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Abstract
Background: Genetic counseling has been an important tool for evaluating and communicating
disease susceptibility for decades, and it has been applied to predict risks for a wide class of
hereditary disorders. Most diseases are complex in nature and are affected by multiple genes and
environmental conditions; it is highly likely that DNA tests alone do not define all the genetic
factors responsible for a disease, so that persons classified into the same risk group by DNA testing
actually could have different disease susceptibilities. Ignorance of population heterogeneity may
lead to biased risk estimates, whereas additional information on population heterogeneity may
improve the precision of such estimates.

Methods: Although DNA tests are widely used, few studies have investigated the accuracy of the
predicted risks. We examined the impact of population heterogeneity on predicted disease risks
by simulation of three different heterogeneity scenarios and studied the precision and accuracy of
the risks estimated from a logistic regression model that ignored population heterogeneity.
Moreover, we also incorporated information about population heterogeneity into our original
model and investigated the resulting improvement in the accuracy of risk estimation.

Results: We found that heterogeneity in one or more categories could lead to biased estimates
not only in the "contaminated" categories but also in other homogeneous categories. Incorporating
information about population heterogeneity into the original model greatly improved the accuracy
of risk estimation.

Conclusions: Our findings imply that without thorough knowledge about genetic basis of the
disease, risks estimated from DNA tests may be misleading. Caution should be taken when
evaluating the predicted risks obtained from genetic counseling. On the other hand, the improved
accuracy of risk estimates after incorporating population heterogeneity information into the model
did point out a promising direction for genetic counseling, since more and more new techniques
are being invented and disease etiology is being better understood.

Background
With the in-depth study of modern genetics, its principles

have been discovered and applied widely in clinical set-
tings. Many diseases have been found to "run in families"
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exhibiting simple Mendelian inheritance patterns, such as
muscular dystrophy and Huntington's disease. Advances
in knowledge about the genetic basis of disease enable the
expansion of DNA testing both for diagnosis and for pre-
diction of disease susceptibility beyond simply inherited
traits. Demand for and expectation of genetic counseling
keeps increasing over time. Many methodologies have
been developed to estimate the age of onset [1-3] and life-
time risk or recurrence of hereditary disorders [4-7]. These
have been successfully applied to determine a person's
risk of developing a genetic disease or to determine the
risk of having a child with a genetic disease [8,9]. How-
ever, there are cases where predictive tests based on family
history cannot give satisfactory assessment. For example,
BRCA-1 and BRCA-2 are believed to be breast cancer sus-
ceptibility genes; Begg [10] has pointed out that lifetime
risk estimates for breast cancer derived from samples of
multiple-case families are not always applicable to new
BRCA-1 or BRCA-2 positive women who request genetic
counseling. Because patients undergoing predictive DNA
testing usually have no symptoms or clinical presentation,
it is particularly important for this type of DNA testing to
give precise estimates. Getting wrong answers either way
has long-term effects on the individual or family and
could lead to irreversible life decisions, e.g. prophylactic
mastectomy. Therefore, finding out the cause of biased
estimates and its impact on the predicted risks should be
an important goal of contemporary genetic counseling.

In this paper, we investigated mechanisms for generating
biased risk estimates in heterogeneous populations. We
assumed that some individuals in certain groups were
"contaminated" by having a very low probability, as a
result of unmeasured factors, of getting the disease. If indi-
vidual contamination status is properly taken into
account, the estimated risk should be close to its true
value. However, if contamination status is overlooked, the
estimated risk will be biased. A dichotomous disease was
modeled before and after this latent contamination factor
was incorporated into a logistic regression model. The
accuracy of the estimates was explored by computing rel-
ative bias and root mean square error (RMSE) of the esti-
mated risks using simulated data sets.

Methods
Simulations
To find out the effect of population heterogeneity on the
estimated disease risks, we carried out a set of simulations.
We assumed that the individual disease risks were esti-
mated based on genotype at a biallelic locus (L1) and
their exposure to a fixed, dichotomous environmental fac-
tor (E1). However, the phenotype resulting from L1 could
be overridden by the genotype at another unscreened
locus (L2). In addition, interactions between E1 and the
joint genotype at L1 and L2 were assumed to be present.

For the two alleles, A and B at L1, there were three geno-
types, AA, AB and BB. Individual genotypes at L1 were
simulated assuming Hardy-Weinberg Equilibrium (HWE)
with both alleles having equal frequencies. Individual
exposure to E1 was randomly determined using a popula-
tion exposure rate of 0.20. Disease status was determined
by the following logistic regression model:

where design variable x1 indicated whether the individual
genotype was AA, design variable x2 indicated whether the
genotype was BB, and independent variable x3 denoted
whether the individual was exposed to the environmental
risk factor E1. Allele A was partially dominant to allele B,
and AA individuals were most likely to have the disease.
In addition, individuals exposed to E1 were more likely to
be affected than individuals with the same genotype not
exposed to E1. The coefficients of the model were set as
follows: α = -2.197, β1 = 1.35, β2 = -0.747 and β3 = 0.811
so that there was no genotype-environment interaction
involved in the logistic regression model. The coefficients
β1 and β2 measure the impact of genotypes AA and BB rel-
ative to AB.

To study the impact of population heterogeneity on pre-
dictive risks, we looked at three different contamination
scenarios. In the first scenario, contamination occurred
only in individuals with AB genotype and not exposed to
E1. This could happen when there was interaction
between some external environment and a joint genotype.
For example, individuals with AB genotype at L1 and CC
genotype at L2 could get the disease with a very low prob-
ability if not exposed to E1. In the second scenario, we
assumed that contamination presented in two different
categories: AB individuals exposed and not exposed to E1.
This could occur if the disease phenotype resulted from
AB genotype at L1 was masked by a genotype of the sec-
ond locus, CC so that all the individuals with genotype
AC/BC have very low disease susceptibilities in the
absence of genotype-environment interaction. In the pres-
ence of genotype-environment interaction, some AC/BC
individuals might express normally under one environ-
mental condition but not the other, so that the propor-
tions of contaminated individuals were different in the
two categories. In the last scenario, contamination hap-
pened in AB individuals not exposed to E1 and in AA indi-
viduals exposed to E1, which was possible again when
there was interaction between the environment and some
(but not all) joint genotypes.

With contamination properly taken into account, the
accuracy of predicted risks should be improved. To inves-
tigate potential improvement of the predicted risks, we
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also estimated the risks by incorporating the contamina-
tion factor into the logistic regression model (full model).
For contamination in a single category, an independent
variable x4 was used in the full model to denote whether
the individual was contaminated or not. Disease status
was determined by the full model as follows:

Likewise, for contamination in two categories, an addi-
tional independent variable x5 was used in the full model
to denote whether the individual was contaminated or
not in the second category.

In each contamination scenario, the proportion of con-
taminated individuals (contamination factor) varied from
0 to 0.8 at an interval of 0.2. The disease risks of contam-
inated individuals were set to 0.01. Each data set consisted
of 600 unrelated individuals with simulated genotypes,
environmental exposure status, contamination status and
affection status. 1000 replicated data sets were simulated
for each parameter set.

Statistical analysis
Two logistic regression models were used to fit the simu-
lated data sets. The reduced model has two covariates
denoting the genotype and one covariate indicating envi-
ronmental exposure status. The full model has two geno-
type covariates, one environmental covariate and one or
two additional covariates indicating individual's contam-
ination status. Maximum likelihood estimates of the coef-
ficients were computed using computer software SAS
version 8.0. To find out how different the estimated dis-
ease risks and the true risks were, we calculated the RMSE
and relative bias of the predicted risks, averaged over the
1000 replicated data sets. Relative bias was defined as the
bias of the estimated risk divided by the true risk to facili-
tate interpretation of the bias on an appropriate scale.

Results
Tables 1 and 2 list the RMSE and relative bias of the dis-
ease risks estimated using the reduced and full model
averaged over the 1000 replicated data sets when contam-
ination occurred in AB individuals not exposed to the
environmental factor. When there was no contamination,
we could see that the relative biases were small (less than
1.8 percent) in all six categories in both models. This
implied that our reduced and full models were both effi-
cient and could give precise estimates under no contami-
nation. When contamination occurred, both the relative
biases and RMSE of the risks estimated from the reduced
model increased in all categories with larger proportion of
contaminated individuals. The predicted risks increased
in BB individuals exposed to the environment and AA

individuals exposed to the environment. They decreased
in the other four categories. The logit of the contaminated
category corresponded to the intercept of the logistic
model. Since the estimated coefficients of logistic regres-
sion model were interdependent, changing of one param-
eter led to changing of all the other parameters. Thus all
the predicted risks deviated from their true values as a
result of contamination in a single category, though the
relative bias increased fastest in the contaminated cate-
gory. In the contaminated category, the predicted risk dif-
fered greatly from its true value (15 percent difference)
even with 20 percent contaminated individuals. The devi-
ation reached nearly 60 percent when the proportion of
contaminated individuals reached 0.8. When contamina-
tion status was incorporated into the model (full model),
the relative biases and RMSE remained small in all six cat-
egories despite increasing proportion of contaminated
individuals. The relative bias was less than 3 percent in all
the categories even with 80 percent contaminated individ-
uals.

Tables 3 and 5 present our findings for the impact of two-
category contamination on predictive risks. In general, the
relative biases and RMSE increased with increasing pro-
portions of contamination. However, there were cases
where they decreased with increasing proportions of con-
tamination. For example, in scenario three the absolute
value of the relative bias of the estimated risk of AB indi-
viduals not exposed to the environmental factor decreased
with increasing contamination in AA individuals exposed
to the environment, as shown in Table 5. Actually, we
could see that the relative bias varied from -0.109 to 0.008
when rAB,NE equaled 0.2. This indicated that with increas-
ing contamination, the predicted risk reduced at first, but
then it increased and became larger than its true value.
This was possible because the predicted risks were func-
tions of the model coefficients. Contamination caused
different coefficients to change in different directions.
Therefore, the predicted risks could fluctuate in either
direction with increasing contamination. In the third sce-
nario, when contamination proportions in both catego-
ries were 0.2, the estimated risk for AB individuals
exposed to the environment reduced 13 percent even
though there was no contamination in this category.
When the two contamination factors were 0.6 and 0.8, the
estimated risk for this category decreased nearly 50
percent.

Tables 4 and 6 list the average relative bias and RMSE of
the disease risks for the second and third contamination
scenarios estimated using the full model. Similar to one
group contamination case, when additional knowledge
about individual's contamination status was available, the
estimated relative biases and RMSE were greatly improved
in all categories. They remained small despite increasing
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proportion of contaminated individuals. In both scenar-
ios, the largest relative risks were about 3 percent even
with 80 percent contaminated individuals. These results
suggested that the additional contamination covariate
was efficient in modeling population heterogeneity. The
difference in individual's disease susceptibility was
accounted for properly. Knowledge about contamination
could improve the accuracy of the predicted risks.

Discussion
Rapid developments in genetics have an increasing impact
on medical practice. Genetic counseling has made it pos-
sible to predict an individual's risk for complex genetic
diseases that do not cleanly follow Mendelian inheritance
patterns. However, predictive tests based on family history
cannot always give satisfactory assessment due to the
complexity of human diseases; "one size fits all" tech-
niques appear to be problematic. Incomplete information

Table 1: Relative bias and RMSE of the disease risks predicted using the reduced model in the first scenario.

Contam Factor (a) AB NE(b) AB E(c) BB NE

Relative bias RMSE Relative bias RMSE Relative bias RMSE

0 -0.0030 0.0179 0.0098 0.039 -0.0007 0.0168
0.2 -0.1481 0.022 -0.0510 0.0424 -0.0342 0.016
0.4 -0.2928 0.0326 -0.1346 0.0471 -0.0792 0.0162
0.6 -0.4346 0.0452 -0.2032 0.0567 -0.0959 0.0165
0.8 -0.5725 0.0582 -0.2980 0.0710 -0.1374 0.0173
Contam Factor BB E AA NE AA E

Relative bias RMSE Relative bias Relative bias RMSE

0 0.0157 0.0381 0.0065 0.0383 0.0087 0.0647
0.2 0.068 0.0393 -0.0173 0.039 0.0379 0.0704
0.4 0.1038 0.0421 -0.0299 0.0405 0.0730 0.0770
0.6 0.2151 0.0479 -0.0456 0.0412 0.1302 0.094
0.8 0.3071 0.0559 -0.0695 0.0452 0.1819 0.1132

(a) Proportion of individuals in the contaminated category who get the disease with a very low probability (0.01). (b) Not exposed to the 
environmental factor. (c) Exposed to the environmental factor.

Table 2: Relative bias and RMSE of the disease risks predicted using the full model in the first scenario.

Contam Factor (a) AB NE(b) AB E(c) BB NE

Relative bias RMSE Relative bias RMSE Relative bias RMSE

0 0.0002 0.01786 0.0088 0.03874 0.0053 0.0168
0.2 0.0053 0.01940 0.0094 0.04196 0.0028 0.01626
0.4 0.0078 0.02154 -0.006 0.04085 -0.0092 0.01643
0.6 0.0113 0.02564 0.0023 0.04316 0.0177 0.01692
0.8 0.0230 0.03089 0.0009 0.04522 0.0284 0.01755
Contam Factor BB E AA NE AA E

Relative bias RMSE Relative bias RMSE Relative bias RMSE

0 0.0170 0.03801 0.0040 0.03805 0.0045 0.06422
0.2 0.0121 0.03699 -0.0042 0.03842 -0.0041 0.06724
0.4 -0.0131 0.03755 0.0001 0.03925 -0.0099 0.06803
0.6 0.0211 0.03736 0.0037 0.03895 0.0000 0.06866
0.8 0.0278 0.03892 0.0036 0.04021 -0.0021 0.06951

(a) Proportion of individuals in the contaminated category who get the disease with a very low probability (0.01). (b) Not exposed to the 
environmental factor. (c) Exposed to the environmental factor.
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Table 3: Relative bias and RMSE of the disease risks predicted using the reduced model in the second scenario.

AB NE(c) AB E(d) BB NE

rAB,NE
(a) rAB,E

(b) Relative risk RMSE Relative risk RMSE Relative risk RMSE

0.2 0.2 -0.1811 0.0244 -0.1663 0.0494 0.0066 0.0169
0.4 -0.2268 0.0274 -0.2882 0.0666 0.0251 0.0166
0.6 -0.2719 0.0314 -0.4016 0.0858 0.0810 0.0186
0.8 -0.3063 0.0343 -0.5001 0.1033 0.1284 0.0190

0.6 0.2 -0.4712 0.0487 -0.3140 0.0717 -0.0684 0.0165
0.4 -0.5147 0.0528 -0.4333 0.0922 -0.0450 0.0161
0.6 -0.5555 0.0568 -0.5414 0.1116 0.0141 0.0174
0.8 -0.5962 0.0607 -0.6362 0.1293 0.0652 0.0176

BB E AA NE AA E

rAB,NE rAB,E Relative risk RMSE Relative risk RMSE Relative risk RMSE

0.2 0.2 0.0045 0.0373 0.0060 0.0397 -0.0022 0.0691
0.4 -0.0810 0.0364 0.0218 0.0408 -0.0551 0.0737
0.6 -0.1446 0.0373 0.0453 0.0417 -0.1048 0.0865
0.8 -0.2155 0.0392 0.0740 0.0454 -0.1584 0.1034

0.6 0.2 0.1459 0.0441 -0.0308 0.0410 0.0891 0.0836
0.4 0.0526 0.0399 -0.0148 0.0406 0.0348 0.0735
0.6 -0.0175 0.0383 0.0099 0.0399 -0.0175 0.0732
0.8 -0.0961 0.0373 0.0393 0.0417 -0.0730 0.0797

(a) Proportion of AB individuals not exposed to the environment who get the disease with a very low probability (0.01). (b) Proportion of AB 
individuals exposed to the environment who get the disease with a very low probability (0.01). (c) Not exposed to the environmental factor. (d) 
Exposed to the environmental factor.

Table 4: Relative bias and RMSE of the estimated disease risks predicted using the full model in the second scenario.

AB NE(c) AB E(d) BB NE

rAB,NE
(a) rAB,E

(b) Relative risk RMSE Relative risk RMSE Relative risk RMSE

0.2 0.2 0.0127 0.0198 0.0135 0.0434 0.0099 0.0169
0.4 0.0019 0.0191 -0.0015 0.0472 -0.0054 0.0162
0.6 -0.0060 0.0198 -0.0094 0.0517 0.0135 0.0174
0.8 0.0062 0.0204 0.0054 0.0613 0.0206 0.0169

0.6 0.2 0.0177 0.0257 0.0096 0.0454 0.0118 0.0169
0.4 0.0109 0.0256 -0.0049 0.0503 -0.0014 0.0164
0.6 0.0036 0.0266 -0.0194 0.0545 0.0187 0.0174
0.8 0.0155 0.0274 -0.0095 0.0656 0.0281 0.0169

BB E AA NE AA E

rAB,NE rAB,E Relative risk RMSE Relative risk RMSE Relative risk RMSE

0.2 0.2 0.0136 0.0376 0.0017 0.0395 -0.0021 0.0690
0.4 -0.0063 0.0376 -0.0010 0.0399 -0.0104 0.0699
0.6 0.0022 0.0383 0.0022 0.0394 -0.0104 0.0720
0.8 0.0115 0.0395 0.0081 0.0402 -0.0087 0.0755

0.6 0.2 0.0182 0.0383 0.0024 0.0400 -0.0014 0.0706
0.4 -0.0068 0.0377 0.0003 0.0399 -0.0118 0.0714
0.6 -0.0025 0.0385 0.0044 0.0396 -0.0150 0.0731
0.8 -0.0011 0.0390 0.0114 0.0402 -0.0173 0.0744

(a) Proportion of AB individuals not exposed to the environment who get the disease with a very low probability (0.01). (b) Proportion of AB 
individuals exposed to the environment who get the disease with a very low probability (0.01). (c) Not exposed to the environmental factor. (d) 
Exposed to the environmental factor.
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Table 5: Relative bias and RMSE of the disease risks predicted using the reduced model in the third scenario.

AB NE(c) AB E(d) BB NE

rAB,NE
(a) rAA,E

(b) Relative risk RMSE Relative risk RMSE Relative risk RMSE

0.2 0.2 -0.1090 0.0203 -0.1286 0.0465 0.0177 0.0177
0.4 -0.0663 0.0175 -0.2135 0.0574 0.0550 0.0171
0.6 -0.0312 0.0176 -0.3090 0.0718 0.1079 0.0186
0.8 0.0080 0.0171 -0.3856 0.0846 0.1884 0.0217

0.6 0.2 -0.4019 0.0422 -0.2663 0.0648 -0.0520 0.0172
0.4 -0.3671 0.0387 -0.3400 0.0773 -0.0071 0.0163
0.6 -0.3330 0.0359 -0.4214 0.0911 0.0539 0.0175
0.8 -0.2949 0.0326 -0.4846 0.1023 0.1396 0.0202

BB E AA NE AA E

rAB,NE rAA,E Relative risk RMSE Relative risk RMSE Relative risk RMSE

0.2 0.2 -0.0211 0.0383 -0.0432 0.0414 -0.0585 0.0729
0.4 -0.1316 0.0368 -0.0894 0.0466 -0.1820 0.1120
0.6 -0.2365 0.0400 -0.1189 0.0541 -0.2964 0.1585
0.8 -0.3079 0.0439 -0.1498 0.0605 -0.3981 0.2054

0.6 0.2 0.1094 0.0436 -0.0775 0.0460 0.0268 0.0705
0.4 -0.0138 0.0377 -0.1213 0.0529 -0.1033 0.0874
0.6 -0.1335 0.0373 -0.1473 0.0602 -0.2263 0.1296
0.8 -0.2158 0.0400 -0.1746 0.0663 -0.3363 0.1786

(a) Proportion of AB individuals not exposed to the environment who get the disease with a very low probability (0.01). (b) Proportion of AA 
individuals exposed to the environment who get the disease with a very low probability (0.01). (c) Not exposed to the environmental factor. (d) 
Exposed to the environmental factor.

Table 6: Relative bias and RMSE of the disease risks predicted using the full model in the third scenario.

AB NE(c) AB E(d) BB NE

rAB,NE
(a) rAA,E

(b) Relative risk RMSE Relative risk RMSE Relative risk RMSE

0.2 0.2 0.0030 0.0194 0.0005 0.0419 0.0086 0.0174
0.4 0.0096 0.0221 -0.0049 0.0431 0.0072 0.0174
0.6 0.0117 0.0261 -0.0133 0.0451 0.0250 0.0177
0.8 0.0197 0.0313 -0.0123 0.0460 0.0238 0.0165

0.6 0.2 -0.0052 0.0193 -0.0120 0.0444 0.0127 0.0166
0.4 0.0141 0.0231 -0.0087 0.0464 0.0171 0.0171
0.6 0.0179 0.0262 -0.0080 0.0460 0.0052 0.0172
0.8 0.0285 0.0329 -0.0075 0.0457 0.0319 0.0172

BB E AA NE AA E

rAB,NE rAB,E Relative risk RMSE Relative risk RMSE Relative risk RMSE
0.2 0.2 0.0051 0.0377 -0.0013 0.0388 -0.0067 0.0698

0.4 -0.0076 0.0364 -0.0013 0.0401 -0.0121 0.0728
0.6 0.0060 0.0369 -0.0011 0.0397 -0.0144 0.0757
0.8 0.0171 0.0382 0.0012 0.0409 -0.0096 0.0789

0.6 0.2 0.0093 0.0385 -0.0041 0.0401 -0.0133 0.0831
0.4 -0.0009 0.0377 -0.0006 0.0402 -0.0166 0.0860
0.6 -0.0081 0.0390 0.0028 0.0403 -0.0113 0.0896
0.8 0.0262 0.0399 -0.0007 0.0393 -0.0098 0.0916

(a) Proportion of AB individuals not exposed to the environment who get the disease with a very low probability (0.01). (b) Proportion of AB 
individuals exposed to the environment who get the disease with a very low probability (0.01). (c) Not exposed to the environmental factor. (d) 
Exposed to the environmental factor.
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about disease etiology might lead to individuals classified
in the same group by DNA tests to have different suscep-
tibilities to a disease.

The problem of model misspecification is not new. Sev-
eral studies investigated the asymptotic relative efficiency
(ARE) of misspecified model in testing association
between exposure and response [11-13]. ARE can be
defined loosely as the ratio of sample size needed by the
correct test to attain the same power as the mismodeled
test. Among these studies, Begg and Lagakos explored the
consequences of model misspecification in logistic regres-
sion and showed both theoretically and numerically that
models with missing or incorrect covariates required
larger sample sizes to achieve the same power of testing
association between the exposure and response than the
correct models [13]. Although efforts have been made to
study the effect of model misspecification, little attention
has been paid to investigate the problem in the context of
genetic counseling, where predicting disease risk is the pri-
mary goal. In this paper, we studied the impact of popula-
tion heterogeneity on predicted disease risks. A logistic
regression model was fitted assuming the individual con-
tamination status was unknown (contamination status is
a missing covariate). We quantified the bias of the pre-
dicted risks based on the level of population contamina-
tion through a simulation study. Our results showed that
contamination in one or more categories could cause the
estimated risks in all categories to deviate from their true
values. The departure could be in either direction and the
biases were unpredictable. We focused our simulations in
three specified situations, though the results could be eas-
ily generalized to other scenarios. This implies that with-
out thorough knowledge about genetic basis of the
disease, risks estimated from DNA tests may be mislead-
ing. Since human bodies are so complicated and disease
systems are so sophisticated, it is hard to detect contami-
nation status for many genetic disorders. Therefore, cau-
tion should be taken when evaluating the predicted risks
obtained from genetic counseling.

Our simulation using the full model did show that major
improvements could be made if individual disease status
was available and incorporated into the prediction model.
This pointed out a promising direction for genetic coun-
seling, since more and more new techniques are being
invented and genetic disorders are being better
understood.

Conclusions
Our simulation results showed that heterogeneity in one
or more categories could lead to biased estimates of dis-
ease risk not only in the "contaminated" categories but
also in other homogeneous categories. The predicted risks
could fluctuate in either direction and the biases were

unpredictable. These findings imply that without
thorough knowledge about genetic basis of the disease,
risks estimated from DNA tests may be misleading. Cau-
tion should be taken when evaluating the predicted risks
obtained from genetic counseling.
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