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Abstract

Background: Amelogenesis imperfecta (AI) is a highly heterogeneous group of hereditary developmental
abnormalities which mainly affects the dental enamel during tooth development in terms of its thickness, structure,
and composition. It appears both in syndromic as well as non-syndromic forms. In the affected individuals, the
enamel is usually thin, soft, rough, brittle, pitted, chipped, and abraded, having reduced functional ability and
aesthetics. It leads to severe complications in the patient, like early tooth loss, severe discomfort, pain, dental caries,
chewing difficulties, and discoloration of teeth from yellow to yellowish-brown or creamy type. The study aimed to
identify the disease-causing variant in a consanguineous family.

Methods: We recruited a consanguineous Pashtun family of Pakistani origin. Exome sequencing analysis was
followed by Sanger sequencing to identify the pathogenic variant in this family.

Results: Clinical analysis revealed hypomaturation AI having generalized yellow-brown or creamy type of
discoloration in affected members. We identified a novel nonsense sequence variant c.1192C > T (p.Gln398*) in
exon-12 of SLC24A4 by using exome sequencing. Later, its co-segregation within the family was confirmed by
Sanger sequencing. The human gene mutation database (HGMD, 2019) has a record of five pathogenic variants in
SLC24A4, causing AI phenotype.

Conclusion: This nonsense sequence variant c.1192C > T (p.Gln398*) is the sixth disease-causing variant in SLC24A4,
which extends its mutation spectrum and confirms the role of this gene in the morphogenesis of human tooth
enamel. The identified variant highlights the critical role of SLC24A4 in causing a rare AI type in humans.
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Background
Mature enamel is a thin outer protective layer and
covers the crown of the tooth in the form of a shell [1].
Naturally, it is tough, hard, and highly mineralized trans-
lucent human tissue produced by ameloblasts and is

epithelial in its origin [2]. The biochemical architecture
of dental enamel is of crystals of substituted calcium hy-
droxyapatite (96%), and the 4% is of organic matter and
water [3]. Amelogenesis is a highly intricate biominera-
lizing process controlled by the expression of several
genes [2]. AI affects both the primary and permanent
dentition with exceptionally variable severity of the dis-
ease conditions [4, 5].
Various accounts of both syndromic and non-

syndromic/isolated cases of AI have been published in
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the literature. Depending upon the amount, structure,
and composition of the dental enamel, the phenotypes
of non-syndromic AI are highly variable and may be di-
vided into hypoplastic, hypocalcified, and hypomatura-
tion forms [3, 4].
To date, pathogenic variants causing non-syndromic

AI have been identified in 20 genes at various chromo-
somal locations [3], including AMELX (OMIM 300391;
Xp22.2), a candidate gene for X-linked dominant hypo-
plastic AI (OMIM: 301200) [6], encoding an enamel
matrix protein (EMPs) called amelogenin and making up
to 90% of the ameloblast secreted EMPs [7, 8]. ENAM
(OMIM 606585; 4q13.3), encoding the largest EMP
called enamelin, a tooth specific protein expressed by
ameloblasts, causing an autosomal recessive (OMIM:
204650) and dominant forms of AI (OMIM 104500) [9,
10]. AMBN (OMIM 601259; 4q13.3) encodes a glycine,
leucine, and proline-rich enamel matrix protein called
ameloblastin, a second most abundant protein expressed
during amelogenesis. AMBN associated AI segregates in
an autosomal recessive fashion [11, 12]. LAMB3 (OMIM
150310; 1q32.2), LAMA3 (OMIM 600805; 18q11.2),
COL17A1 (OMIM 113811; 10q25.1), ITGB6 (OMIM
147558; 2q24.2) and ACPT (OMIM: 606362; 19q13.33)
are other genes that cause hypoplastic AI in their altered
forms [13–20]. Mutations in FAM83H (OMIM 611927;
8q24.3) cause an autosomal dominant hypocalcified type
of AI [6, 21]. However, SLC24A4 (OMIM 609840;
14q32.12), WDR72 (OMIM 613214; 15q21.3), MMP20
(OMIM 604629; 11q22.2), KLK4 (OMIM 603767;
19q13.41) and GPR68 (OMIM 601404; 14q32.11), cause
autosomal recessive hypomaturation type of AI [6, 22–
26]. MMP20 (OMIM 604629; 11q22.2) and KLK4
(OMIM 603767; 19q13.41) are the two proteinases se-
creted at the time of enamel formation [27]. Neverthe-
less, in the case of C4orf26 (OMIM 614829; 4q21.1), and
AMTN (OMIM 610912; 4q13.3) mutations cause auto-
somal recessive and dominant hypo-mineralized amelo-
genesis imperfecta, respectively [28, 29]. Recently, RELT
(OMIM 611211; 11q13.4) variants are identified, causing
hypocalcified amelogenesis imperfecta type IIIC [30].
Occasionally, AI has been reported as a part of a syn-

drome. The most common of them include Tricho-
Dento-Osseous (TDO; OMIM 190320) syndrome
(DLX3, OMIM 600525), Laryngo-Onycho-Cutaneous
(LOC; OMIM 245660) syndrome (LAMA3, OMIM
600805), Jalili syndrome (JS; OMIM 217080) (CNNM4,
OMIM 607805), Amelogenesis Imperfecta and Nephro-
calcinosis (OMIM 204690) (FAM20A, OMIM 611062),
Kohlschutter-Tonz Syndrome (KTS; MIM 226750)
(ROGDI, OMIM 614574), Amelo-Onycho-Hypohidrotic
Syndrome (OMIM 104570), and Heimler Syndrome-1,2
(HMLR; OMIM 234580) (PEX1, PEX6, OMIM 602136,
601,498).

Here, we report a novel nonsense variant c.1192C > T
(p.Gln398*) in exon-12 of SLC24A4 in non-syndromic
AI patients in a family of Pakistani origin.

Methods
Patients recruitment, pedigree construction, and DNA
extraction
The recommendations of the Declarations of Helsinki
were strictly followed for the approval of the study from
the Research and Ethical Committee of Kohat University
of Science and Technology (KUST), Khyber
Pakhtunkhwa, Pakistan. Informed written consent was
obtained from the affected and unaffected participants.
A five generational pedigree diagram was constructed
after a thorough interview of the unaffected mother (III-
4). The pedigree showed an autosomal recessive mode
of inheritance (Fig. 1A). Venous blood samples were col-
lected from seven members of the family, including two
patients (IV-4, IV-5) and five phenotypically unaffected
individuals (III-4, IV-1, IV-3, IV-7, V-1). The extraction
of genomic DNA from whole peripheral blood was per-
formed by using the GeneJET Genomic DNA extraction
Kit (Thermo-scientific, Lithuania), strictly following the
manufacturer’s protocol.

Exome sequencing, and validation of rare variants
through DNA sequencing
DNA (70 ng/μl) of an affected member (IV-4) was sub-
jected to exome sequencing. The enrichment of DNA
for the intron-exon boundaries was carried out with the
SeqCap EZ human exome library v2.0 kit. The Illumina
HiSeq 4000 sequencing machine via a paired-end 100-bp
protocol [31] was used to run the generated libraries.
The Cologne Center for Genomics (CCG) Varbank pipe-
line v2.26 (https://varbank.ccg.uni-koeln.de/) was used
for exome data analysis. The mean coverage of the data
was 77%, while at 20X and 10X, the coverage of the tar-
geted bases was 92.6 and 96.6%, respectively. Genome
Aggregation Database (gnomAD; https://gnomad.broad
institute.org/) was consulted to establish the minor allele
frequency (MAF; value < 0.01) of the variants. As con-
trols, an in-house database of 511 exomes, and a dataset
of 65 exomes from the Pakistani population, including
44 exomes from Punjabi, Sindhi, and Balochi patients,
and 21 exomes of ethnically matched Pakhtoon patients
were also consulted. The rare variants in PSPH,
CHCHD2, BNC2, and SLC24A4 were selected from the
exome data and were considered for the co-segregation
analysis. The online prediction tools like MutationTa-
ster, PROVEAN, SIFT, and PolyPhen2.0 were used to
predict the pathogenicity of the missense variants
(Table 1). The reference sequences of PSPH, CHCHD2,
BNC2, and SLC24A4 (NM_004577.3, NM_016139.2,
NM_017637.5, NM_153646.3, respectively) were
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obtained from the University of California Santa Cruz
(UCSC) genome database browser (http://genome.ucsc.
edu/cgi-bin/hgGateway). Primer3Plus software (http://
www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.
cgi) was used for designing the primers for the amplifi-
cation of the regions of interest. A nucleotide sequence
of 600 bp up-and-downstream from the position of the
rare variants was searched to find out a suitable primer
pair (Table 1). PCR amplified the regions of interest and
the Exo-Sap protocol (https://www.thermofisher.com)
was used for purifying the PCR products. The DNA se-
quencing was performed on the ABI3730 genetic

analyzer with BigDye chemistry v3.1. The sequence
alignment against the reference sequence was carried
out by a sequence alignment tool, BioEdit version 6.0.7
(http://www.mbio.ncsu.edu/BioEdit/bioedit.html).

Results
Clinical and radiological investigations
For clinical and radiological investigations, a 35-years
old patient (IV-4) was referred to Khyber Medical Col-
lege of Dentistry, Peshawar, Khyber Pakhtunkhwa,
Pakistan. His major complaints were yellow-brown
staining, eating, and chewing difficulties of all the teeth

Fig. 1 (A) Pedigree of the family where SLC24A4 variant c.1192C > T segregates in an autosomal recessive fashion. The asterisks show tested
individuals. The red arrow indicates the index patient, who was subjected toexome sequencing. T shows the disease-allele while C is the wild-
type presentation (B) The representation of amelogenesis imperfecta in the patients. (i), (ii), and (iii) are the clinical features of patient IV-4
showing yellow-brown discoloration, (iv) Orthopantomogram (OPG) of the patient IV-4 showing thin layer of enamel, high radio-density and
distinction from the dentin, while (v) and (vi) are the clinical photographs of the patient IV-5 showing creamy type of discoloration, attrition and
dental caries
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(Fig. 1B-i,ii,iii). The patient presented no complications
of other body organs during the clinical evaluation. The
Orthopantomogramm (OPG) of this patient showed a
thin (hypoplastic) mandible with missing posterior teeth
on the right side and carious molars with a periapical in-
fection on the left side. The maxilla showed impacted
canine in the right premolar region with a missing molar
and spacing among the dentition on the right side of the
arch.
Additionally, the teeth showed generalized horizontal

bone loss, more prominent around the maxillary molars.
OPG also showed the presence of a thin layer of enamel,
especially in the region of molars of the upper jaw. Fur-
thermore, enamel appeared to have higher radio-density
compared to the dentin. Moreover, the dentin appeared
normal and distinct from the enamel (Fig. 1B-iv).
Patient IV-5, the 27-year old brother of patient IV-4,

presented with creamy discoloration and attrition of the
frontal maxillary teeth while dental caries in the man-
dibular premolars and molars (Fig. 1B-v,vi).

Screening of pathogenic sequence variant
Exome sequencing revealed rare homozygous variants in
four genes: PSPH (OMIM 172480; Exon-6, c.398A > G;
p.Arg133Ser), CHCHD2 (OMIM 616244; Exon-3,
c.418G > A; p.Val140Met), BNC2 (OMIM 608669; Exon-
7, c.2860G > A; p.Ala954Thr), and SLC24A4 (c.1192C >
T; p.Gln398*). These variants lie in three regions of
homozygosity (ROH) on chromosome 7 (11.6MB), 9
(3.8 MB), and 14 (4.7MB). The variants in CHCHD2 and
SLC24A4 are neither reported in gnomAD nor HGMD
(Human Gene Mutation Database; http://www.hgmd.cf.
ac.uk/ac/index.php). Both variants in PSPH and BNC2
are tremendously rare in gnomAD, where c.398A > G;
p.Arg133Ser appears in 20 alleles out of 282,490 alleles
(none homozygous) and c.2860G > A; p.A954T is found
in 4 alleles (one is homozygous) out of 246,026 alleles.
These variants are not identified in the in-house data-
base of 511 exomes and 65 exomes of Pakistani patients
with diverse phenotypes other than AI. The pathogen-
icity predictions of the variants in PSPH, CHCHD2, and
BNC2 by four online prediction algorithms are described
in Table 1.
Sanger sequencing was used to check the segregation of

these variants with the disease. The homozygous missense
variants in PSPH, CHCHD2, BNC2 did not segregate
within the family while the homozygous nonsense variant
(c.1192C > T; p.Gln398*) in SLC24A4 revealed its co-
segregation in the family (Fig. 2A). The DNA sequencing
results of this cohort showed three forms of genotypes for
this variant, heterozygous (C/T) (III-4, IV-3, IV-7), homo-
zygous (C/C) wild-type (IV-1, V-1) and homozygous (T/
T) mutant (IV-4, IV-5) (Fig. 1A). A ClinVar (https://www.
ncbi.nlm.nih.gov/clinvar/variation/689492/) accession

number (VCV000689492.1) for this variant has been
allocated.
Exome data did not expose any rare variant in other

genes (AMELX, ENAM, AMBN, LAMB3, LAMA3,
COL17A1, ITGB6, ACPT, FAM83H, WDR72, MMP20,
KLK4, GPR68, RELT, DLX3, CNNM4, ROGDI, PEX1,
and PEX6) reported so far, to cause syndromic and non-
syndromic AI.

Discussion
Five functionally different types of K+-dependent Na+/
Ca+ 2 exchangers (NCKX1–5) have been characterized in
humans [32, 33]. NCKXs are bidirectional membrane
transporters; for example, NCKX4 transports an intra-
cellular Ca+ 2 and a K+ ion in exchange for four extracel-
lular Na+ ions [34]. Each NCKX protein has a unique
role in various biochemical pathways governing the vi-
sion, olfaction, and skin pigmentation [35]. During the
maturation stage of tooth development, SLC24A4
(NCKX4) is involved in the active transport of Ca+ 2 ions
from ameloblasts into the enamel matrix. Genetic alter-
ations in SLC24A4 in the human genome and its knock-
out mice Slc24a4−/− lead to the development of
indisposed calcified enamel [36]. Clinical findings of
Slc24a4−/− mice signify the essential role of this protein
in enamel development [25].
SLC24A4 (OMIM 609840) encodes a protein of 622

amino acids, called solute carrier family 24 member 4
(SLC24A4), which is one of the members of K+-
dependent Na+/Ca2+ exchanger family (SLC24A), com-
prising a total of five members. It has been mapped to
the chromosome 14q32 [33, 36]. SLC24A4 has various
transcripts (NM_153646, NM_153647, NM_153648)
resulting from alternative splicing and the longest iso-
form (NM_153646) contains 17 coding exons. SLC24A4
is highly expressed in many types of tissues, such as
aorta, brain, lungs, and thymus gland [34]. In the case of
developing dentine, SLC24A4 is expressed in amelo-
blasts, and it borders to the membrane in contact with
the developing enamel [37]. The predicted structure for
full-length SLC24A4 protein consists of 11 transmem-
brane helices having two highly conserved transmem-
brane clusters (consisting of 5 transmembrane helices)
linked together by an intracellular (cytoplasmic) loop.
The Na+/Ca2+ exchanger domains are composed of
these transmembrane pockets. Each domain contains a
hydrophobic and highly conserved region of 30–40 resi-
dues called alpha-1 (139–179 amino acids), and alpha-2
(495–526 amino acids) repeats, respectively, which form
ion-binding regions after undergoing highly intricate in-
teractions with each other [25, 38].
We have identified a novel nonsense variant

(c.1192C > T; p.Gln398*) in exon-12 of SLC24A4 by
using exome sequencing. This unusual genetic alteration
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is expected to lead to the loss of function of SLC24A4
protein either by nonsense-mediated decay (NMD) or by
the production of a truncated protein lacking the C-
terminus. Since this nonsense variant introduces a
premature stop codon at the position 398 in the cyto-
plasmic loop between the alpha-1 and alpha-2 repeats;
hence the loss of remaining 225 amino acids (containing
the alpha-2 repeat) is predicted. The two Na+/Ca2+ ex-
changer domains (alpha-1 and alpha-2 repeats) are cru-
cial for the smooth transport of ions, which verifies the
exceptional role of SLC24A4 during amelogenesis. The
absence of one of the two Na+/Ca2+ exchanger domains,
in this case, alpha-2-repeat only will ultimately render
the protein nonfunctional and causes amelogenesis
imperfecta, hypomaturation type AI2A5 (OMIM:
615887) phenotype [25].
To date, a total of five pathogenic variants causing AI

have been identified in the SLC24A4, including three

missense variants, one nonsense variant, and a gross
deletion (Fig. 2B). Parry et al. in 2013 screened 15
Pakistani families and identified two homozygous vari-
ants in SLC24A4, including a missense c.1495A > T
(p.Ser499Cys), and a nonsense variant c.1015C > T
(p.Arg339*) in two consanguineous families. They per-
formed Sanger sequencing of 37 AI patients of different
ethnicities and suggested that pathogenic sequence vari-
ants in SLC24A4 are a rare cause of AI in general, but
might be a frequent cause of AI in Pakistani population
[25]. Researches on three consanguineous Turkish
families have revealed two homozygous missense patho-
genic variants c.437C > T; (p.Ala146Val), c.1317 T > G
(p.Leu436Arg) and a 10 kb (10,042 bp) homozygous
deletion, comprising of exons 15, 16 and most of the
exon-17 (Chr14: 92,957,680-92,967,722del) [36, 39, 40].
During a comparison of AI phenotypes caused by
SLC24A4 variants in patients reported so far in the

Fig. 2 a Chromatograms of an unaffected individual (IV-1) in the upper panel, a carrier (III-4) member in the middle panel and an affected
individual IV-4 in the lower panel. b Hypothetical structure of SLC24A4 containing all 17 exons, showing the positions of genetic alterations in the
previous studies as well as in the present study (red)
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literature, we have concluded that clinical manifestation
of AI is moderately to severely variable among the cases
(Table 2).

Conclusion
The present study aimed to perform a clinical and mo-
lecular evaluation of an autosomal recessive Pakistani
family. We have identified the sixth disease-causing vari-
ant in SLC24A4 (Fig. 2B), which extends its mutation
spectrum and confirms the role of this gene in the mor-
phogenesis of human tooth enamel.
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