse       gcaccttcccgggggaacccggaggaaaggaagg    aga  

       GCACCT CCC  GGGA CC  GAG AAAGGAAGG    GA 

hClC2  -263 gaccccagcctggctgggccgtcccctccggatgggccggcgggcggagcagcgc agagg -204 

rat         gaccccggccgggccgggacg-cccctgcagatgggccgg--ggcggagcagcaa gcagg      

mouse       gaccccggccgggcagggacg cccctgcagatgggccgg  ggcggagcagcaaagcagg

      GACCCC GCC GGC GGG CG CCCCG C GATGGGCCGG  GGCGGAGCAGC     AGG 

                                                                         

hClC2  -203 gcaccgccctcggcccgcccgccggggaggggacgcgagcgggaggctgcgccagcggcg -144 

rat         gcaccgccctcggcccgcccgccgaggagggttcgctagcgggaggctgagcctgcggcg  

mouse       gcaccgccctcggcccgcccgccgaggaggagacgctagcgggaggctgagcctgcggcg

      GCACCGCCCTCGGCCCGCCCGCCGAGGAGG   CGC AGCGGGAGGCTG GCC GCGGCG 

                                                                         

hClC2  -143 cccg-ccgggggcccgccgcactctgctctcggcctcccgggctgcggggacgggacggc -85 

rat         cgcgaccggggacccgtcgcactctgcactcggccgcccgggctaaggggacaggacggg                

mouse       cgcgcccggggacccgtcgcactctgcactcggccgcctgggctgaggggacgggacggg 

guineapig                                  ggccgcccgggctgcggggacccgacggg 

  C CG CCGGGGACCCG CGCACTCTGC CTCGGCC CC GGGCT  GGGGAC  GACGG  

                                           

hClC2   -84 tgccggcgcggactttgcgggccgggagccgagtccaggacagagccggaaccgccgagg -25 

rat         tgcgggcgcgggctcagcgagccgggagctgagtcaaggccagagcccgagaagcaagag  

mouse       tgcgggcgcgggctcagcgggccgggagctgagtcaaggcc       gagaagcagagg 

guineapig   cacggacgtggggtctaggggccgggagctgagtcccggccggggccgga       agg 

    C G CG GG  T    G GCCGGGAGC GAGTC  GG C G GCC GA   GC    G             

       

hClC2   -24 gaggcgagagggcagtgcgcggagatggcggc 8  

rat         gaggcaagaggacagtgcaccgagatggcggc

mouse       gaggcaagaggacagtgcaccgagatggcggc 

guinea pig  gaggcgcgagggcagtgcgcggagatggcggc 

rabbit           gagagggcagcgcgccgagatggcggc 

GAGGC  GAGG CAG GC C GAGATGGCGGC 

 M  A  A 
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premature death, which has been attributed to inadequate
secretion via alternative chloride channels. Ca++-depend-
ent chloride conductance is low in the intestine of the CF
knock-out mouse. To take advantage of alternative chlo-
ride channels in the lung, UTP analogues have been used
to stimulate chloride secretion in CF individuals via the
purinergic receptor-mediated chloride channels [20,21].

One member of the ClC family of chloride channels may
also be an alternative chloride conductance in the airway
epithelium. We have demonstrated that CLC-2 mRNA
and protein are abundantly expressed in the fetal lung
[1,2] and that acidic pH can activate chloride secretion
[3,22]. CLC-2 mRNA and protein are much higher in
brain and kidney compared to tissues that are more
severely affected by defective CFTR (lung, intestine, liver)
[1] suggesting that CLC-2 expression may protect against
disease manifestations in certain tissues. CLC-2
immunolocalizes to the apical surface of the respiratory
epithelium [2,22], consistent with the potential to func-
tion as a chloride channel in a secretory organ. In this
study, we have shown that several CF subjects do express
CLC-2 protein as adults (figure 1), unlike in rats [2]. In
single channel recordings, overexpression of CLC-2 in a
CF bronchial epithelial cell line demonstrated that chlo-
ride secretion can be enhanced [3]. While the CLC-2
knock-out mouse has degeneration of the retina and testes
[28], loss of CLC-2 function has not been associated with
lung disease. To date overexpression of CLC-2 has not
been described in an animal model to determine if this
channel can be upregulated and serve as a potential ther-
apeutic target for CF.

In this study of 31 CF subjects, we identified 5 single
nucleotide polymorphisms that have not previously been
described for human CLC-2. One of these is -693 relative
to the ATG start site of hCLC-2 (Genbank S7770). The -
693 G/A polymorphism is a putative AP-2 binding site,
predicted by TESS and MATINSPECTOR [12,13] and may
be important for regulation of the gene. This polymor-
phism was no more frequent in the CF subjects with mild
lung disease compared with the subjects with severe lung
disease.

In the rat, SP-1 sites are important for gene regulation
[5,29,30]. ClC-2 expression in the lung is developmen-
tally downregulated at birth [2] and is dependent on Sp
binding to GC boxes in the ClC-2 promotor [5]. These GC
boxes are highly conserved in human and rat, suggesting
they are important sites for gene regulation. Phosphoryla-
tion of Sp-1 decreases its DNA binding activity and coin-
cides with the downregulation of CLC-2 expression [5].
SNPs in the conserved GC boxes were not identified in the
subjects of this study.

We also identified 4 polymorphisms in hCLC-2 intron1.
These did not appear more or less frequently in the mild
CF subjects. Two of the polymorphisms were in complete
linkage disequilibrium. The polymorphisms were not
identified in areas that were highly conserved in rat or
mouse. While splice variants of exons may be affected by
intron/exon boundaries, we did not find any polymor-
phisms in the region of the rat exon 20 splice variant [6].

These findings suggest that CLC-2 is not regulated differ-
ently at the genomic level in relatively healthy CF adults.

Diagram of alignment of human CLC-2 intron1 and mammalian homologues (H = human, R = rat, and M = mouseFigure 4
Diagram of alignment of human CLC-2 intron1 and mammalian homologues (H = human, R = rat, and M = mouse. Four single 
nucleotide polymorphisms (SNP) are present at nt 358, 427, 1089, and 1909 (human).
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Sequence alignment of human, rat, and mouse CLC-2 promoter (nt 26-1488)Figure 5
Sequence alignment of human, rat, and mouse CLC-2 promoter (nt 26-1488).

hClC2I1    26  tgcgctccgggacccctgctccaggttaccctgggaagcgcgaggaccaggggcctaccc 85 

rat            tgcgctaccgtaccactgcttcaggttgccctggaaagtgtgaagacaggcggcctaccc            

mouse          tgcgctaccgtaccactgcttcaggttgccctggaaagtgtgaagacaggcggcctaccc      

               TGCGCT C G ACC CTGCT CAGGTT CCCTGG AAG G GA GAC  G GGCCTACCC 

                                                                                    

hClC2I1    86  taatcctgtcctagcatt-ttgagctggggaaactgaggct-tggaagtctgaggctgca 143 

rat            taacccggtcccagccttcctcagccgtggaaactgaggttcgggatcccccaggctgta  

mouse                    taacccggtcccagccttcctcagccgtggaaactgaggttcgggatcccccaggctgta 

     TAA CC GTCC AGC TT  T AGC G GGAAACTGAGG TCCGGA   C  AGGCTG A 

                                                                                    

hClC2I1    144 gggccgaagggatggaaaactgcatgctggtttctggctgaggctgagggcctgcagagg 203 

rat            gattcggggtgttggaaagctgcttgctgatttctgactgagactggcggcctgcaggag  

mouse          gattcggggtgttggaaagctgcttgctggtttctggctgagactggtggcctgcagaag 

               G   CG  G G TGGAAA CTGC TGCTG TTTCTG CTGAG CTG  GGCCTGCAG  G            

                                                     

hClC2I1    204 acaaggacacca-ggtacttgtctcaggtgtccttcccctcaccc 247 

rat            acaatgacactagggtgcttgggccaagtgtccttacccttaccc  

mouse          acaatgacacca ggtgcttggcccaggtgtcctttctcttaccc

               ACAA GACAC A GGT CTTG   CA GTGTCCTT C CT ACCC 

hClC2I1    539 ggggacaggagctttagggagggtgggtgaagcaggaatgggtgtgggaattg 

rat                     agctttagggctgatgcaggaagcaggaatgggtgtgagaactg

mouse      536 ggggactgaagctttagggccgatgcaggaagcaggaatgggtgtgagaactg

GGGGAC G AGCTTTAGGG  G TG   GAAGCAGGAATGGGTGTG GAA TG   

hClC2I1    548 ggacctttgt 601 

rat            aaacctttgt                  

mouse          aaacctttgt   

ACCTTTGT 

                                                                                  

hClC2I1    628 ccacccac-cccagggtgtgtcccctgacctcattagaagcaggggtcctgggctctgag 686 

rat            ccacccacggccatgaagtgtcccttgacctcataaggag aggg tcctgaggtttgag  

mouse          ccacccacgcccatggagtgtcccttgacctcataagaagcaggggtcctgagctttgag  

               CCACCCAC CCCA G  GTGTCCC TGACCTCAT AG AG AGGG TCCTG G T TGAG  

                               

hClC2I1    687 ctgacttatcgcccccattg 706 

rat            atgactcatggccaccattg 

mouse          atgactcatgaccaccattg  

                TGACT AT  CC CCATTG 

             

hClC2I1    762 ccaagccctagggaaaggaaggggccc-gtggttccttttt-accagcttgggctggaat 819 

rat                                                 ttttcatcagcttaggctggaat

mouse          ccaagccctaaggaaagaaagtggcccagtagtttcttttttatcaccttaggctggaat  

               CCAAGCCCTA GGAAAG AAG GGCCC GT GTT CTTTTT A CA CTT GGCTGGAAT  

hClC2I1    820 ttgcccaggaaggtggcagggagg  

rat            ttgcccgggagggcggcagggagg  

mouse          ttgccc  

               TTGCCC GGA GG GGCAGGGAGG 

                                                                     

hClC2I1   1429 cccagccccaacaggagccctttgtgtcccgaagctctgcgggtggcagccagaatctac 1488 

rat            cccaaccccaacaggagcc-tttgtgtcctgaagctccgcgggtggcagc-agaatctac  

mouse                          cccaaccccaacaggagcc tttgtgtcctgaagctccgcgggtggcagc agaatctac 

CCCA CCCCAACAGGAGCC TTTGTGTCC GAAGCTC GCGGGTGGCAGC AGAATCTAC 
Page 8 of 12
(page number not for citation purposes)



BMC Medical Genetics 2004, 5:26 http://www.biomedcentral.com/1471-2350/5/26
Sequence alignment of human, rat, and mouse CLC-2 promoter (nt 1489-2138)Figure 6
Sequence alignment of human, rat, and mouse CLC-2 promoter (nt 1489-2138). Site of human SNP at position 1909 shown 
with asterisk.

                                                                   

hClC2I1   1489 tcctccccgccccccaacacacgcccagcttggcaggtctagcc 1532 

rat            tcctccccaccccccaacacacgcccggcttggcaggtccagcc  

mouse          tcctccccaccccccaacacacgcccggcttggcaggtccagcc 

               TCCTCCCC CCCCCCAACACACGCCC GCTTGGCAGGTC AGCC 

hClC2I1   1630 agtgcagctccagaatggggctgaggccaccaagccctctccacccaccctaagtgagag 1689 

rat            agtgcagttccagagtaggactgagggcacccaacactgcctacccacccaaag----ag  

mouse          agtgcagttccagagtaggactgagggcacccaacactgcctacccacccaaag    ag

               AGTGCAG TCCAGA T GG CTGAGG CACC A C CT  C ACCCACCC AAG    AG

                                                                                     

hClC2I1   1690 gctttccactcccagctgggctggcaggctggtgggggt--ggcagtggagaatggggac 1747 

rat            gctttccagttc-agctgggctgacaggctaatgggggtttgggagtagagaatgaggac  

mouse          gctttccagttc agctgggctgacaggctaatgggggtttgggagtagagaatgaggac

               GCTTTCCA T C AGCTGGGCTG CAGGCT  TGGGGGT  GG AGT GAGAATG GGAC

                                                                                     

hClC2I1   1748 aaggggattagggtgggtgggagaggtgcagctgagttggtcacaggccggaggcccagc 1807 

rat            aaggggattagggtgggtgggaagggtgcagctgggttggtcacaggccagaggcccagc  

mouse                          aaggggattagggtgggtgggaagggtgcagctgggttggtcacaggccagaggcccagc

               AAGGGGATTAGGGTGGGTGGGA  GGTGCAGCTG GTTGGTCACAGGCC GAGGCCCAGC 

                                                  

hClC2I1   1808 aggaacgtgataaggattggggctg 1832 

rat            aggaacgtgataaggattggagctg           

mouse                    aggaacgtgataaggattggagctg

               AGGAACGTGATAAGGATTGG GCTG 

                                                                                     

hClC2I1   1848 ccaactcagctgccccgagctccacgaggctcttattgttgcccatgtgcccctgatcat 1907 

rat            ccagctctgctgccctcagccccaccaggctcttgctgttacacatgcgcccttgaccat  

mouse          ccagctctgctgccctcagccccaccaggctcttgctgttacacatgcgcccttgaccat

                             CCA CTC GCTGCCC  AGC CCAC AGGCTCTT  TGTT C CATG GCCC TGA CAT 

                *                                                 

hClC2I1   1908 cCcttactccctggccttcccgcctcccacttttagactg 1947 

rat            ccctcattctctgaccttcgctcctcccacttttagactg  

mouse          ccctcattctctgaccttcgctcctcccacttttagactg

               CCCT A TC CTG CCTTC C CCTCCCACTTTTAGACTG 

HClC2I1  2027 gaagaggaccgattattctgccacccccagagctgtgtccctgtaccttggctgtcccca 2086 

rat           gaagaggaccaattattctgccacccccagagttgtgtccctgtaccttgtctgtcccca  

mouse                  gaagaggaccaattattctgccacccccagagttgtgtccctgtaccttgtctgtcccca

              GAAGAGGACCAATTATTCTGCCACCCCCAGAGTTGTGTCCCTGTACCTTGTCTGTCCCCA 

                                                                           

HClC2I1  2087 tcactctggccaggacagcctccacagtctgcaatgtgcattgttcccacac 2138 

rat           tcactctggccaggacagcccccacagtctgcagtgtgcattgttcccacac  

mouse         tcactctggccaggacagcccccacagtctgcagtgtgcattgttcccacac 

              TCACTCTGGCCAGGACAGCC CCACAGTCTGCA TGTGCATTGTTCCCACAC 
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Lack of an association in this study does not exclude the
possibility that CLC-2 plays a role in modifying the CF
phenotype as might be suggested by the variability of
CLC-2 protein expression in primary respiratory epithelial
cells from CF subjects in this study. Although we were lim-
ited by inadequate power with a small sample size and
because phenotypic contrast was low, our data suggest
that gene regulation of CLC-2 in relation to polymor-
phisms in regulatory domains does not play a major role
in protection against CF lung disease. Studies which rely
on recruitment of small numbers of patients have been
shown to detect a difference when a strong relationship is
present [31]. Another limitation may be in the selection of
FEV1 at a single point in time, rather than using rate of
decline of FEV1. Other studies of CF modifier genes have
similarly found difficulty in confirming a candidate gene,
which also relied on FEV1 at one time point. In addition,
the effect on lung phenotype may occur at an earlier stage
of CF lung disease, and examination of adults only as in
this study may have limited our ability to detect a differ-
ence. The polymorphisms identified in this report should
facilitate further investigation of CLC-2 regulation. While
we did examine subjects with the same CF genotype
(namely delF508 homozygous), measures of ion trans-
port (sweat chloride, nasal potential difference), time to
colonization with Pseudomonas, and frequency of pneu-
monia, should be taken into account in future studies.

The identification of candidate genes, which may modify
CF lung disease is important so that new therapies may be
developed. Multi drug resistant genes have recently been
identified that provide some "protection" to the CF lung
phenotype [32]. Ion transport dysfunction of CFTR and
the channels it regulates, however, may not be the only
determinant of disease severity. Many have suggested that
inflammatory mechanisms may also impact disease
progression and survival in CF individuals [33]. Other
classes of candidate genes possibly related to CF pheno-
type include tumor necrosis factor alpha (TNF-α), nitric
oxide synthase (NOS), alpha 1-antitrypsin, mannose-
binding lectin [34], and other ion channels such as the
basolateral K+ channels [17,35-38].

Lastly, gene expression and function may be independent
of genomic polymorphisms, as suggested by our data
demonstrating variable expression of hClC-2 protein in
CF nasal polyps and must also be considered as a
mechanism whereby, CLC-2 could alter the course of CF
disease. Haug et al. recently identified mutations in the
CLC-2 coding region that are associated with idiopathic
generalized seizures in humans [39]. No lung disease was
reported from loss of function of CLC-2, so presumably
CLC-2 is not critical for the function of mature respiratory
epithelium when CFTR is present. A ClC-2 knock-out
mouse shows severe degeneration of the retina and testes,

but no evident lung disease [28,40]. While there has been
no report of ClC-2 lung abnormality in these mice, they
do not replicate the human seizure disorder and mouse
models do not exclude the possibility of a role in airway
epithelial ion transport. For example, initial studies of CF
knock out mice also suggested no discernible lung disease
that mimics CF in humans [41,42]. The activation of CLC-
2 currents by acidic pH, suggests that alterations of key
regulatory domains of the channel may affect function.
There is disagreement about whether or not a specific
region of the N-terminus of CLC-2 is the sensor for acid
and voltage regulation [43-45].

This study provides important information about the
human CLCN2 genomic organization. Several polymor-
phisms of key regulatory domains of CLCN2 were identi-
fied in a cohort of subjects with cystic fibrosis, who carry
the same CF genotype. While we have found no signifi-
cant association of CLC-2 polymorphisms with FEV1 %
predicted in adulthood, further study of potential
polymorphisms in CF subjects at an earlier age and inves-
tigation of potential mutations in the coding region of
CLC-2 that would lead to enhanced transepithelial chlo-
ride transport would be necessary to determine if CLC-2
can modify CF.
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