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Abstract

Background: Multiple genetic variants have been reliably associated with obesity-related traits in Europeans, but
little is known about their associations and interactions with lifestyle factors in South Asians.

Methods: In 16,157 Pakistani adults (8232 controls; 7925 diagnosed with myocardial infarction [MI]) enrolled in the
PROMIS Study, we tested whether: a) BMI-associated loci, individually or in aggregate (as a genetic risk score - GRS),
are associated with BMI; b) physical activity and smoking modify the association of these loci with BMI. Analyses
were adjusted for age, age2, sex, MI (yes/no), and population substructure.

Results: Of 95 SNPs studied here, 73 showed directionally consistent effects on BMI as reported in Europeans.
Each additional BMI-raising allele of the GRS was associated with 0.04 (SE = 0.01) kg/m2 higher BMI (P = 4.5 × 10−14).
We observed nominal evidence of interactions of CLIP1 rs11583200 (Pinteraction = 0.014), CADM2 rs13078960
(Pinteraction = 0.037) and GALNT10 rs7715256 (Pinteraction = 0.048) with physical activity, and PTBP2 rs11165643
(Pinteraction = 0.045), HIP1 rs1167827 (Pinteraction = 0.015), C6orf106 rs205262 (Pinteraction = 0.032) and GRID1 rs7899106
(Pinteraction = 0.043) with smoking on BMI.

Conclusions: Most BMI-associated loci have directionally consistent effects on BMI in Pakistanis and Europeans.
There were suggestive interactions of established BMI-related SNPs with smoking or physical activity.
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Background
Obesity and its numerous metabolic, atherogenic, osteo-
arthritic, and metastatic comorbidities [1–4] place enor-
mous burdens on health care systems, societies and
individuals worldwide. The global prevalence of obesity
has increased substantially in recent decades; in 2010, it
was estimated that overweight and obesity caused 3·4
million deaths worldwide [5]. Obesity and its comorbidi-
ties present major health and financial challenges in

South Asia, with Pakistan being the ninth highest-
ranking country in terms of the global burden of obesity
[5]. As in many other societies, the obesity epidemic in
South Asians is driven by the recent, widespread adop-
tion of Westernized lifestyles causing chronic positive
energy balance [6]. In South Asians, however, it is widely
believed that these changes in lifestyle are set against a
genetic background that renders this population espe-
cially susceptible to the adverse cardiometabolic conse-
quences of obesity.
While the specific genetic aberrations that give rise to

the high heritability estimates observed for obesity have
been studied extensively in Europeans [7], few studies have
been reported in indigenous South Asian populations. The
identities of 97 independent loci that harbor BMI–
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associated variants are now established in European–an-
cestry populations [8]. Other studies of European-ancestry
populations have explored whether some of these loci
interact with physical activity and smoking to affect obesity
predisposition [9–15], but none has been reported in indi-
genous South Asians to date.
This study was undertaken in 16,157 ethnic Pakistani

adults from the Pakistan Risk of Myocardial Infarc-
tion Study (PROMIS). The aim of the study was to
examine genetic associations and gene-lifestyle inter-
actions for BMI-associated variants previously identi-
fied and replicated in European-ancestry populations
[8]. We focused on comparing the direction and
magnitude of the genetic association signals between
European and Pakistani adults; we also sought to de-
termine if smoking or physical activity modified these
effects.

Methods
Study sample
PROMIS is a case–control study of acute myocardial in-
farction (MI) in participants recruited from six centres
in urban Pakistan. Frequency-matched controls by age
(5-year strata) and sex were identified from patients at-
tending the outpatient clinic for routine checkups, and
visitors to the hospital (including non-blood related visi-
tors of PROMIS cases). Non-fasting blood samples were
collected from each participant. For MI cases data were
collected within 24 h of the onset of symptoms. A
detailed description of the PROMIS study, including par-
ticipant selection criteria, has been published elsewhere
[16–18]. The participants were enrolled from the
National Institute of Cardiovascular Disorders Karachi,
Karachi Institute of Institute of Heart Diseases Karachi,
Red Crescent Hospital Hyderabad, Punjab Institute of
Cardiology Lahore, Multan Institute of Cardiology
Multan, and Faisalabad Institute of Cardiology, Faisal-
abad. All participants provided written informed consent
and the study was approved by the research ethics com-
mittee of the Center for Non-Communicable Diseases
(CNCD) Pakistan and also by regional Ethical Review
committees in the different centres across Pakistan in-
volved in the study. In-addition to the institutional re-
view board (IRB) at CNCD, Karachi, IRBs at National
Institute of Cardiovascular Disorders, Karachi, Punjab
Institute of Cardiology, Lahore, and Tabba Heart Insti-
tute, Karachi approved the study.

Body composition and exposure assessment
Height and weight were measured using calibrated
wall-mounted stadiometers and balance-beam scales,
respectively. BMI was calculated as weight in kilo-
grams (kg) divided by height in meters squared (m2).
Lifestyle factors including smoking and physical

activity were assessed using validated questionnaires
administered by trained research medical officers
[16]. We defined <18.5 kg/m2 as ‘underweight’;
18.5–22.9 kg/m2 as ‘normal weight’; 23–27.5 kg/m2

as ‘overweight’; and >27.5 kg/m2 as ‘obese’, con-
cordant with the WHO recommendations for Asian
populations [19].
To quantify physical activity and tobacco exposure, we

first developed a pilot questionnaire. For exposure to to-
bacco consumption, with the help of local dietician and
physicians, we came up with list of all tobacco items that
are typically consumed in the Pakistani population. Simi-
larly, for physical activity, with the help of an exercise
physiologist, questions pertaining to level of activity at
work, at home, mode of transportation used for com-
muting to work (e.g., bicycle, walking), nature of activ-
ities engaged at leisure time and nature of job were
assessed in the pilot questionnaire. The pilot question-
naire was further used to assess the mode and frequency
of tobacco consumption and nature of physical activity
in 300 participants who were randomly chosen from an
urban resident population in Karachi. The pilot ques-
tionnaire also sought information on any other forms of
tobacco consumption or physical activity through open
ended questions to capture information not covered by
the pilot questionnaire. Based on the responses received
from the participants, the questionnaire was finalized.
Exposure to tobacco consumption was divided into:
“ever” or “never” or “current” and information on
“smoked”, “chewable”, or “snuffed” forms of tobacco was
separately sought. For physical activity, participants were
categorized to have “low”, “moderate”, or “intense” phys-
ical activity based on their responses. We recognize that
we have not used any objective measures to quantify
“physical activity” or “exposure to tobacco”; however the
magnitude of the inverse association between our esti-
mates of physical activity and smoking with BMI in
PROMIS is comparable to what has been reported else-
where for validated instruments, strongly supporting the
validity of our measures. The physical activity variable
was constructed by the cross-tabulation of occupational,
leisure time, and commuting physical activity, such that
the variable categorizes a person’s total physical activity
into three levels: (i) light (ii) moderate and (iii) heavy.
Participants were categorized into never-smokers, ex-
smokers and current-smokers [17] and for the current
analyses; a binary smoking variable was created by
merging the categories for ‘ex-smokers’ and ‘never-
smokers’ (as smoking cessation is likely to convey dif-
ferent effects on BMI than current smoking). Sensitiv-
ity analyses were also conducted in current smokers
vs never smokers by excluding ex-smokers partici-
pants and the genetic estimates were not materially
different (results not shown).
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Genotyping
DNA was extracted from peripheral blood leukocytes
using a phenolchloroform protocol [17]. Genotyping was
performed using the Illumina Human 650 K/ Illumina
Human OmniExpress 770 K. In order to minimize po-
tential bias attributable to plate- or batch-specific geno-
typing errors, DNA plates contained a mixture of cases
and controls, including blank samples [18]. SNPs with
departure from Hardy-Weinberg equilibrium (P-value =
1.0 × 10−6), call rate < 95 % or minor allele frequency
<1 % were excluded from the analyses. Participants who
were cryptically related or those with ambiguous re-
ported sex or with a missing rate for genetic data >5 %
were also dropped from the analyses. The GWAS data
was subsequently imputed to the global 1000 genomes
reference panel (March 2012 (v3)).
Two of the 97 BMI-associated genetic variants

(NRXN3 rs10150332 and SLC39A8 rs1310732) [8], did
not pass genotyping quality control, and so were ex-
cluded from the present analyses. Genotype information
and quality control of the remaining 95 BMI-associated
variants are shown in Additional file 1: Table S1 and al-
lele frequencies were consistent with those reported for
GIH (Gujarati Indians in Houston, Texas) population.
For the 26 SNPs not reported for GIH, allele frequencies
were compared with CEU (Utah residents with Northern
and Western European ancestry from the CEPH collec-
tion) (http://www.ncbi.nlm.nih.gov/variation/tools/1000
genomes) in 1000 Genome (Additional file 2: Table S4).
Hardy-Weinberg equilibrium for 95 BMI associated
SNPs were calculated in control samples as shown in
Additional file 1: Table S1.

Statistical analyses
An un-weighted genetic risk score (GRS) was calculated
based upon 95 BMI-associated variants by summing the
number of BMI-associated alleles [8]. We chose not to
weight the GRS, as the large databases from where those
weightings might be obtained are comprised predomin-
antly of European–ancestry populations, which we felt
might bias the comparison of our findings with previous
studies in Europeans. All variables (e.g., age, BMI and
GRS) were normally distributed. General linear models
(GLM) were used to assess the association of genotypes
(individual SNPs or GRS) with BMI assuming an addi-
tive effect. All the models were adjusted for age, age2,
sex, case/control status and population substructure
(first ten genetic principle components; PCs). Logistic
regression was used to calculate odds ratios (ORs) for
the association of the GRS with obesity (BMI > 27.5 vs
18.5 ≤ BMI < 23). To quantify the descriminative ability
of these 95 BMI-associated variants, the area under the
receiver operating characteristic curve (ROC AUC) was
generated from the logistic regression model and

compared using roccomp package in STATA. Generally,
it is not advisable to study gene-lifestyle interactions in
diseased people, especially when the lifestyle exposures
of interest are commonly known risk factors for the
disease; therefore we undertook the explicit tests of
gene-lifestyle interactions in non-diseased PROMIS par-
ticipants only. Although the main effect analyses of
SNP/GRS were performed in all participants, including
cases, doing so is not susceptible to response bias, as
this type of analyses does not involve the use of self-
reported lifestyle data. Indeed, the inclusion of these
additional 7925 cases in the main effect analysis may be
advantageous, as it likely increases statistical power and
ensures a degree of independence in the populations
studied. Interaction analyses for individual SNPs and
GRS were performed by additionally introducing the
product term (SNP/GRS x lifestyle exposure) along with
the marginal effect terms in the model. All analyses were
performed using SAS version 9.4 (SAS Institute, Cary,
NC) and STATA (version 12, Stata Corp, College
Station, TX, USA) and the analysis script is available
from the authors on request.

Results
Participant characteristics are shown in Table 1. In
total, 16,157 individuals (7925 MI cases/8232 con-
trols) had baseline data available for these analyses.
More men (82 %) than women (18 %) participated in
this study. The GRS has a mean value of 87 risk al-
leles and minimum and maximum values of 64 and
112, respectively.

Main effect of SNP/GRS on BMI
Of the 95 BMI-susceptibility SNPs, 73 showed direction-
ally consistent associations with BMI as reported in the
original study [8]; of which 22 loci (FLJ30838, BDNF,
EHBP1, HHIP, PRKD1, TMEM18, FTO, RASA2, CBLN1,
LOC646736, ETS2, KCTD15, NEGR1, C9orf93, SEC16B,
ZFP64, ASB4, MC4R, NLRC3, GRID1, TCF7L2 and
CALCR) reached P < 0.05 (Fig. 1, Table 2). Consistent
with previous studies in European populations, the most
strongly BMI-associated variant (lowest p-value) in
Pakistanis was MC4R rs6567160, β = 0.24 (SE = 0.05) kg/
m2 per copy of the C allele; (P = 1.2 × 10−7) (Table 2). In
total, these 95 BMI associated variants explain 1.54 % of
the phenotypic variance in BMI in the PROMIS cohort,
which is less than the 2.7 % reported in Locke et al. [8].
In the overall sample, each unit increase (equivalent to

one effect allele) in the GRS was positively associated
with BMI (β = 0.04 (SE = 0.01) kg/m2 per allele; P = 4.5 ×
10−14) as shown in (Fig. 2). When the GRS was catego-
rized into quintiles, the mean BMI difference between
the highest and lowest quintile was 0.54 kg/m2 (Fig. 1).
Each additional GRS risk allele conveyed an odds ratio
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(OR) for obesity of 1.02 (95 % CI: 1.02, 1.03; P = 1.2 × 10
−10). The association of each SNP and the GRS with
BMI were directionally consistent in control and case
samples, and there was no evidence of effect modifica-
tion by disease state (results not shown).

Discriminative accuracy
The discriminative accuracy (ROC AUC) for obesity
[obese (N = 5079); BMI ≥27.5 kg/m2 compared with nor-
mal weight (N = 3512); 18.5 kg/m2 ≤ BMI < 23 kg/m2] of

the model including only the 95 SNPs was 0.590 (95 %
CI: 0.549, 0.573) and the discriminative accuracy of the
model including only age, age2, sex, case/control status
was 0.593 (95 % CI: 0.581, 0.606); adding genotypes to
the latter model increased (P <0.0001) the AUC to 0.635
(95 % CI: 0.623, 0.647) (Fig. 3).

Gene-lifestyle interactions
We tested each of the 95 BMI-associated SNPs for inter-
actions with physical activity and smoking on BMI in

Table 1 Characteristics of the PROMIS study participants

Trait Total sample (N = 16,157) Controls (N = 8232) Cases (N = 7925)

Sex (male/female) % 82/18 80/20 84/16

BMI (kg/m2) 25.8 ± 4.1 25.9 ± 4.3 25.8 ± 3.9

Age (years) 53.8 ± 9.6 54.1 ± 8.9 53.6 ± 10.3

Genetic risk score 87 ± 6 87 ± 6 87 ± 6
aSmoking – N (%)

Never 8045 (50) 4810 (58) 3235 (41)

Ex-smokers 1495 (9) 819 (10) 676 (9)

Current 6537 (41) 2590 (32) 3497 (50)

Physical activity- N (%)

Light 5261 (39) 2749 (41) 2512 (38)

Moderate 6788 (51) 3401 (50) 3387 (51)

Heavy 1394 (10) 634 (9) 760 (11)

Data are means ± SD unless otherwise indicated
aAmong controls, N = 13 and N = 1448 participants miss lifestyle data on smoking and physical activity, respectively
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Fig. 1 Effect estimates for the 95 BMI variants obtained in the PROMIS study (N = 16,157) in comparison to those reported by the GIANT
Consortium (Locke et al. [8]) (N = 339,224)
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Table 2 Cross-sectional association of 95 BMI associated SNPs on BMI in the total PROMIS cohort (N = 16,157)

SNP Nearest gene Effect/other allele β (kg/m2/allele) SE P

rs1000940 RABEP1 G/A −0.06 0.05 0.19

rs10132280 STXBP6 C/A 0.01 0.06 0.87

rs1016287 FLJ30838 T/C 0.12 0.05 0.02

rs10182181 ADCY3 G/A 0.03 0.04 0.55

rs10733682 LMX1B A/G −0.06 0.04 0.18

rs10938397 GNPDA2 G/A 0.02 0.05 0.59

rs10968576 LINGO2 G/A 0.03 0.05 0.58

rs11030104 BDNF A/G 0.11 0.05 0.03

rs11057405 CLIP1 G/A −0.10 0.15 0.48

rs11126666 KCNK3 A/G 0.00 0.05 0.95

rs11165643 PTBP2 T/C 0.04 0.04 0.37

rs11191560 NT5C2 C/T 0.10 0.06 0.07

rs11583200 ELAVL4 C/T −0.05 0.04 0.23

rs1167827 HIP1 G/A −0.01 0.04 0.79

rs11688816 EHBP1 G/A −0.09 0.04 0.04

rs11727676 HHIP T/C 0.32 0.15 0.03

rs11847697 PRKD1 T/C 0.23 0.08 0.01

rs12286929 CADM1 G/A 0.01 0.05 0.85

rs12401738 FUBP1 A/G 0.04 0.05 0.42

rs12429545 OLFM4 A/G 0.10 0.06 0.07

rs12446632 GPRC5B G/A 0.06 0.10 0.56

rs12566985 FPGT-TNNI3K G/A 0.01 0.05 0.82

rs12885454 PRKD1 C/A 0.08 0.05 0.08

rs12940622 RPTOR G/A 0.03 0.05 0.57

rs13021737 TMEM18 G/A 0.25 0.06 3.15E-05

rs13078960 CADM2 G/T 0.09 0.07 0.20

rs13191362 PARK2 A/G 0.00 0.07 0.98

rs13201877 IFNGR1 G/A 0.16 0.08 0.05

rs1441264 MIR548A2 A/G 0.03 0.05 0.50

rs1460676 FIGN C/T −0.04 0.06 0.49

rs1516725 ETV5 C/T 0.07 0.06 0.27

rs1528435 UBE2E3 T/C −0.03 0.05 0.54

rs1558902 FTO A/T 0.19 0.05 8.85E-05

rs16851483 RASA2 T/G 0.20 0.07 0.01

rs16907751 ZBTB10 C/T 0.02 0.06 0.69

rs16951275 MAP2K5 T/C 0.06 0.05 0.17

rs17001654 SCARB2 G/C 0.09 0.08 0.25

rs17094222 HIF1AN C/T 0.02 0.06 0.75

rs17203016 CREB1 G/A −0.03 0.06 0.67

rs17405819 HNF4G T/C 0.07 0.05 0.12

rs17724992 PGPEP1 A/G −0.06 0.04 0.16

rs1808579 C18orf8 C/T −0.02 0.04 0.58

rs1885988 MTIF3 C/T 0.05 0.08 0.54

rs1928295 TLR4 T/C 0.04 0.05 0.41
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Table 2 Cross-sectional association of 95 BMI associated SNPs on BMI in the total PROMIS cohort (N = 16,157) (Continued)

rs2033529 TDRG1 G/A 0.08 0.06 0.14

rs2033732 RALYL C/T 0.07 0.05 0.16

rs205262 C6orf106 G/A 0.06 0.05 0.31

rs2075650 TOMM40 A/G −0.01 0.07 0.90

rs2080454 CBLN1 C/A 0.12 0.05 0.02

rs2112347 POC5 T/G −0.04 0.04 0.39

rs2121279 LRP1B T/C 0.10 0.10 0.32

rs2176040 LOC646736 A/G 0.11 0.05 0.03

rs2176598 HSD17B12 T/C 0.06 0.06 0.31

rs2207139 TFAP2B G/A 0.10 0.05 0.07

rs2245368 PMS2L11 C/T 0.07 0.05 0.16

rs2287019 QPCTL C/T −0.03 0.06 0.61

rs2365389 FHIT C/T −0.02 0.04 0.71

rs2650492 SBK1 A/G 0.03 0.06 0.56

rs2820292 NAV1 C/A 0.09 0.04 0.06

rs2836754 ETS2 C/T 0.16 0.05 7.45E-04

rs29941 KCTD15 G/A 0.10 0.05 0.02

rs3101336 NEGR1 C/T 0.10 0.05 0.03

rs3736485 DMXL2 A/G 0.04 0.04 0.41

rs3810291 ZC3H4 A/G 0.04 0.04 0.36

rs3817334 MTCH2 T/C 0.00 0.05 0.95

rs3849570 GBE1 A/C 0.01 0.05 0.83

rs3888190 ATP2A1 A/C 0.04 0.05 0.45

rs4256980 TRIM66 G/C 0.07 0.04 0.11

rs4740619 C9orf93 T/C −0.09 0.04 0.04

rs4787491 INO80E G/A −0.01 0.04 0.81

rs492400 USP37 C/T 0.03 0.05 0.54

rs543874 SEC16B G/A 0.13 0.06 0.04

rs6091540 ZFP64 C/T 0.10 0.05 0.04

rs6465468 ASB4 T/G −0.14 0.06 0.02

rs6477694 EPB41L4B C/T 0.06 0.04 0.18

rs6567160 MC4R C/T 0.24 0.05 1.15E-07

rs657452 AGBL4 A/G −0.04 0.04 0.40

rs6804842 RARB G/A 0.00 0.04 0.98

rs7138803 BCDIN3D A/G 0.06 0.05 0.16

rs7141420 NRXN3 T/C 0.03 0.04 0.56

rs7164727 LOC100287559 T/C 0.06 0.05 0.20

rs7239883 LOC284260 G/A 0.07 0.05 0.17

rs7243357 GRP T/G 0.07 0.05 0.21

rs758747 NLRC3 T/C 0.15 0.05 1.29E-03

rs7599312 ERBB4 G/A −0.03 0.06 0.66

rs7715256 GALNT10 G/T 0.00 0.04 0.91

rs7899106 GRID1 G/A 0.34 0.14 0.01

rs7903146 TCF7L2 C/T 0.13 0.05 0.01

rs9374842 LOC285762 T/C 0.02 0.05 0.65
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the control sample only. None of these results
remained statistically significant after correction for
multiple testing (P < 0.00026 = P = 0.05/190 tests). We
observed nominally significant SNP x smoking inter-
actions for PTBP2 rs11165643 (Pinteraction = 0.045),
HIP1 rs1167827 (Pinteraction = 0.015), C6orf106
rs205262 (Pinteraction = 0.032) and GRID1 rs7899106
(Pinteraction = 0.043) (Fig. 4). In the case of PTBP2
rs11165643, the association of the T-allele on BMI
was larger among smokers (β = 0.36 kg/m2/per allele,
SE = 0.12, P-value = 0.002) compared to non-smokers
(β = 0.09 kg/m2/per allele, SE = 0.08, P-value = 0.26). A
similar trend of larger effect among smokers com-
pared to non-smokers was observed for HIP1
rs1167827 and GRID1 rs7899106 variants. Whereas,
the effect of the G-allele at C6orf106 rs205262 on
BMI was higher among non-smokers compared to
smokers (Additional file 3: Table S2).
We also observed suggestive evidence of interactions

between physical activity and the CLIP1 rs11057405 (Pin-
teraction = 0.014), CADM2 rs13078960 (Pinteraction = 0.037)
and GALNT10 rs7715256 (Pinteraction = 0.048) loci on
BMI (Fig. 5 and Additional file 4: Table S3). There was
no evidence of an interaction between the GRS and
physical activity or smoking on BMI.

Discussion
We examined genetic associations and gene-lifestyle inter-
actions for 95 established obesity-susceptibility variants in
relation to BMI in 16,157 Pakistani adults. To our know-
ledge, this is the first study examining genetic associations
and gene-lifestyle interactions for established obesity-
susceptibility loci in an indigenous Pakistani population,
and the largest and most comprehensive study of gene-
lifestyle interactions conducted in non-European popula-
tions to date.
The associations of most (77 %) obesity-susceptibility

variants with BMI, although not all statistically signifi-
cant, were directionally consistent with findings from
European-ancestry populations (Fig. 1). We also ob-
served comparable allele frequencies in our population
with those reported in the HapMap GIH (Gujarati

Table 2 Cross-sectional association of 95 BMI associated SNPs on BMI in the total PROMIS cohort (N = 16,157) (Continued)

rs9400239 FOXO3 C/T 0.00 0.04 1.00

rs9540493 MIR548X2 A/G 0.06 0.04 0.17

rs9641123 CALCR C/G 0.10 0.05 0.02

rs977747 TAL1 T/G −0.07 0.04 0.13

rs9914578 SMG6 G/C 0.00 0.05 0.92

rs9925964 KAT8 A/G −0.05 0.06 0.41

Analyses were adjusted for age, age2, sex, MI status, genetic principal components (first 10)

25
.4

25
.6

25
.8

26
26

.2
26

.4
B

M
I (

kg
/m

2)

1 2 3 4 5
GRS

bmi upperci/lowerci

ß±SE= 0.04 ± 0.01 kg/m2, p= 4.5 x 10-14

Fig. 2 Association of the genetic risk score (GRS) based on 95
BMI-associated SNPs and BMI in the PROMIS Study (N = 16,157).
Data represents mean (95 % CI) BMI per quintile of the GRS,
adjusted forage, age2, sex, MI status, and principal components

Fig. 3 The discriminative power of different models to predict risk
of obesity [BMI (kg/m2) ≥27.5 compared with 18.5 kg/m2 < BMI <
23 kg/m2]. The area under the receiver operating characteristic curve
(ROC AUC) is investigated: Model 1 = age, age2, sex and case status;
model 2 = all 95 single nucleotide polymorphisms; model 3 = model
1 +model 2
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Indians in Houston, USA) population. The GIH is a
population emanating from the western Indian state of
Gujarat who migrated to Houston, Texas. The distribu-
tion of the allele frequencies of most of the variants (83
out of 95) in this Pakistani population was also compar-
able to that reported in populations of European origin
[8], reflecting similar linkage disequilibrium patterns in
the Pakistani and European genomes.
The MC4R (rs6567160) and TMEM18 (rs13021737)

loci showed the strongest associations (lowest P-values)

with BMI (0.24 and 0.25 kg/m2 higher BMI per risk al-
lele with P = 1.1 × 10−07 and P = 3.1 × 10−05, respectively)
in this study. We observed nominal interactions with
smoking for the PTBP2 rs11165643, HIP1 rs1167827,
C6orf106 rs205262 and GRID1 rs7899106 on BMI. We
also observed nominal interactions of physical activity
with CLIP1 rs11583200, CADM2 rs13078960 and
GALNT10 rs7715256 on BMI. None of these interaction
effects remained statistically significant after Bonferroni
correction for multiple testing; hence these results

24
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C: rs205262 (C6orf106)
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Fig. 4 Association of PTBP2 rs11165643 (a), HIP1 rs1167827 (b), C6orf106 rs205262 (c) and GRID1 rs7899106 (d), on BMI stratified by smoking status
in control participants (N = 8219) from PROMIS
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Fig. 5 Association between CLIP1 rs11057405 (a) CADM2 rs13078960 (b) and GALNT10 rs7715256 (c) on BMI stratified by physical activity in
control participants (N = 6784) from PROMIS. For CLIP1 rs11057405 variant, there were only N = 7 participants are in the “active” physical activity
group, so participants having genotype “AA” and “AG” were combined for the Fig. 5a
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should be viewed purely as hypothesis generating and
ones that will benefit from further scrutiny in independ-
ent cohorts and settings. Although in previous studies of
European-ancestry populations, it has been reported that
physical activity can attenuate the genetic predisposition
conveyed by FTO variants [9–13], no such interactions
were evident within the PROMIS cohort, which suggests
that the observations reported elsewhere might be
population-specific or attributable to confounding fac-
tors that are absent in this indigenous Pakistani cohort.
CLIP1 encodes a protein called CAP-GLY domain con-

taining linker protein 1, which secures endocytic vesicles to
microtubules, playing a potentially important role in athero-
sclerosis via LDL transportation and in a range of cancers
including Hodgkin’s lymphoma and anaplastic large cell
lymphoma [20]. CLIP1 is also a target of the cellular energy-
sensing enzyme AMPK [21, 22], but no studies have been
published to our knowledge relating this locus to energy
homeostasis, exercise, smoking or diet. Cell adhesion mole-
cules 2 (CADM2) gene which is also called Necl-3, IGSF4D
or SynCAM 2, involves in cell aggregation and organization
of functional synapses through heterophilic adhesion [23]. It
has been shown that CADM2 is expressed in nervous sys-
tem of zebra fish [24], implicating that the CADM2 is a con-
served evolutionarily gene and may be implicated in various
physiological processes related to obesity in humans.
GALNT10 (polypeptide N-acetylgalactosaminyltransferase
10) are post-translational modification of secreted and
membrane-associated proteins and has important role in
normal development of cellular processes [25]. PTBP2
(polypyrimidine tract binding protein 2) is an intensely
studied RNA binding protein involved in several post -tran-
scriptional regulatory events of gene expression including
exon splicing. High levels of expression of PTBP2 gene is
observed in adult brain and muscles which implicate its
role in the physiology of cardiometabolic phenotypes [26].
Huntingtin interacting protein 1 (HIP1) is a component of
clathrin coats which is involved in the binding to mem-
brane phospholipids and these properties contribute to
their ability to stimulate clathrin assembly at specific sites
on the plasma membrane [27].
A strong cumulative effect of the 95 variants on obes-

ity was also noted, with each additional risk allele corre-
sponding to approximately 0.04 kg/m2 units, or 115 g
for a person 1.70 m tall, which under a non-epistatic
additive genetic model amounts to an estimated differ-
ence in weight of ~4.2 kg for persons 1.70 m tall at the
75 % vs 25 % percentile of the risk allele distribution.
Combined, the 95 SNPs explained 1.54 % of the pheno-
typic variance in BMI suggests that many common vari-
ants having small effects, with the vast majority of the
heritable variance yet to be explained [7, 28].
Consistent with the findings that these SNPs explain a

small proportion of variation in BMI, the 95 SNPs

combined had litle discriminative power (the ROC AUC
for the model including only these 95 variants was
0.590), although adding these 95 SNPs to a model in-
cluding age, age2, sex and case/control status did sig-
nificantly (p < 0.0001) improve the discriminative ability
of the model (Fig. 3). Li et al. [29] studied 12 of the 95
BMI susceptibility variants examined here and reported
similar findings. Sandholt et al. [30] reported that the
ROC AUC for 20 BMI-associated SNPs for the risk of
overweight and obesity was 0.53 and 0.58. These results
suggests that currently available genetic information for
obesity have little discriminative ability and are too
weak for clinical utility.
Our study is limited by the use of self-reported lifestyle

data, which was obtained in cases soon after an MI had
occurred; in principle, self-reported data for lifestyle habits
that are known in the Pakistani population to be associ-
ated with cardiovascular disease (such as smoking), may
be prone to bias. To address this limitation, we performed
analyses stratified by case and control cohorts, as well as
in both combined; however, results were largely consistent
between groups, suggesting that bias of this nature is un-
likely to have impacted our results to a meaningful degree
(results not shown). A further important limitation of this
study is that with many statistical comparisons performed
some of our nominally significant associations are likely to
be false positive. However, because many of our analyses
are replication tests, for which a Bonferroni correction is
likely to be overly conservative, we elected to present the
number of tests performed alongside their nominal P-
values so that the reader can determine for themselves the
value of these findings.

Conclusions
In conclusion, most common genetic variants for BMI
identified through GWAS in Europeans have small and dir-
ectionally consistent effects on obesity risk in this Pakistani
population, with the MC4R and TEMEM18 loci conveying
the largest effects. Smoking and physical activity may mod-
ify the genetic predisposition to obesity at numerous loci in
Pakistanis, but replication and extension of these findings
into other South Asian populations is needed.
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