
Mhandire et al. BMC Medical Genetics          (2020) 21:113 
https://doi.org/10.1186/s12881-020-01044-8
RESEARCH ARTICLE Open Access
Genetic variation in toll like receptors 2, 7,
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Abstract

Background: Maternal cytomegalovirus (CMV) infection and/or reactivation in pregnancy is associated with a
myriad of adverse infant outcomes. However, the role of host genetic polymorphisms in modulating maternal CMV
status is inconclusive. This study investigated the possible association of single nucleotide polymorphisms in toll-like
receptor (TLR) and cytokine genes with maternal plasma CMV DNA status in black Zimbabweans.

Methods: In a cross-sectional study, 110 women in late gestation who included 36 CMV infected cases and 74 CMV
uninfected, age and HIV status matched controls were enrolled. Twenty single nucleotide polymorphisms in 10
genes which code for proteins involved in immunity against CMV were genotyped using Iplex GOLD SNP
genotyping protocol on the Agena MassARRAY® system. Statistical analyses were performed using Stata SE and the
‘Genetics’ and ‘SNPassoc’ packages of the statistical package R.

Results: The TLR7 rs179008A > T (p < 0.001) polymorphism was associated while the TLR9 rs352139T > C (p = 0.049)
polymorphism was on the borderline for association with CMV positive (CMV+) status. In contrast, the interleukin
(IL)-6 rs10499563T > C (p < 0.001) and TLR2 rs1816702C > T (p = 0.001) polymorphisms were associated with CMV
negative (CMV-) status. Furthermore, allele frequencies of SNPs in TLR2, TLR4, TLR9, TLR7, IL-6, IL-10, IL-28B, IL-1A and
interferon AR1 (IFNAR1) genes are being reported here for the first time in a Zimbabwean population. The allele
frequencies in the Zimbabwean population are generally comparable to other African populations but different
when compared to European and Asian populations.

Conclusions: Toll-like receptor and interleukin genetic polymorphisms influence CMV status in late gestation
among black Zimbabweans. This is attributable to possible modulation of immune responses to CMV reactivation in
a population previously exposed to CMV infection.
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Background
Seroprevalence of cytomegalovirus (CMV) amongst
women of reproductive age ranges from 40 to 65% in
the developed world and can reach 100% in developing
countries [1, 2]. CMV infection in pregnancy, in the set-
ting of both primary infection and reinfection, can be
potentially transmitted to the foetus and or neonate,
resulting in congenital CMV (cCMV). The consequences
of CMV range from asymptomatic viraemia to poten-
tially life changing conditions which include mental re-
tardation and congenital sensorineural hearing loss.
Studies have implicated maternal demographics, socio-
economics and HIV status among the strongest determi-
nants of the biased occurrence and vertical transmission
of CMV [3–7]. Furthermore, maternal immune re-
sponses to CMV infection and/or reactivation actively
modulate CMV related disease outcomes [8]. Thus, vari-
ation in genes that encode components of the immune
system that are directly or indirectly involved in the
pathogenesis of CMV have been implicated in CMV in-
fection outcomes [9]. However, the genetic variants, like
seroprevalences and the factors influencing CMV epi-
demiology are heterogenous among populations hence
research findings are equivocal.
Toll-like receptors (TLR) are crucial in the detection

of viruses in circulation and the subsequent elicitation of
an antiviral response [10, 11]. TLRs act as pattern recog-
nition receptors of non-methylated viral CpG-containing
DNA which signals the presence of CMV infection [12].
TLR2 and TLR4 are cell surface receptors while TLR3,
− 7 and − 9 are endosomal receptors [13, 14]. TLRs fa-
cilitate viral attachment and entry resulting in CMV-
elicited signalling antiviral responses such as type 1
interferon activation of nuclear factor kappa β (NF-k β)
and pro-inflammatory cytokine gene expression [12, 15].
Activation of the type 1 interferon producing cascade
and production of cytokines form the major cellular
antiviral mechanisms against CMV [16–18]. Single nu-
cleotide polymorphisms (SNPs) in the TLR2, TLR4,
TLR7 and TLR9 genes were inconclusively reported to
be associated with CMV infection [19–23].
In response to TLR activation, chemokine (interleukin

and interferon) genes signal immediate secretion of ILs
from cells such as macrophages and T-helper cells. Chemo-
kines that trigger an immune cascade by signalling direct
growth, development, maturation, activation and increased
life-span of immune cells. In the case of CMV infection,
chemokines signal: maturation of B-lymphocytes into
plasma cells which produce anti-CMV antibodies, and acti-
vation of cytotoxic T cells for destruction of CMV infected
cells [24, 25]. The differential response to CMV exposure
with some but not all exposed individuals developing
CMV-related diseases suggests a possible role of host gen-
etic variation in immune response. A study by Sezgin et al.
[26] showed that human interleukin-10 receptor variants
potentially interfere with IL-10 binding and signal transduc-
tion influencing susceptibility to CMV retinitis. In a large
Swiss HIV Cohort Study, the effect of IFNL3 TT/−G
substitution, the variant allele was associated with oc-
currence of CMV retinitis [27]. The same allele was
also associated with susceptibility to CMV replication
in transplant patients [28].
Detection of host genetic variants which may confer re-

sistance to CMV infection and reactivation could reveal
potential therapeutic targets against pregnancy related
CMV disease. Furthermore, host genetic determinants of
CMV disease outcomes could be used as predictors of ad-
verse outcomes of maternal CMV. While the host genetics
of CMV have been studied in other populations, a glaring
gap in knowledge exists among Africans. The differences
in genomic variation between Africans and other popula-
tions cannot be over-emphasised, hence findings from
other populations may not be an accurate reflection in
Africans.
The aim of the present study was to determine if sin-

gle nucleotide polymorphisms in genes that encode
components of the immune system are associated reacti-
vation of CMV in late pregnancy.

Methods
Study participants
This study was carried out among pregnant women in
late gestation, seeking antenatal care at three polyclinics
in Harare’s Kuwadzana, Dzivarasekwa and Glenview
high density suburbs who were recruited in the Univer-
sity of Zimbabwe College of Health Sciences Birth Co-
hort (MRCZ/A/1968). The general study design, setting
and participants characteristics for the main cohort are
described elsewhere [29]. In summary, this cross-sectional
nested sub-study enrolled 110 women aged 18 to 42 years,
including 36 CMV infected cases and 74 CMV uninfected,
age- and HIV status matched controls. All participants
previously tested positive for CMV IgG antibodies hence,
cases were presumed to have reinfection/reactivation.
Whole blood and plasma specimens archived at enrol-
ment were retrieved for host genotyping and CMV DNA
detection, respectively. CMV status of participants was de-
termined by detection of CMV DNA in plasma using the
real time polymerase chain reaction (PCR) kit (RealStar
CMV Kit v1.0, Altona Diagnostics, Hamburg, Germany),
following manufacturer’s instructions.

Genotyping of candidate genes
Using candidate gene approach, 20 SNPs in 10 genes
were selected for genotyping (Table 1). Selection of
SNPS was based on the following criteria: previously
reported association or plausible association with CMV
infection and/or other viral infection, a minor allele



Table 1 Single nucleotide polymorphisms included in this study

Gene SNP Chrom Genomic region Functional effect

TLR2 rs4696480T > A 4 Intron ↓transcriptional activity

TLR2 rs3804099C > T 4 Exon ↓protein activity

TLR2 rs1816702C > T 4 Intron ↑protein levels

TLR4 rs1554973C > T 9 3’UTR ↓transcriptional activity

TLR4 rs2737190G > A 9 5’UTR ↑transcriptional activity

TLR4 rs10759932T > C 9 Promoter ↑transcriptional activity

TLR4 rs7856729G > T 9 3’UTR Not known

TLR7 rs179008A > T X Exon ↓protein activity

TLR9 rs352139T > C 3 Intron ↑transcriptional activity

TLR9 rs5743836A > G 3 Promoter ↓transcriptional activity

TLR9 rs187084A > G 3 Promoter ↓transcriptional activity

TLR9 rs352140C > T 3 Exon Not known

IL-6 rs10499563T > C 7 Promoter ↑transcriptional activity

IL-6R rs4537545T > C 1 Intron Not known

IL-10 rs1800872G > T 1 Promoter ↑transcriptional activity

IL-10 rs1878672G > C 1 Intron ↑susceptibility to infection

IL-28B rs12979860T > C 19 Intron ↓protein activity

IFNAR1 rs2843710C > G 21 5’UTR ↓transcriptional activity

IFNAR1 rs113181057T > C 21 Exon ↓protein activity

IL-1A rs1800587T > C 2 5’UTR ↑transcriptional activity

Key: SNP Single nucleotide polymorphism, Chrom Chromosome number, TLR Toll-like receptor, IL Interleukin, IFNAR Interferon α, UTR Untranslated region, ↑
increased, ↓ decreased, N/A not reported, NB Functional effects accessed on dbSNP (http://www.ncbi.nlm.nih.gov/SNP/
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frequency (MAF) ≥10% in African populations reported
in the dbSNP database (Available from: http://www.ncbi.
nlm.nih.gov/SNP/), except for the rs113181057 SNP
whose MAF in African populations was not previously
reported. Host genomic DNA was extracted from 200 μl
of whole blood using the Quick-DNA™ MiniPrep Plus
Kit (Zymo Research, Irvine, CA, USA), according to
manufacturer’s instructions. All DNA samples were di-
luted to a concentration of approximately 50 ng/ul in
preparation of genotyping. SNPs were genotyped using
Iplex GOLD SNP genotyping protocol on the Agena
MassARRAY® system (Agena BioscienceTM, San Diego,
CA, USA).

Statistical analysis
Data were compiled and managed in Research Electronic
Data Capture (REDCap) [30]. Statistical analyses were
performed using Stata SE, version 15 (StataCorp, College
Station, Texas, USA) and the ‘Genetics’ and ‘SNPassoc’
packages of the statistical package R (version 3.4.3
[2017-11-30], The R Foundation for Statistical Comput-
ing, Vienna, Austria). Numerical variables are described
as either median and 25th to 75th percentiles for skewed
variables or mean and standard deviation for normally
distributed variables, with groups comparisons via
Mann-Witney U-test and Student’s t-test respectively.
Categorical variables are described as frequencies and
compared across groups using Chi squared test. p-value
< 0.05 was considered statistically significant. Genotype
and allele frequencies were calculated using ShesisPlus
[31]. SNPs were tested for departure from Hardy-
Weinberg Equilibrium (HWE) expectation using a Chi
square goodness of fit test. Association between SNPs
and CMV status was determined using univariable logis-
tic regression analysis. Bonferroni correction was used to
account for simultaneous comparison of multiple SNPs.
Dominant, log-additive, codominant, recessive and over-
dominant inheritance models were interrogated for asso-
ciation of SNPs with CMV infection. Furthermore,
multivariate logistic regression analysis of SNPs that
were associated with CMV infection in the univariate
analysis was carried out to adjust for their effect on each
other in a model that also contained BMI as covariate.

Results
Study participants’ demographic and clinical
characteristics
The demographic and clinical characteristics of the 110
participants are summarised in Table 2. All participants
were of child bearing age (median 28 years, 25th–75th
percentile: 23–34). The group of women with a positive
CMV DNA (CMV+, n = 36) status (median 24 kg/m2,

https://www.ncbi.nlm.nih.gov/SNP/
https://www.ncbi.nlm.nih.gov/SNP/
http://www.ncbi.nlm.nih.gov/SNP/


Table 2 Participants’ demographic and clinical characteristics

Characteristic CMV-
(n = 74)

CMV+
(n = 36)

P-value

aAge in years 29 (23–34) 28 (23–33) 0.85
bGestational age, weeks 32.4 ± 4.8 32.1 ± 3.5 0.73
bSBP, mmHg ± sd 113 ± 14 109 ± 9 0.037
bDBP, mmHg ± sd 70 ± 10 67 ± 9 0.13
bPulse rate, bpm ± sd 82 ± 10 80 ± 12 0.33
aBMI 26.3 (24.3–28.8) 24.2 (21.7–27.3) 0.006
aparity 1 (0–2) 1 (0–2) 0.31
agravidity 3 (2–4) 2 (1–3) 0.62

HIV infected n (%) 45 (61) 28 (78) 0.08
aincome in USD/month 235 (171–300) 225 (153–332) 0.97

Education n (%) 0.30

Secondary 67 (91) 30 (83)

Primary 4 (5) 5 (14)

Tertiary 3 (4) 1 (3)

Key: CMV Cytomegalovirus, CMV + CMV infected, CMV- CMV uninfected, BMI
Body mass index, agiven as median and interquartile range, bgiven as mean
and standard deviation
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25th–75th percentile: 22–27) had a significantly lower
body max index (BMI) than the group who tested nega-
tive for CMV DNA (CMV-, n = 74) (median 26 kg/m2,
25th–75th percentile: 24–29); p = 0.006. CMV+ partici-
pants also had significantly lower systolic blood pressure
when compared with the CMV- participants. Age, gesta-
tional age, parity, gravidity, diastolic blood pressure,
pulse rate, income, level of education and HIV status
were comparable between CMV+ cases and CMV-
controls.

Association between SNPs and CMV infection
Genotype data for the 20 SNPs genotyped was available
for all 110 participants and the SNP rs113181057 on the
IFNAR1 gene was monomorphic in the study population.
There was a departure from Hardy-Weinberg equilibrium
(HWE) for four of the 20 SNPs: TLR7 rs179008 in cases,
TLR2 rs1816702 and IL-6 rs10499563 in the controls and
IFNAR1 rs2843710 in both groups. An additional table
shows genotype frequencies in the CMV+ and CMV- nega-
tive groups and the univariate logistic regression analyses of
SNPs and CMV status (see Additional Table 1). Using
the univariate logistic regression analysis of codominant
and log additive inheritance models, 4 SNPs
(rs10499563 (p < 0.001), rs179008 (p < 0.001), rs1816702
(p = 0.002) and rs352139 (p = 0.003) were significantly
associated with CMV DNA status (Additional Table 1).
The IL-6 rs10499563T > C polymorphism was signifi-
cantly associated with lower risk of CMV infection.
When compared to the IL-6 rs10499563T/T genotype,
the rs10499563T/C was associated with a lower risk of
CMV infection as the genotype was significantly (p <
0.001) less frequent in the CMV+ group (14%) than the
CMV- group (70%). Likewise, the TLR2 rs1816702C > T
SNP was significantly associated with lower risk of
CMV infection. Genotype rs1816702C/C genotype was
significantly (p = 0.002) higher in the CMV+ (47%) than
the CMV- women (11%).
In contrast, TLR7 (rs179008A>T) and TLR9 (rs352139T>

C) polymorphisms were associated with an increased risk of
CMV infection. The TLR7 rs179008C/C genotype was
significantly higher in the CMV+ group than the CMV-
group (31% vs. 3%; p < 0.001. With reference to the
TLR9 rs352139T/T genotype, both the rs352139T/C
and rs352139C/C genotypes were significantly (p =
0.005) higher in the CMV+ women (28 and 58% re-
spectively) than in the CMV- women (11 and 47% re-
spectively). These associations remained significant
after correction for multiple comparisons (Fig. 1).
When other models of genetic inheritance were consid-
ered, the association of IL-6 rs10499563 maintained sig-
nificant association with CMV status after Bonferonni
correction (BC) in dominant, and overdominant models.
SNPs rs1816702 and rs179008 also maintained signifi-
cance with CMV status after BC in the dominant and re-
cessive models (Fig. 1).
Table 3 shows multivariable logistic regression analysis

of SNPs (rs10499563, rs179008, rs1816702 and rs352139)
that were associated with CMV status in the univariable
analyses. BMI was also included in the model. All SNPs
maintained significant association with CMV infection
status in at least one of the models. However significant
association of rs352139 with CMV status was borderline
(p = 0.049) in the log additive model while it was not sig-
nificant in the other models. BMI’s association with CMV
status also substantially attenuated in the multivariable lo-
gistic regression model (p = 0.068).
The IL-6 rs10499563T > C SNP was associated with

low likelihood of CMV positivity in codominant (OR =
0.05; 95%CI = 0.01–0.25, p = 0.001) as well as in the log
additive, dominant and overdominant models. The result
shows the association of the C allele with lower odds of
CMV infection even in heterozygous state (rs10499563
T/C). For the TLR7 rs179008A > T SNP, the T allele was
significantly associated with higher odds of CMV infec-
tion in the codominant model (OR = 3.67; 95%CI = 0.79–
116.99; p < 0.011) which, was maintained in the log addi-
tive, recessive and dominant models. Hence T allele will
likely be associated with CMV+ status in both homozy-
gous and heterozygous states (rs179008T/T and
rs179008A/T). The TLR2 rs1816702T > C was signifi-
cantly associated with decreased risk of CMV positivity
both in the codominant (OR = 0.05; 95%CI = 0.01–0.25,
p = 0.001) as well as in the log additive, dominant and
overdominant models. Hence, risk of CMV infection will



Fig. 1 Plot of log10 p-values for the association of gene with CMV DNA across models of genetic associations. For each figure panel, the lower
dotted horizontal line is for the nominal p-value threshold for significance (0.05), while the upper dotted blue line for the Bonferroni corrected
threshold p-value for significance

Mhandire et al. BMC Medical Genetics          (2020) 21:113 Page 5 of 9
be decreased in the homozygous state, rs1816702C/C.
The TLR9 rs352139 was significantly associated with
likelihood of CMV infection, only in the log additive
model (OR = 2.85: 95%CI = 0.95–8.58; p = 0.049).

Comparison of variant allele frequencies from this study
with other populations
The variant allele frequencies of the genotyped SNPs
were compared with data from two other populations:
Asians and Europeans. Table 4 gives variant allele fre-
quencies for the genotyped SNPs in this study as well as
for Asians and Europeans as reported on dbSNP.

Discussion
The outcome of an infection is determined, in part, by
the intensity of the inflammatory response [32], which
varies between individuals and can be regulated at the
genetic level [33]. In this study, we hypothesised the pos-
sible contribution of genetic variation to the biased oc-
currence of CMV infection among pregnant women.
SNPs may influence the rate and regulatory dynamics of
gene transcription, stability of mRNA as well as produc-
tion and biological activity of resultant protein. We
therefore investigated possible association between CMV
infection and SNPs in 19 genes which encode proteins
that are or may be involved in the immune reaction cas-
cade against CMV. The departure from HWE in poly-
morphic SNPs is due to their association with CMV
infection mainly because the departure is being observed
when cases and controls are separated but HWE is
maintained when the two groups are combined. We
report a significant association between each of;
rs10499563, rs179008, rs1816702 and rs352139 SNPs
and CMV DNA status. To our knowledge, this is the
first report on SNPs and CMV infection in an African
setting.
To minimise the confounding effects of age and HIV

status, which are directly related to immune function,
enrolled participants were age and HIV status matched.
The observation that overweight women were less likely
to be CMV+ contradicts findings from previous studies
where CMV infection was associated with metabolic
syndrome, higher BMI and or obesity [34, 35]. Our find-
ings could be due to none of the participants having any
form or history of metabolic syndrome. Hence, we were
unlikely to observe any significant associations. The



Table 3 Multivariable adjusted models containing BMI and
significant SNPs in univariable analysis for CMV status

SNP Model Genotype OR (95%CI) p-value

TLR2 rs1816702 Codominant C/T 0.09 (0.02–0.43) 0.001

T/T 0.06 (0.01–0.48)

Dominant C/T-T/T 0.08 (0.02–0.37) 0.0003

Recessive T/T 0.32 (90.07–1.50) 0.133

Overdominant C/T 0.29 (0.08–1.01) 0.044

Log additive 0,1,2 0.22 (0.08–0.62) 0.001

TLR7 rs179008 Codominant A/T 3.67 (0.79–116.99) 0.011

T/T 18.69 (1.59–220.04)

Dominant A/T-T/T 6.05 (1.53–23.94) 0.006

Recessive T/T 13.15 (1.15–149.74) 0.013

Overdominant A/T 2.27 (0.53–9.68) 0.262

Log additive 0,1,2 4.08 (1.46–11.39) 0.003

TLR9 rs352139 Codominant T/C 2.87 (0.50–16.58) 0.144

C/C 8.13 (0.90–73.63)

Dominant T/C-C/C 3.58 (0.65–19.66) 0.121

Recessive C/C 3.65 (0.67–19.77) 0.124

Overdominant T/C 1.05 (0.30–3.68) 0.938

Log additive 0,1,2 2.85 (0.95–8.58) 0.049

Il-6 rs10499563 Codominant T/C 0.05 (0.01–0.25) < 0.001

C/C 0.42 (0.05–3.77)

Dominant T/C-C/C 0.08 (0.02–0.31) < 0.001

Recessive C/C 1.53 (0.21–11.39) 0.682

Overdominant T/C 0.06 (0.01–0.27) < 0.001

Log additive 0,1,2 0.19 (0.06–0.58) 0.001
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observation that CMV positivity is significantly associ-
ated with low systolic blood pressure contrasts with pre-
vious findings which have shown increasing systolic
blood pressure with CMV positivity [36, 37]. It is worth
noting that the previous studies were carried out in non-
pregnant adults, hence discrepancy in findings could be
due to the well documented effects of pregnancy on
fluctuations in blood pressure [38, 39] masking the ef-
fects of CMV infection.
We found an association between SNP rs10499563 (−

6331 T > C), located within the promoter region of IL-6
gene which regulates the rate of IL-6 gene transcription
[40] and CMV DNA status. Individuals carrying the C
allele were less likely to be CMV infected, hence likeli-
hood of being CMV DNA positive decreased with geno-
types T/T>> > T/C> > C/C. Individuals heterozygous (T/
C) and homozygous (C/C) for the variant allele were sig-
nificantly less likely to be CMV infected than individuals
homozygous for the T allele (T/T). The IL-6 gene codes
for IL-6, a versatile inflammatory cytokine whose func-
tion is related to its expression in the tissue. Smith et al.
previously reported higher level of serum IL-6, in
individuals with wildtype T/T genotype compared to in-
dividuals with C/C genotype, among coronary artery by-
pass patients (Smith et al. [41]).
Our findings could at least in part, be explained by results

from the Smith et al. study. Being a pro-inflammatory cyto-
kine, abundance of IL-6 in circulation could promote CMV
activation. In contrast, the low levels of IL-6 associated with
the rs10499563C allele would disfavour the occurrence of
CMV infection. Serum IL-6 levels were reported to be sig-
nificantly higher among the CMV infected pregnant
women compared to the CMV uninfected in a Chinese
cohort [42].
We also report an association between CMV DNA sta-

tus and rs179008, a non-synonymous A > T (Gln11Leu)
polymorphism within exon 3 of the TLR7 gene [43]. The
resulting glycine to leucine change has been suggested
to code for a functionally impaired TLR7 protein [44,
45]. In the present study, the T allele was associated with
significantly lower odds of CMV positivity. Individuals
homozygous for the variant allele T/T were significantly
less likely to be CMV infected compared to individuals
homozygous for the wildtype allele A/A.
Upon recognising pathogen associated molecular pat-

terns (PAMP), TLR7 activate a signalling cascade which
activates type I IFN, dendritic cells (DCs) and B lympho-
cytes [46]. Activated type 1 IFN, DCs and B cells are re-
sponsible for pathogen clearance, antigen recognition
and antibody production. The induced immune cascade
is critical in CMV clearance. In the presence of the T al-
lele which results in a less potent protein, an insufficient
signal is mounted by TLR7, hence carriers of the
rs179008 T allele are at a greater risk of CMV infection.
The rs179008 T allele has been linked with unfavourable
outcomes in HIV and other viral infections. The variant
was associated with increased susceptibility to HIV-1
and decreased IFNα production in HIV uninfected
women [47]. The T allele has also been previously asso-
ciated with a higher risk of hepatitis C infection and
cCMV. Our findings are therefore contrasting with pre-
vious reports suggesting that the rs179008A > T SNP
could be in linkage disequilibrium with another func-
tional SNP or epistatic gene which masks the effects of
rs179008A > T.
CMV DNA status was also associated with rs1816702C >

T, a SNP located in intron 2 of the TLR2 gene. The C vari-
ant was significantly more prevalent in cases than in con-
trols which means that participants with the rs1816702 C/
C genotype were at a higher risk of being CMV+ than those
with rs1816702 T/T genotype. TLR2 recognise CMV glyco-
proteins B (gB) and gH in a process which facilitates entry
of CMV into immune cells [15, 48]. The rs1816702T allele
is associated with significantly elevated levels of inflamma-
tory monocytes expressing CD14+/TLR2+ receptors than
rs1816702C allele [49]. This could explain our findings of a



Table 4 Comparison of variant allele frequencies of genotyped SNPs with other populations

Gene SNP Variant allele Zimbabwean (This study) Other Africans Europeans Asians

TLR2 rs4696480 A 0.31 0.37 0.52 0.57

TLR2 rs3804099 T 0.45 0.36 0.56 0.72

TLR2 rs1816702 T 0.47 0.43 0.12 0.00

TLR4 rs1554973 T 0.20 0.21 0.77 0.86

TLR4 rs2737190 A 0.14 0.16 0.33 0.37

TLR4 rs10759932 C 0.19 0.25 0.85 0.76

TLR4 rs7856729 T 0.38 0.33 0.13 0.10

TLR7 rs179008 T 0.23 0.12 0.23 0.00

TLR9 rs352139 C 0.42 0.61 0.55 0.40

TLR9 rs5743836 G 0.36 0.42 0.13 0.00

TLR9 rs187084 G 0.30 0.29 0.43 0.40

TLR9 rs352140 T 0.32 0.29 0.55 0.39

IL-6 rs10499563 C 0.31 0.27 0.23 0.16

IL-6R rs4537545 C 0.26 0.34 0.37 0.32

IL-10 rs1800872 T 0.40 0.44 0.24 0.68

IL-10 rs1878672 C 0.25 0.26 0.45 0.05

IL-28B rs12979860 G 0.70 0.82 0.86 0.97

IFNAR1 rs2843710 G 0.30 0.31 0.41 0.36

IFNAR1 rs113181057 C 0.00 N/A N/A N/A

IL-1A rs1800587 C 0.65 0.60 0.71 0.93

Key: SNP Single nucleotide polymorphism, TLR Toll-like receptor, IL Interleukin, IFNAR Interferon α
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higher risk of CMV among rs1816702C/C carriers because
their immune response against CMV is impaired due to
lower TLR2 expression compared to the T/T. Homozygos-
ity for the rs1816702C allele has also been associated with
increased odds of Mycobacteria leprae infection and in-
flammatory bowel disease which were attributable to al-
tered NFκB-mediated inflammatory response [50, 51].
The intronic SNP rs352139T > C in the TLR9 gene

was also associated with CMV DNA status. Homozygous
rs352139C/C individuals were at a significantly higher
risk of being CMV+ compared to homozygous T/T car-
riers. The effect of the C allele on risk of CMV infection
was also observed in the dominant and recessive models
where the significance of the compound heterozygous
(T/C) and homozygous (C/C) genotypes had a greater
risk than the homozygous (C/C) alone, relative to the T/
T genotype in both cases. The higher risk of CMV posi-
tivity in homozygous carriers of the C allele suggest that
the polymorphism results in a less potent protein com-
pared to the T allele. Since the polymorphism is in-
tronic, it likely creates an alternative splicing site thus,
affecting mRNA transcription and the final protein
product. A less potent protein would have decreased
ability to form dimers that are required to illicit an im-
mune reaction. Individuals who are homozygous T/T
have impaired immune responses against CMV infec-
tion, hence are more likely to experience CMV infection
or reactivation. The HIV rapid progressor phenotype has
been linked to homozygosity for rs352139T allele also
due to reduced TRL9 potency [52].
Conflicting findings were reported reduced risk of

cCMV associated with the rs352139T/T genotype
among infants in Poland [53]. The conflicting effect of
rs352139T variant have also been reported in bacterial
infection studies in Indonesia and Mexico, perhaps due
to ethnic differences [54, 55]. We suggest that rs352139
could be in linkage disequilibrium (LD) with a poly-
morphic regulatory region that controls TLR9 expression
or serves as a functional region SNP. LD patterns differ
with level of genetic diversity among different ethnic
groups, hence the effects of one SNP may vary from one
population to another. Minor allele frequencies for these
SNPs which seem to affect CMV infection risk were
compared to other populations. TLR2 rs4696480A and
TLR4 rs1075993T alleles, respectively, have lower fre-
quencies among Zimbabweans (0.31 and 0.20) and other
African populations (0.37 and 0.21) when compared to
European (0.52 and 0.77) and Asian (0.57 and 0.86)
populations. On the other hand, TLR4 rs7856729T and
TLR9 rs5743836G, respectively, are proportionally
higher in Zimbabwean (0.38 and 0.36) and other
Africans (0.33 and 0.42) when compared to European
(0.13 and 0.13) and Asian (0.10 and 0.00) populations.
These differences in the distribution of risk alleles of
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world populations, is likely to lead to differential re-
sponses upon exposures to infectious pathogens. Indeed,
the adaptive immune responses to the β-coronaviruses,
MERS-CoV and SARS-CoV, are that can cause fatal
lower respiratory tract infections, are marshalled by T
cells, CD4+ T cells, and CD8+ T cells, through among
other processes, activate other downstream cytokine and
chemokine cascades, such as IL-1, IL-6, IL-8, IL-21 and
TNF-β [56]. The molecular patterns displayed by viruses
are then sensed by different immune cellular pathogen
recognition receptors, including toll-like receptors (TLR:
2, 3, 4, 7, 8, and 9) [57]. Whether this genetic heterogen-
eity among populations plays an active role in the differ-
ential prevalence of CMV is unclear and is an area of
further research which should also consider the strong
influence of environmental factors.

Conclusions
We conclude that TLR2, − 7, − 9 and IL-6 genetic poly-
morphisms are associated CMV status in late gestation
among the black Zimbabweans. TLRs and ILs modulate
immune responses to CMV, hence polymorphisms in
genes encoding the receptors and cytokines could inter-
fere with the immune mechanisms, hence their associ-
ation with CMV status. We recommend that future
studies consider evaluating the profiles of immune re-
sponse genes and the polymorphisms in these genes on
their possible effects in viral infections. With respect to
CMV, we recommend a mother-infant longitudinal ap-
proach that will seek to factor in the effect of these im-
munogenetic profiles in congenital CMV and its possible
sequelae.
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