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Abstract

suitable for clinical purposes.

for statistical analysis.

by recombination in the PCR reaction.

Background: Recessive genes cause disease when both copies are affected by mutant loci. Resolving the cis/trans
relationship of variations has been an important problem both for researchers, and increasingly, clinicians. Of
particular concern are patients who have two heterozygous disease-causing mutations and could be diagnosed
as affected (one mutation on each allele) or as phenotypically normal (both mutations on the same allele). Several
methods are currently used to phase genes, however due to cost, complexity and/or low sensitivity they are not

Methods: Long-range amplification was used to select and enrich the target gene (CYP21A2) followed by modified
mate-pair sequencing. Fragments that mapped coincidently to two heterozygous sites were identified and used

Results: Probabilities for cis/trans relationships between heterozygous positions were calculated along with 99%
confidence intervals over the entire length of our 10 kb amplicons. The quality of phasing was closely related to
the depth of coverage and the number of erroneous reads. Most of the error was found to have been introduced

Conclusions: We have developed a simple method utilizing massively parallel sequencing that is capable of
resolving two alleles containing multiple heterozygous positions. This method stands out among other phasing
tools because it provides quantitative results allowing confident haplotype calls.
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Background

The use of diagnostic gene sequencing has dramatically
increased during the last two decades. However, accurate
interpretation of sequencing data remains a challenge,
despite technical advances. One common problem is un-
certainty about the cis/trans status, or phase, of hetero-
zygous variations. Properly phased genomic information is
frequently required for accurate diagnosis of recessive
genetic diseases. The scale of this problem is considerable,
as indicated by a recent query of the Online Mendelian
Inheritance in Man (OMIM) database which revealed
over 250 recessive genes known to be associated with
more than 1,100 disorders [1]. Unfortunately, Sanger
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sequencing, the most widely used technique and current
gold standard, is incapable of separating phases without
allele-specific capture or allele-specific amplification.

While this problem has long been recognized, a simple
and effective solution has remained elusive. Computa-
tional methods have been developed to estimate haplotype
sequences based on the individual’s genotype compared to
a population [2], but they lack the resolution and accuracy
needed for clinical use.

A more definitive approach for genetic phasing is
based on manipulation of single chromosomes, either
through cell hybrid systems, using conversion technol-
ogy [3,4], or by means of size-exclusion devices [5].
While this strategy is perhaps the most reliable for gen-
erating accurate haplotype sequences, it is by far the
most labor intensive approach. It is also error and failure
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prone, due to its lengthy, complex and technically diffi-
cult workflows.

More recently, the phasing problem has been tackled
using massively scaled Next Generation Sequencing
(NGS). Briefly, these methods depend on the creation of
at least 100 libraries from each patient using techniques
such as bacterial fosmid construction or multiple dis-
placement amplification [6,7]. Libraries are indexed,
pooled, sequenced and then computationally combined
into two haplotype consensus sequences. While these
methods are powerful for generating phased sequences
for entire genomes, they are cumbersome, slow and cur-
rently expensive.

Since each of these approaches is in some way unsuit-
able for routine clinical use, current protocols for solving
cis/trans questions typically involve testing of family
members. This is a costly and time consuming under-
taking that may still fail, if there is insufficient genetic
diversity in the tested familial cohort. As an alternative,
allele-specific PCR can be employed. However, the cost
and effort required to design and validate assays makes
this prohibitive in genes where there are many possible
combinations of mutant positions.

Revisiting NGS techniques, with a view to creating a
simpler solution than multiple indexed library sequen-
cing, could provide an attractive solution to the phasing
problem, in particular as NGS is now starting to replace
Sanger sequencing in clinical applications. Because NGS
methods are based on deriving sequences from a single
molecule, one should be able to adapt the methodology
for accurate phasing of genomic sequences. Most of the
current platforms use a paired end (PE) protocol in
which a string of sequence is read from either end of a
larger DNA fragment. Since the reads come from oppos-
ite ends of the same fragment and are linked through a
continuous strand of DNA, we refer to them as linked
reads. Given their linked nature, any variations detected
in the same fragment are cis to one another.

The current [llumina PE library sequencing protocol
restricts library fragment size to 250-500 bp because
longer fragments decrease the quality of data through
overlapping and reduced density of clusters. Coverage of
larger distances between nucleotide positions of interest
can, however, be achieved through the mate paired (MP)
library protocol. This protocol initially utilizes larger
genomic fragments of 2-5 kb that are self-ligated prior
to a secondary fragmentation to the conventional PE
library size centering on 500 bp (Figure 1). Biotinylation
of the termini of larger fragments prior to circularization
enables the isolation of DNA containing the ligated ends.
Sequencing of these fragments containing junction points
thus generates paired reads that are linked across much
greater distances than in conventional PE libraries, at the
expense of some loss in coverage for short inter-variant
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Figure 1 Mate pair library preparation. The MP protocol allows
sequence information to be linked across greater distances than PE
reads. Fragments of sheared DNA from a pool (500 - 5000 bp with
an average of 2000 bp) are end-repaired using biotinylated nucleo-
tides. Fragments are then self-ligated and all remaining linear DNA is
removed by exonuclease treatment. Circularized DNA is fragmented
again (black bars) to an average size of 500 bp and segments containing
biotinylated junction points are isolated on streptavidin beads. In
addition to fragments containing junction points, a portion of
non-biotinylated DNA is co-purified and appears in the MP library
as a subpopulation of PE reads. All fragments are end-repaired and

indexed using TruSeq adapters followed by sequencing.

distances. A combination of PE (100-600 bp) and MP
(500-5,000 bp) libraries over a defined gene region could
therefore complement each other in terms of phased
coverage and should allow accurate determination of cis/
trans status of multiple sequence variants over a relatively
large range of distances.

We tested this supposition using the CYP21A2 gene as
a model system. This gene is commonly sequenced
during diagnosis of congenital adrenal hyperplasia (CAH).
The combination of the modest length of this gene
(~3400 bp), a rate of at least 10% compound heterozygos-
ity for mutations or variants of unknown significance in
patients, and availability of genetic family studies in most
cases, make CYP2IA2 a suitable model system as a proof
of principle test of our approach.

Methods

Long-range PCR

CYP21A2 is located in the HLA region on chromosome
6p2.13. An inactive yet highly homologous pseudogene
(CYP21A1IP) is located 30 kb upstream and has been
known to confuse genotyping assays for CYP21A2 [8,9].
To enrich our mate pair library with the active gene and
eliminate the pseudogene we performed long-range PCR
(IrPCR) using unique priming locations around CYP21A2.
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Priming sequences were 5-AGTGGGGCTCTGAAGAC
TGA-3 for the forward position and 5-CCCTCGGGA-
GATGATCTGTA-3 for the reverse to amplify a clean
10 kb product (Figure 2). LA Taq and associated buffers
from TaKaRa were used in the reaction at their re-
commended concentrations. Approximately 150 ng of
template DNA was used in the PCR reaction. Cycle condi-
tions were as follows: 95°C for 5 m; 10 cycles of (95°C for
30 s, 60°C for 30 s, 72°C for 10 m); 20 cycles of (95°C for
30 s, 55 for 30 s, 72°C for 10 m); 72°C for 20 m.

Whole genome amplified background DNA

The MP protocol is driven towards intra-molecular
circularization over inter-molecular ligation of two sep-
arate DNA fragments simply by spatial dilution. In order
to minimize the complication of inter-fragment ligations
from a limited sequence amplicon input we investigated
spiking of the 10 kb amplicon at four different concen-
trations into a background of whole genome amplified
(WGA) DNA from a normal individual. WGA DNA was
used due to its similar average fragment size to the 10 kb
IrPCR amplicon, than conventional extracted genomic

10Kb

Figure 2 Clean 10 Kb amplicons. A single, clean band at 10 Kb
shows the specificity of our long-range ampilification.
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DNA preparations (~50 kb), making downstream fragmen-
tation in the library prep protocol more predictable. This
approach additionally enabled us to evaluate the role of
amplicon concentration on inter-fragment ligation. Back-
ground WGA DNA was generated from genomic DNA
using a Qiagen Repli-g midi kit according to recommended
protocols. Background and amplified DNA concentrations
were measured by fluorescence on a Qubit fluorometer
(Invitrogen), and 10, 100, 500, and 1,000 ng aliquots of
IrPCR product were spiked into WGA DNA to a total of
5 ug for each library preparation.

Library preparation and sequencing
MP libraries were prepared for each spiked pool of
IrPCR product and WGA background DNA based on
previously reported protocols [10]. Each pool was frag-
mented on an E210 Focused-ultrasonicator (Covaris) to
fragments ranging from 500 to 5000 bp with an average
of 2000 bp. Following purification on Qiaex II beads,
DNA fragment ends were repaired and biotinylated
using a mixture of natural and biotinylated dNTPs.
Excess reagents and by-products were removed using
Qiaex II beads. Six-hundred ng of DNA from each pool
were circularized in 16 hour ligation reactions at 30°C
prior to exonuclease treatment at 37°C for 20 minutes to
digest any remaining linear strands of DNA. The circu-
larized DNA was then fragmented to 300—500 bp using
the M220 Focused-ultrasonicator. Streptavidin beads
were applied to isolate ligation junction fragments. End
repair, blunt ending and adapter ligation were performed
while fragments were bound to the beads. PCR was
performed to produce bead-free fragments which were
subsequently assembled into indexed MP libraries using
TruSeq adapters (Illumina). While streptavidin beads
provide good recovery of biotinylated DNA, they also
co-purify a fraction of unlabeled fragments from other loca-
tions in the sheared, circularized DNA. We used this to our
advantage by allowing these fragments into our libraries to
provide PE reads covering positions 100 to 500 bp apart.
The four final indexed MP libraries were purified and
analyzed on an Agilent Bioanalyzer DNA 1000 chip
before equimolar pooling. The sample was loaded onto a
single lane of an Illumina flow cell and sequenced to
101x2 paired-end reads on an Illumina HiSeq. Base
calling was performed using Illumina Pipeline v1.5.
Sequence reads collected from the Illumina were
demultiplexed and mapped to the hgl9 assembly [11]
using a custom mapping algorithm similar to the one
used in previous publications [12,13]. To avoid the
problem of reads from the amplified region erroneously
mapping to the pseudogene, CYP21A1P, and/or homolo-
gous surrounding areas, the region from chromosome 6
between 31971000 and 31982000 was removed from the
reference sequence.
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Statistical analysis

After mapping and alignment of linked reads covering
two heterozygous positions a matrix was constructed to
quantify the associations between every possible pair of
base calls between the two positions. Confidence inter-
vals for all base calls were calculated by bootstrapping
based on the observed frequency of base calls in each
association matrix. For each upstream base call (associ-
ation matrix rows), a probability distribution was
constructed for all possible downstream base calls (asso-
ciation matrix columns). Observed counts in each row
were converted to probabilities and used for multi-
nomial resampling with the total number of samples set
to the sum of observations in the row. In addition to the
observed probabilities, 1% was distributed across each
row to simulate random error associated with NGS
sequencing. Following every cycle of sampling, the
counts for each base call were converted to probabilities
and used to construct a set of distributions. After 1000
sampling iterations, confidence intervals were set for
each possible downstream base call by ranking the
resulting probabilities for that base and selecting the 1%
and 99% values from the distribution.

For haplotyping regions longer than the span of PE or
MP fragments several association matrices can be
chained together. In this case, bootstrapping for each
individual matrix was performed as described above.
The linkage between pairs of heterozygous positions
followed a Markov Chain model in that the probability
of association between two base calls was unrelated to
previous base calls in the chain. To begin the chain,
association matrix A; was constructed between two
heterozygous positions, /1y and /;. One of the two bases
was arbitrarily chosen from /,, and probabilities and
confidence intervals for each base at /; were calculated
as described above. Next, association matrix A, was
constructed between positions /; and /5. The base with
highest probability at /; from A; was selected and
probabilities for association with this base at /4, in A,
were calculated. By iteration of this cycle, a chain of
associated base calls can easily be made for one allele.
To validate the results from one allele, the opposite
allele can be phased by selecting the alternate base at 4,
and crosschecking the two resulting chains.

To quantify the confidence of association between two
distant heterozygote calls, a cumulative probability was
calculated as the product of all prior probabilities in the
associated chain. Cumulative confidence intervals were
also calculated from a distribution made from the
products of each previously occurring bootstrap result.
Using these measures, the limits to the length of chained
phasing become apparent when the confidence intervals
of rejected base calls begin to overlap with the cumula-
tive interval.
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Results

To demonstrate that a combined PE and MP sequencing
strategy could allow us to accurately phase compound
heterozygous sequence variants over a significant genomic
distance, we divided the problem into three components.
First, we performed experiments to determine the ne-
cessary conditions for adequate sequence coverage and
showed proof of principle of accurate variant phasing,
using CYP21A2 as a model system. Next, we demonstrated
that the analysis can be extended to phase DNA fragments
across distances that are much larger than those included
in the MP library. Finally, we explored the principle sources
of experimental error.

Phasing a single pair of heterozygote sequence variants
Confidence of NGS base calls is a function of coverage
at a given position. Since our strategy requires accurate
association of two heterozygous positions (a total of 4
base calls), high coverage is required throughout the
target region. To this end, we designed a long range-
PCR (IrPCR) for enrichment by amplification of the active
gene CYP21A2, while excluding its highly homologous
pseudogene, CYP21A1P.

While enrichment boosts coverage, it also increases the
likelihood that two fragments of DNA from opposite
CYP21A2 alleles will be ligated together during MP library
construction. This event would generate false cis associa-
tions between loci. We reasoned that we could reduce the
probability of inter-allelic recombination by adding an
excess of background genomic DNA to the gene specific
IrPCR product, biasing any recombination towards non-
target sequences. Libraries made with 10, 100, 500 and
1000 ng of IrPCR product produced sequence coverages
of 1,600x%, 10,900x, 60,400x and 130,500x%, respectively. By
contrast, coverage by MP fragments outside of the ampli-
fied target region averaged slightly less than 2x.

Linked reads are of even greater importance for phasing
than raw coverage is for accuracy. Any linked read method
for phasing needs to generate an extended distribution of
fragment sizes. This assures enough depth of coverage
between any two points within a gene to accommodate a
broad range of potential distances between heterozygous
positions. To verify that we had achieved this goal we calcu-
lated the linked coverage in our NGS data as a function of
distance A between base positions. For every position x in
the amplicon, we counted the number of linked reads
covering both x and x + A, for As from 101 to 3000 bp, and
then calculated and plotted the average linked coverage.
Paired end libraries provided linked reads up to 500 bp
while MP libraries produced a population of fragments
ranging from about 200 bp to over 3000 bp (Figure 3).

Previous genotyping of the specimen tested here
showed two heterozygous disease-causing mutations;
however their phase was not clear from the Sanger
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Figure 3 Average linked coverage by PE and MP reads from four libraries. Linked read coverage is shown from PE and MP reads as a
function of distance between linked positions for each of the enriched libraries (10, 100, 500 and 1,000 ng spiked IrPCR amplicon in WGA DNA).
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sequences and required family studies. The first mutation,
¢.60G > A introduces a stop codon at amino acid position
20. The second, IVS2-13A>G is a common splice
site mutation in intron 2. Both variants produce trun-
cated proteins and are associated with the classical
form of CAH.

After mapping all of the reads in the library, fragments
were selected that covered both heterozygous positions
with their pairs of sequence reads. The base calls at each
heterozygous position from each fragment were obser-
ved and compared to establish the relationship between
the two alleles. Using these base calls, an association
matrix was constructed to measure the frequency of
each association (Figure 4a). In each library, the wild-
type G at position c.60 was most frequently associated
with a mutant G in the IVS2-13 position. Conversely,
the mutant A at position ¢.60 was most frequently associ-
ated with the wild-type A at IVS2-13. This indicated that
the two mutants were on opposite alleles, a result that was
congruent with the conventional phased genotype that
had previously been established through allelic segregation
studies of the proband’s family.

The next step was to quantify more precisely how
confident one could be that the trans phasing result was
correct. We used bootstrapping for this, calculating 99%
confidence intervals around the probability of each pos-
sible downstream base call. The width of the confidence
intervals therefore, is related to the depth of linked
coverage between the two mutant sites (Figure 4b). To
clarify this relationship, we ran simulations for varying
amounts of coverage using probabilities from a single
dataset (500 ng amplicon spike) and calculated the aver-
age width of all resulting confidence intervals. Both the

simulation and observed confidence intervals indicate
that coverage above 500x provides diminishing returns
in phasing confidence (Figure 4c).

Extending the method over longer genetic distances

In our test specimen, the two mutant positions were well
covered by a subset of PE and MP fragments. However,
it is likely that in some cases (or in different genes) het-
erozygous mutations will be separated by more than
2000 bases. For these situations, we have developed a
computational method to chain together linked reads by
constructing association matrices between pairs of sev-
eral heterozygous sequence positions (normal sequence
variants, VUSs. or mutations) in tandem through the
length of the amplified region. Provided there are enough
heterozygous positions in the specimen that fall within
the limits of the combined MP and PE libraries, the
entire amplified region can be phased using this iterative
approach. Statistical analysis of the phase assignment
across an entire chain of linked sequence variants is iden-
tical to the single association matrix, except that a cumu-
lative probability and confidence interval is calculated
between the two mutant positions to measure confidence
in the data used to link the two. Since this cumulative
measure is the product of all upstream probabilities in the
chain, its value will decline in proportion to the amount of
error in each association matrix. This diminishes the
probability of the final overall phase-call in relation to the
first. However, as long as there is full separation of the
confidence limits of the final cumulative phase determin-
ation from all other possibilities, a confident call can be
made. It is thus possible to extend the phasing chain
across the entire 10 kb IrPCR amplicon without any
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overlap of confidence intervals, indicating accurate phas-
ing throughout (Figure 5).

Sources of error in the association matrix
Each association matrix contains a small percentage of
incorrectly linked bases. The sources of error in NGS
datasets have been previously explored and attributed
principally to detection error during data acquisition,
fluorescence spectral overlap and computational mis-
alignment of reads in highly homologous regions
[14,15]. Since our protocol includes IrPCR enrichment
followed by MP library preparation, we also had to con-
sider the contribution from in vitro recombination
events that occur during amplification or circularization.
While a thorough investigation of this type of error is
beyond the scope of this paper, we were able to quantify
two types of inaccuracy by constructing association matri-
ces between every pair of heterozygotes in the CYP21A2
gene. Recombination events, i.e. MP reads that include a
base from either allele, were the most common source of
error. As a percentage of total reads, this type of error
averaged about 7% and it proved to be constant across
every combination of PCR product and background DNA
mix (5.4%, 7.4%, 6.2% and 7.2% error for 10, 100, 500 and
1000 ng of amplicon input, respectively). In addition, there
was no change in these error rates as a function of linked
read length or coverage. This indicates that our initial
assumption was incorrect; ligation of fragments from
opposite alleles during MP library preparation did not
prove to be a major contributor to erroneous base or phas-
ing calls. Furthermore, because the percentage of recom-
bination does not change with proportion to the amount of
amplicon spiked into each library, these events must occur
prior to library creation, ie. during IrPCR. These
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observations testify to the reliability of the MP library
protocol and highlight the importance of high fidelity in
PCR reactions.

Finally, some incorrect base and/or phasing call errors
could not be attributed to recombination artefacts.
Across all heterozygous pairs analyzed in our data, only
2% of the total reads fell into this category, a value that
accords with other reported values for random error in
NGS data [16,17].

Discussion

Using our MP library approach and subsequent computa-
tional analysis we have been able to successfully haplotype
a specific region of interest in an individual who had two
heterozygous disease-causing mutations. This method is
an improvement over other available phasing protocols
because of its simplicity and because of the statistical
measure of assurance it provides. In regions where cover-
age is low or where recombination is present in the frag-
ment library, erroneous phasing calls can easily be made
by other methods. In addition to these advantages, our
method provides the ability to phase heterozygous posi-
tions that are thousands of bases apart.

Performed as a single protocol, this method is capable
of acquiring a completely phased genotype for an entire
10 kb IrPCR amplicon. Target regions of this size can be
routinely amplified, and 20-30 kb amplicons are achiev-
able in many instances. In principle, this method could
also work beyond 10-30 kb, if several overlapping IrPCR
amplicons are used as starting material, and as long as
sufficient overlapping MP fragments can be generated
that share heterozygous positions. An average MP library
size which exceeds the 2 kb observed in our study would
be expected to improve the likelihood of finding an

Figure 5 One phase of the entire 10 kb amplicon. By beginning with the first heterozygote in the amplicon and sequentially moving through
all downstream heterozygous positions, the phase of the entire 10 kb amplicon can be determined. Confidence intervals in the columns show
the relationship of each base to the highest probability base call from the previous column. Lines showing the cumulative probability and
confidence interval relate each downstream position to the very first in the chain. Cumulative probability diminishes in proportion to the quality
of each association matrix in the chain (i.e. sufficient coverage and few errors). However, one can be sure of the accuracy of phasing so long as
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unbroken linked chain of polymorphisms, while simultan-
eously reducing the number association matrices needed
for complete phasing of a region of interest, thereby
improving the confidence in the accuracy of the overall
haplotype. Since the Illumina MP protocol is optimized
for initial fragmentation libraries of 2—5 kb, such improve-
ments should be relatively easy to achieve.

In theory, there is no upper limit to the scalability of our
approach and it could even be applied to whole genome se-
quencing, provided sequence coverage and linked coverage
are high enough. Without regard to logistic or cost consid-
erations, we speculate that this technique might actually be
very successful in this setting, because the error attributable
to inter-allelic MP ligation proved to be very low. Neverthe-
less, it is likely that one would have to break down the ana-
lysis of an entire genome into smaller haplotype units, in
order to maintain high confidence of the phase calls. We
would anticipate that the size of these units would be
similar to what can be achieved by optimal combina-
tions of IrPCR and MP protocols, as described above.

Two limitations that we foresee for accurate phasing are
highly homologous genes and gene duplications or other
copy number changes. In either of these cases, we would
anticipate phasing errors to increase due to mis-assignment
of reads. In addition, increases in gene copy number would
exponentially increase the number of possible phase com-
binations for any given combination of polymorphic
positions, increasing computational requirements and
decreasing ultimate haplotyping accuracy, and in some
cases, phase assignments might be impossible.

Conclusions

In summary, compared with previous approaches, our
MP NGS sequencing technique is a simple solution to
the problem of accurately phased genotyping for many
recessive diseases, and perhaps, many other genetic
phasing problems. The method could be adapted to
other NGS platforms since they are all based on deriving
sequences by aligning large numbers of overlapping
reads. As clinical molecular diagnosis rapidly approaches
massively parallel sequencing as the preferred assay
method, it could serve as a cost-effective way to obtain a
completely resolved set of haplotypes for single genes,
panels of related genes, or even significant portions of
chromosomes.
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