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Abstract
Background: The CHRM2 gene, located on the long arm of chromosome 7 (7q31-35), is involved in
neuronal excitability, synaptic plasticity and feedback regulation of acetylcholine release, and has been
implicated in higher cognitive processing. The aim of this study is the identification of functional
(non)coding variants underlying cognitive phenotypic variation.

Methods: We previously reported an association between polymorphisms in the 5'UTR regions of the
CHRM2 gene and intelligence.. However, no functional variants within this area have currently been
identified. In order to identify the relevant functional variant(s), we conducted a denser coverage of SNPs,
using two independent Dutch cohorts, consisting of a children's sample (N = 371 ss; mean age 12.4) and
an adult sample (N= 391 ss; mean age 37.6). For all individuals standardized intelligence measures were
available. Subsequently, we investigated genotype-dependent CHRM2 gene expression levels in the brain,
to explore putative enhancer/inhibition activity exerted by variants within the muscarinic acetylcholinergic
receptor.

Results: Using a test of within-family association two of the previously reported variants – rs2061174,
and rs324650 – were again strongly associated with intelligence (P < 0.01). A new SNP (rs2350780)
showed a trend towards significance. SNP rs324650, is located within a short interspersed repeat (SINE).
Although the function of short interspersed repeats remains contentious, recent research revealed
potential functionality of SINE repeats in a gene-regulatory context. Gene-expression levels in post-
mortem brain material, however were not dependent on rs324650 genotype.

Conclusion: Using a denser coverage of SNPs in the CHRM2 gene, we confirmed the 5'UTR regions to
be most interesting in the context of intelligence, and ruled out other regions of this gene. Although no
correlation between genomic variants and gene expression was found, it would be interesting to examine
allele-specific effects on CHRM2 transcripts expression in much more detail, for example in relation to
transcripts specific halve-life and their relation to LTP and memory.
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Background
Identifying genes for variation in the range of normal
intelligence could provide important clues to the genetic
etiology of disturbed cognition in e.g. autism, reading dis-
order, and ADHD. Since the earliest 90's several groups
have focussed on the identification – and subsequent rep-
lication – of common genetic polymorphisms underlying
normal variation in cognitive abilities [1-5]. Among a
handful of candidate genes that have been investigated in
relation to normal cognitive variation as summarized in
Posthuma & De Geus 2006 [6], the muscarinic 2 choliner-
gic receptor gene (CHRM2) has been consistently found
to be associated with cognitive ability, and currently is the
best replicated gene associated with general intelligence. A
population-based association study conducted by Com-
ings et al. (2003) [7] reported an association between a
3'UTR variant of the cholinergic muscarinic receptor 2
(CHRM2) gene explaining 1% of the variance in scores on
full-scale IQ (FSIQ), and years of education. Suggestive
evidence for linkage with performance IQ was found at
7q31-36, in the vicinity of the CHRM2 gene in a genome
scan for intelligence based on 329 Australian families and
100 Dutch families, totalling 625 sib-pairs [4]. We subse-
quently reported association between genetic variants
within the CHRM2 gene and intelligence quotient (IQ)
using two independent Dutch cohorts [8]. This finding
was then replicated by Dick and colleagues [9]. All three
association studies (Comings et al., 2003; Gosso et al.,
2006; Dick et al., 2007) report significant association with
IQ and non coding regions within in the CHRM2 gene
(rs81919992 located in the 3' untranslated region (UTR)
[7], and rs2061174 [9], and rs324650 [8] in introns 4 and
5, respectively).

The CHRM2 gene belongs to the superfamily of G-pro-
tein-coupled receptors (GPCRs). Muscarinic acetylcholine
receptors (M1-M5) activate a multitude of signaling path-
ways important for modulating neuronal excitability, syn-
aptic plasticity and feedback regulation of acetylcholine
(ACh) release [10,11]. Combined behavioral and phar-
macological animal studies involving M2 antagonists have
shown the importance of cholinergic receptor activity for
acquisition and retrieval of several learning tasks [12-16].

Despite its confirmed putative role in cognitive processes,
further evidence for genetic regulatory variants on the
CHRM2 gene have been difficult to assess, mainly due to
its complex transcriptional expression patterns. Three dif-
ferent CHRM2 promoters have been reported based on
work performed on different human cell lines [17]. In
combination with alternative splicing patterns this results
in, at least, 6 different mRNA transcripts encoding for the
same receptor protein (isoforms A till F)[17,18]. Promoter
activity for the CHRM2 gene was postulated to be tissue
specific. The first promoter located upstream of exon 1,

was preferentially used in cardiac cells (isoforms A and B);
promoter 2 on intron 1 alternatively expressed on brain
(isoforms C and D); and a third promoter located on intro
2 non-tissue specific (isoforms E and F). Independently,
Zhou and coworkers [19] reported a fourth putative pro-
moter region on intron 5, but this last result has not been
independently confirmed yet [17]. Although CHRM2 pro-
moter usage is believed to be tissue specific, a single pro-
tein receptor is encoded. The functional significance of
these transcripts is still unknown.

To fine-map the CHRM2 gene and to detect its functional
role in cognitive ability, we genotyped a dense set of tag-
SNPs within and flanking the CHRM2 gene in a sample of
762 Dutch individuals from 358 twin families belonging
to two different age cohorts (mean ages 12.4 and 37.6). A
family based genetic association test was used, which
allows evaluating evidence for association free from spu-
rious effects of population stratification [20-22]. In addi-
tion, gene expression assays were performed on brain
controls to determine whether a significant correlation
exists between the associated SNPs and CHRM2 gene
expression levels.

Methods
Subjects
All young and adult twins and their siblings were part of
two larger cognitive studies and were recruited from the
Netherlands Twin Registry [23,24]. We have shown previ-
ously that the adult participants are representative of the
Dutch population with respect to intelligence [25].
Informed consent was obtained from the participants
(adult cohort) or from their parents if they were under 18
(young cohort). The study was approved by the institu-
tional review board of the VU University Medical Center.
None of the individuals tested suffered from severe phys-
ical or mental handicaps, as assessed through surveys sent
out to participants or their parents every two years.

Young Cohort
The young cohort consisted of 177 twin pairs born
between 1990 and 1992, and 55 siblings [6,26], of which
371 were available for genotyping. Mean age of the geno-
typed twins was 12.4 (SD = 0.9) years of age and the sib-
lings were between 8 and 15 years old at the time of
testing. There were 35 monozygotic male twin pairs
(MZM), 28 dizygotic male twin pairs (DZM), 48 monozy-
gotic female twin pairs (MZF), 23 dizygotic female twin
pairs (DZF), 26 dizygotic opposite-sex twin pairs (DOS),
24 male siblings and 24 female siblings, and 3 subjects
form incomplete twin pairs (1 male, 2 females). Participa-
tion in this study included a voluntary agreement to pro-
vide buccal swabs for DNA extraction.
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This sample is similar to the sample used in our initial
analyses, except for twenty individuals that were deleted
from analyses in the current sample due to additional gen-
otyping and a more stringent threshold of genotyping fail-
ure per individual.

Adult Cohort
A total of 793 family members from 317 extended twin
families participated in the adult cognition study [4]. Par-
ticipation in this study did not automatically include
DNA collection, however, part of the sample (276 sub-
jects) returned to the lab to provide blood samples. The
sample characteristics have been described elsewhere
[27]. One hundred fifteen additional individuals pro-
vided buccal swabs via our biobanking project [28] for
DNA extraction. Mean age of the total genotyped sample
was 36.2 years (SD = 12.6). There were 25 monozygotic
male twin pairs (MZM), 15 dizygotic male twin pairs
(DZM), 1 DZM triplet, 20 monozygotic female twin pairs
(MZF), 28 dizygotic female twin pairs (DZF) and 23 dizy-
gotic opposite-sex twin pairs (DOS), 29 female siblings
and 28 male siblings, and 109 subjects from incomplete
twin pairs (41 males, 68 females).

Cognitive testing
In the young cohort, cognitive ability was assessed with
the Dutch adaptation of the WISC-R [29], and consisted
of four verbal subtests (similarities, vocabulary, arithme-
tic, and digit span) and two performance subtests (block
design, and object assembly).

In the adult cohort, the Dutch adaptation of the WAISIII-
R [30], assessed IQ and consisted of four verbal subtests
(VIQ: information, similarities, vocabulary, and arithme-
tic) and four performance subtests (PIQ: picture comple-
tion, block design, matrix reasoning, and digit-symbol
substitution). The correlation between verbal IQ and per-
formance IQ is usually around 0.50 (0.53 in our data),
implying that only 25% of the variance in PIQ and VIQ is
shared. Thus, a substantial part of the variance in these
two measures is non-overlapping, and theoretically they
are expected to capture different aspects of cognitive abil-

ity. We therefore included VIQ and PIQ as measures of the
two different aspects of intelligence as well as Full scale IQ
(FSIQ) as a general measure of intelligence. In both
cohorts, VIQ, PIQ and FSIQ were normally distributed,
(see Table 1).

For both cohorts IQ scores standardized for the effects of
age and sex were calculated. These were then z-trans-
formed within cohorts to allow easy comparison across
cohorts and across different tests.

DNA collection and isolation
Buccal swabs were collected from 371 children; DNA in
adults was collected from blood samples in 391 adults.
The DNA isolation from buccal swabs was performed
using a cloroform/isopropanol extraction [31,32]. DNA
was extracted from blood samples using the salting out
protocol described elsewhere [33]. Zygosity was assessed
using 11 highly polymorphic microsatellite markers (Het-
erozygosity > 0.80). Genotyping was performed blind to
familial status and phenotypic data.

DNA and RNA extraction from tissue homogenates
Control brains from 50 individuals, 23 males with a mean
age of 70.3 years (SD = 9.38), and 27 females with a mean
age of 73.3 years (SD = 10.50) were obtained at autopsy
from The Netherlands Brain Bank (NBB) [34]. This material
comes mainly from the superior and inferior parietal lobe.
DNA isolation from 0.20 gram of frozen tissue was per-
formed using the Puregene™ Kit (Gentra Systems, USA)
according to standard protocol and doubled volume of all
reagents per tissue weight. To verify DNA isolation, prod-
ucts were run on a 1% agarose gel.

Total RNA was isolated from 0.10 gram of frozen brain tis-
sue with RNA-Bee™ following the manufacturer's recom-
mendations (Isotex Diagnostics, Inc., USA). RNA was
purified using the Qiagen RNeasy Mini kit (Qiagen Bene-
lux B.V., The Netherlands) and verified on a 2% agarose
gel. Five μg RNA was used to make cDNA using 200 U of
Superscript™ III Reverse Transcriptase (Invitrogen, The
Netherlands) in First Strand Buffer (Invitrogen, The Neth-

Table 1: Means and standard deviations of IQ (corrected for age and sex effects) in the Young and Adult cohorts

Young Cohort Adult Cohort

Total sample Skewness 
Kurtosis

Genotyped Skewness 
Kurtosis

Total sample Skewness 
Kurtosis

Genotyped Skewness 
Kurtosis

N 407 371 793 391
Gender (M/F) 191/216 176/195 348/445 175/216

Age (SD) 12.37 (0.93) 12.37 (0.92) 37.60 (13.00) 36.25 (12.64)
PIQ (SD) 94.57 (18.93) 0.165/-0.308 94.85 (19.14) 0.175/-0.304 104.49 (12.34) 0.197/0.099 104.30 (11.64) 0.135/0.312
VIQ(SD) 102.56 (12.74) 0.121/0.242 102.64 (12.92) -0.080/-0.332 103.69 (12.26) -0.308/-0.005 104.23 (12.15) -0.410/0.256

FSIQ (SD) 98.65 (15.06) -0.042/-0.252 98.84 (15.24) -0.037/-0.254 103.56 (11.49) 0.087/0.167 103.81 (11.16) 0.073/0.512
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erlands), 3.4 * 10-2 μg/μl random hexamer oligo, 3.4 * 10-

2 μg/μl poly d(T) 12–18, 1.3 mM dNTPs, 1.1 μM DTT (Inv-
itrogen, The Netherlands), 10 U RNaseOUT™ Ribonucle-
ase Inhibitor Recombinant (Invitrogen, The Netherlands)
and incubated two hours at 50°C. Subsequently, 20 U
RNase H (Invitrogen, The Netherlands) was added and
incubated 30 minutes at 37°C. Products were run on a 1%
agarose gel to examine the quality.

Genotyping
Single nucleotide polymorphisms (SNPs) were selected
using the information available from the International
HapMap Project. SNP selection was based on a randomly
selected population with northern and western European
ancestry by the Centre d'Etude du polymorphisme
Humain (CEPH) [35]. The Minor Allele Frequency MAF
had to be > 0.05 in order to exclude rare homozygous gen-
otypes. Forty-two SNPs within the CHRM2 gene were thus
selected from the CEPH population using Haploview ver-
sion 3.32 (NCBI build 36.1).

SNP genotyping was performed using the SNPlex® assay
platform. The SNPlex assay was conducted following the
manufacturer's recommendations (Applied Biosystems,
Foster city, CA, USA). All pre-PCR steps were performed
on a cooled block. Reactions were carried out in Gene
Amp 9700 Thermocycler (Applied Biosystems, Foster city,
CA, USA). Data was analyzed using Genemapper v3.7
(Applied Biosystems, Foster city, CA, USA).

CHRM2 transcripts at brain level
Three different primer combinations were used to investi-
gate the presence of CHRM2 transcript variants in normal
brain controls. Forward primers FA&BGAGGCATCCAG-
GTCTCCAT, FC&DCGCAGCTCTCGCCA-GAGCCTT, and
FE&FAAAGGACTCCTCGCTCCTTC were used in combina-
tion with a unique reverse primer RA-FCCCGATAATGGT-
CACCAAAC in order to tag isoforms A till F. PCR was
performed at 94°C for 30 sec, 55°C for 30 sec, and 72°C
for 1:30 min, for 40 cycles, followed by a 7 min extension
at 72°C. To verify primers specificity PCR products were
run on a 2% agarose gel.

Gene expression assay
RT-PCR was performed using specific primers encompass-
ing the untranslated exon 5 (the last untranslated exon),
which is present in all mRNA transcripts, and the coding
sequence (CDS) of the CHRM2 gene; F-GAAAC-
CAGCGACAGGTTTAAATG, R-GCTATTGTTAGAGGA-
GTTTGTTGAGTTATTC. PCR was carried out at 94°C for 1
min, 64°C for 1 min, and 72°C for 1 min, for 40 cycles,
followed by a 10 min extension at 72°C. Optimization of
primer concentration and cDNA input was performed and
dissociation curves for the selected primers obtained. Two
housekeeping genes – β-actin and HPRT – were used as

internal controls. RT-PCR reactions were performed twice
independently, each time in duplicate.

Statistical analyses
Allele frequencies of all SNPs were estimated in both the
children and adult cohorts using Haploview [36] in which
a Hardy-Weinberg test is implemented, based on an exact
calculation of the probability of observing a certain
number of heterozygotes conditional on the number of
copies of the minor SNP allele.

Genetic association tests were conducted using the pro-
gram QTDT which implements the orthogonal model
proposed by Abecasis et al., 2000 [20] (see also Fulker et
al., 1999; Posthuma et al., 2004 [21,22]). This model
allows one to decompose the genotypic effect into orthog-
onal between- (βb) and within- (βw) family components,
and also models the residual sib-correlation as a function
of polygenic or environmental factors. MZ twins can be
included and are modelled as such, by adding zygosity
status to the datafile. They are not informative to the
within family component (unless they are paired with
non-twin siblings), but are informative for the between
family component. The between-family association com-
ponent is sensitive to population admixture, whereas the
within-family component is significant only in the pres-
ence of LD due to close linkage. The models used in QTDT
take into account additive allelic between- and within
family effects.

It is worth noting that, if population stratification acts to
create a false association, the test for association using the
within family component is still valid. More importantly,
if population stratification acts to hide a genuine associa-
tion, the test for association using the within family com-
ponent has more power to detect this association than a
population based association test. A significance level α of
0.01 was chosen.

Results
Genotyping success rate was 95.36 (SD = 3.80) among
both cohorts. Six tag-SNPs, (rs6957496, rs1424569,
rs10488600, rs17494540, rs324582, and rs11773032),
although with high genotyping rate, deviated from HWE
(P < 0.05) despite a high genotype call rate. One tag-SNP,
rs11773032 showed no variation in our population and
was thus deleted from further analysis. LD parameters D'
and r2 were obtained for all successfully genotyped SNPs.
LD blocks were generated applying the algorithm defined
by Gabriel et al., 2002 [37] in which confidence bounds
on D' are generated if 95% of the information shows
"strong LD". By default, this method ignores markers with
MAF < 0.05 (see Figure 1 and Table 2).
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Two 5'UTR SNPs, previously reported, showed the strong-
est association with IQ, rs2061174 (intron 4) in the adult
cohort and rs324650 (intron 5) in the young cohort [8]
(see Figure 2). Within-family genetic effects were reflected
in an increased IQ of 6.89 (PIQ) points for those individ-
uals carrying the "A" allele of rs2061174 within the adult
cohort. individuals in the young cohort bearing the "T"
allele of rs324650 showed an increment of 5.30 IQ (VIQ)
points (see Tables 3, 4 and 5). Interestingly, the most sig-
nificant variant in the young cohort, rs324650, is part of a
short interspersed repeat (SINE), namely a MIRb (mam-
malian-wide interspersed repeat) repeat of 160 bp long.
The derived "T" allele contained in this repeat seems to be
human-specific. In addition this MIRb repeat is also
present in non-human primate linages – rhesus (macaca
mulatta) and chimpanzee (pan troglodytes) – but not in
other mammalian linages. Such an allele-specific effect
may reflect that the variant is in LD with the causal allele,
or that the "T" allele is directly modifying binding-proper-
ties of transcription starting sites (TSS) [38].

CHRM2 transcripts expression at brain level and 
correlations with CHRM2 tag-SNPs
Previous studies have shown that of the six known iso-
forms of CHRM2 only C and D are expressed in the brain
[17,18]. In contrast to this, we observed all six CHRM2
transcripts isoforms in brain material(data not shown).

After normalizing raw gene expression data to expression
level of the housekeeping genes, no correlation between
gene expression and CHRM2 gene genotypes for SNPs

rs2061174, rs324640 or rs324650 was observed (data not
shown).

Discussion
Converging evidence from previous studies [7-9] has
pointed to a role of the CHRM2 gene in intelligence. None
of these studies, however, have identified the functional
polymorphism explaining its role at a molecular level. The
present study aimed to zoom in on the functional vari-
ants, by fine-mapping the most significant areas within
this gene and also investigating differential brain expres-
sion as a function of different genotypes on the SNPs most
strongly related to intelligence.

A total of 42 SNPs within the CHRM2 gene were geno-
typed in a young and adult cohort. Association analysis was
conducted separately in both age cohorts to detect possi-
ble age dependent gene effects. Associations were found
in different regions of the gene for each age cohort. Our
current analyses showed that the same SNPs that were
associated previously with intelligence, were again most
significant, whereas a new SNP (rs2350780) showed a
trend towards significance. Because of the dense coverage
of SNPs used in this study, this confirms the importance
of intron 4 and intron 5 regions, but rules out association
with SNPs located elsewhere in the gene.

Four new SNPs in the intron 3 region, (rs2350780,
rs1364409, rs7782965, and 1378646) showed associa-
tion with PIQ in the adult cohort. These SNPs are in high
LD (r2 between 0.58 – 0.72) between the most significant
SNPs. SNP rs2350780 and rs2061174 were also found to

Location of single nucleotide polymorphisms (SNPs) within the CHRM2 gene on chromosome 7 and LD blocks defined by them, respectivelyFigure 1
Location of single nucleotide polymorphisms (SNPs) within the CHRM2 gene on chromosome 7 and LD blocks defined by 
them, respectively. Coding sequence (CDS) is depicted in black. Untranslated exons (Exon 1 till Exon 5) are depicted in grey. 
SNPs already reported in our previous study (Gosso et al., 2006) are in bold.
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be associated with intelligence by Dick and co-workers
[9]. These intronic SNPs are located 68 kb apart in introns
3 and 4, respectively. In our cohort, LD between these two
variants is 0.58.

We found the most significant associations with PIQ in
adults (rs2061174, χ2 = 9.14; P = 0.003) and with VIQ in
children (rs323650, χ2 = 9.50; P = 0.002). Because only
part of the variance in PIQ and VIQ is shared, and these
results might reflect brain maturation processes and age-
related genetic effects. Alternatively, the results could

Table 2: SNPs descriptives for young, adult and combined cohorts

rs# Positiona Tagged SNP LDBLOCK MA MAF Young MAF Adult HWE-pval %Geno

1 5'UTR rs7797223 136198443 T 0.25 0.26 0.77 95.6
2 rs6957496 136202377 1 G 0.09 0.11 0.02 96.6

3 intron 3 rs12533282 136207518 1, 4, 5, 1(1 kb) G 0.18 0.17 0.40 98.6
4 rs10488595 136208970 A 0.18 0.17 0.71 97.7
5 rs10488596 136209134 T 0.18 0.16 0.37 97.2
6 rs1424569 136211219 A 0.44 0.47 0.02 94.8
7 rs17415326 136214872 C 0.02 0.05 0.48 95.1
8 rs1424548 136219956 T 0.37 0.36 0.53 98.2
9 rs4475425 136225739 2 (5 Kb) A 0.21 0.24 0.87 94.8
10 rs1364405 136231025 41 A 0.35 0.33 0.08 97.9
11 rs1364402 136234903 3 (17 kb) C 0.12 0.11 1.00 98.7
12 rs2350780 136243509 G 0.40 0.39 0.59 98.8
13 rs7810473 136246997 G 0.42 0.42 0.30 98.9
14 rs1364404 136248827 T 0.31 0.32 0.62 98.1
15 rs1469179 136251497 22 A 0.44 0.46 0.18 97.3
16 rs17496259 136251883 A 0.31 0.31 0.48 95.8
17 rs17411478 136251909 T 0.31 0.32 0.37 99.1
18 rs10488600 136255998 T 0.10 0.13 0.00 98.0
19 rs17494589 136256129 26 A 0.20 0.18 0.07 94.9
20 rs17168817 136258808 T 0.08 0.06 0.87 99.2
21 rs1364409 136262573 4 (12 kb) T 0.32 0.35 0.13 96.4
22 rs6947206 136265651 C 0.46 0.48 0.12 94.0
23 rs7782965 136274673 21, 26, 27 T 0.32 0.35 0.45 90.4
24 rs17494540 136277380 C 0.20 0.18 0.01 96.3
25 rs1424387 136282543 C 0.31 0.31 0.39 99.0
26 rs1378646 136285541 5 (2 kb) G 0.35 0.37 0.32 98.8

27 intron 4 rs1158586 136287676 G 0.34 0.40 0.42 93.0
28 rs324582 136301147 G 0.07 0.10 0.02 96.4
29 rs2061174 136311940 30 6 (10 kb) G 0.34 0.35 0.93 84.6
30 rs7799047 136322098 G 0.34 0.35 1.00 93.5

31 intron 5 rs17411561 136332728 14, 16, 17, 25 C 0.32 0.25 0.25 87.7
32 rs420817 136337943 7 (11 kb) C 0.48 0.47 0.21 95.7
33 rs324640 136339536 32 G 0.46 0.50 0.17 86.2
34 rs10488602 136341043 C 0.22 0.23 0.43 98.1
35 rs324647 136343292 C 0.14 0.15 0.13 95.9
36 rs324650 136344201 T 0.47 0.48 0.08 85.2
37 rs324651 136349801 35 T 0.14 0.14 0.13 93.1

38 3'UTR rs8191992 136351848 8 (0.2 kb) T 0.45 0.48 0.60 96.5
39 rs8191993 136352103 G 0.35 0.35 0.93 94.9
40 rs7780181 136357075 G 0.42 0.44 0.83 98.7
41 rs1424543 136360300 C 0.36 0.32 0.01 95.4
42 rs11971309 136362695 8 T 0.38 0.37 0.57 90.0
43 rs11773032 136391582 A 0.00 0.01 1.00 98.1

a Chromosomal single nucleotide position (SNP) position based on Build 36.1. Tag-SNPs are depicted in bold. Abbreviations: LD, Linkage 
disequilibrium; MA, Minor Allele, MAF Minor Allele Frequency; HWE, Hardy-Weinberg Equilibrium
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point to, and potentially explain, the genetic overlap
between PIQ and VIQ, in which common genetic variants
do not only interact modulating hippocampal neuro-
transmitter activity, but also and even more interesting
from the epigenetic point of view, they might modulate
priming and dendritic outgrowth underlying synaptic
plasticity during embryogenesis [39] and at a post-natal
stage [40], reflecting phenotypic variation at different IQ
domains across the lifespan.

From a developmental perspective, brain maturation can
be considered the most complex and dynamic lifelong

process taking place in humans. Neuronal plasticity pat-
terns (e.g. dendritic "pruning", synapse elimination, mye-
lination) have been shown to vary significantly across life
and among diverse brain structures (for a review see Toga
et al., 2006 [41]). Variation in cognitive phenotypes may
be the result of diverse allele-dependent effects that,
although small in effect size, may contribute to cognitive
phenotypes outcomes across life.

In situ hybridization experiments on mammals (e.g. mice)
[42] have been of great utility to aid specific localization
and interpretation of gene expression patterns. However,

QTDT family-based results for tag-SNPs plotted against FSIQ, VIQ, and PIQ for young (A) and adult (B)cohortsFigure 2
QTDT family-based results for tag-SNPs plotted against FSIQ, VIQ, and PIQ for young (A) and adult (B)cohorts.
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the localization of CHRM2 receptors transcripts has been
conducted using probe sequences that did not distinguish
between alternatively spliced transcripts. Our gene expres-
sion analyses showed that, in contrast to previously
reported findings [17,18], all six currently known tran-
scripts (isoforms A till F) of the CHRM2 gene were present
in brain tissue.

Our genotype-dependent CHRM2 expression, did not
reveal functional significance of any of the SNPs that were
significantly related to intelligence. However, one should

keep in mind that at this point we were only able to study
material from superior and inferior parietal lobe and fur-
ther studies on other brain regions might give different
results. Furthermore it would be of interest to examine
allele-specific effects on CHRM2 transcripts expression in
much more detail, for example in relation to transcripts
specific halve-life and their relation to LTP and memory.

Although brain expression analysis did not reveal differ-
ential expression of CHRM2 transcripts, our study further
zooms in on the CHRM2 gene, clearly confirming two

Table 3: Means (SD) per genotype for PIQ, VIQ and FIQ for young and adult cohorts for the most significant SNPs within the CHRM2 
gene

SNP Young Cohort Adult Cohort
position 

(bp)
Phenotype Genotype Frequency Total 

N
Genotype Frequency Total 

N

AA AG GG AA AG GG
0.38 0.46 0.17 0.39 0.47 0.14

rs2350780 PIQ 94.43 (18.96) 95.21 (19.86) 95.94 (17.59) 366 104.77 (12.93) 104.61 (11.44) 104.37 (10.81) 359
(136243509) VIQ 102.24 (13.67) 103.07 (12.69) 104.17 (11.67) 367 104.81 (13.56) 104.19 (11.00) 104.40 (11.43) 359

FIQ 98.38 (15.54) 99.11 (15.26) 100.79 (13.70) 366 104.54 (12.82) 103.89 (10.50) 103.77 (10.18) 359
AA AT TT AA AT TT
0.44 0.47 0.09 0.42 0.45 0.13

rs1364409 PIQ 95.30 (19.27) 93.93 (18.99) 97.16 (19.92) 361 105.16 (12.83) 104.52 (11.30) 104.31 (10.57) 350
(136262573) VIQ 102.30 (13.91) 102.93 (12.01) 105.86 (12.48) 362 104.61 (12.56) 104.45 (11.76) 104.02 (10.85) 350

FIQ 98.72 (16.00) 98.47 (14.31) 102.82 (15.57) 361 104.56 (12.20) 104.03 (11.03) 103.49 (9.34) 350
CC CT TT CC CT TT
0.44 0.46 0.10 0.42 0.46 0.13

rs7782965 PIQ 95.14 (19.46) 93.97 (19.25) 96.66 (19.06) 345 104.35 (11.87) 104.81 (11.51) 104.50 (10.67) 345
(136274673) VIQ 101.96 (14.03) 102.56 (11.75) 105.31 (13.17) 346 104.04 (12.35) 104.47 (11.61) 103.66 (10.93) 345

FIQ 98.43 (16.17) 98.28 (14.35) 102.18 (15.52) 345 103.85 (11.53) 104.16 (11.08) 103.34 (9.35) 345
AA AG GG AA AG GG
0.41 0.48 0.11 0,39 0,46 0,15

rs1378646 PIQ 95.87 (18.83) 93.78 (18.93) 96.80 (19.62) 365 104.52 (13.00) 104.92 
(11.160

104.61 (10.59) 363

(136214872) VIQ 102.21 (14.06) 103.03 (11.85) 104.41 (12.74) 366 104.06 (13.22) 105.03 (11.61) 103.87 (11.01) 363
FIQ 98.97 (15.80) 98.48 (14.24) 101.62 (15.39) 365 103.98 (12.73) 104.55 (10.72) 103.50 (9.51) 363

AA AG GG AA AG GG
0.44 0.44 0.12 0.42 0.47 0.11

rs2061174 PIQ 95.56 (18.61) 93.58 (20.13) 96.66 (18.12) 363 103.33 (12.81) 105.34 (11.33) 105.11 (9.40) 389
(136311940) VIQ 101.55 (13.93) 102.89 (12.32) 106.34 (11.77) 364 103.60 (13.62) 105.36 (11.03) 102.64 (10.43) 389

FIQ 98.40 (15.60) 98.40 (15.37) 102.14 (14.06) 363 103.16 (12.82) 104.93 (10.23) 102.88 (8.97) 389
TT CT CC TT CT CC
0.48 0.42 0.10 0.59 0.34 0.07

rs17411561 PIQ 87.19 (19.37) 95.95 (18.21) 94.89 (19.64) 345 107.15 (11.31) 103.48 (11.47) 105.02 (11.83) 307
(136332728) VIQ 99.53 (12.25) 103.45 (12.94) 103.71 (12.72) 346 108.09 (10.22) 103.21 (10.44) 104.54 (12.44) 307

FIQ 92.72 (15.08) 99.94 (14.63) 99.54 (15.76) 345 107.24 (10.13) 102.78 (10.31) 104.39 (11.61) 307
AA AG GG AA AG GG
0.29 0.50 0.21 0,25 0,49 0,26

rs324640 PIQ 94.72 (19.94) 94.04 (19.09) 96.61 (18.68) 363 102.21 (12.83) 105.64 (11.55) 104.37 (11.03) 386
(136339536) VIQ 101.70 (13.90) 102.77 (12.79) 103.88 (12.38 364 102.81 (13.92) 105.69 (11.70) 103.35 (11.26) 386

FIQ 97.88 (16.29) 98.53 (14.79) 100.83 (15.15) 363 102.08 (12.61) 105.36 (11.12) 103.17 (10.02) 386
AA AT TT AA AT TT
0.30 0.48 0.21 0.26 0.48 0.26

rs324650 PIQ 93.59 (19.42) 94.45 (19.20) 96.82 (18.40) 363 102.59 (12.51) 105.50 (11.83) 104.19 (11.11) 369
(136344201) VIQ 101.43 (13.98) 102.73 (12.76) 104.36 (11.92) 364 103.37 (13.52) 105.61 (11.69) 102.83 (11.48) 369

FIQ 97.14 (15.99) 98.73 (14.95) 101.26 (14.60) 363 102.54 (12.28) 105.25 (11.38) 102.83 (10.21) 369
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regions of most importance to intelligence within introns
4 and 5. These regions are poorly conserved regions
among relatively distant species, although they are con-
served among primate species. Interestingly, the variant
associated in the young cohort (rs324650) is located
within a SINE repeat (MIRb). SINE repeats belongs to a
wide family of transposable elements, which constitute
the largest class of interspersed repeats that are found in
our genome (12%) together with long interspersed
repeats (LINE) an long terminal repeats (LTRs) [43]. SINE
repeats transpose through a RNA intermediate (reverse
transcription process). All eukaryotic genomes contain
mobile elements (retrosposable elements), although the
proportion and activity of the classes of elements varies
widely between genomes [44]. The CHRM2 gene, like its
G-protein receptor counterparts, shares the interestingly
feature – at least form a functional perspective – of being
an intronless protein [45], which is also observed among
dopamine receptors [46], widely studied in relation to
attention deficits.

Recent research has revealed a potential functionality of
retroposons in a gene-regulatory context [38,47-50]. It has
been postulated that retroposon insertion processes may

favour the generation of intronless proteins (for a review
see Flavell 1995 and Brosius 2003 [51,52]). If this hypoth-
esis holds, the resulting intronless proteins are expected to
contain exons among their 5'UTR region. Not surpris-
ingly, among G-proteins with intronless open reading
frames (ORFs), about 18% have been reported to contain
untranslated exons on their 5'UTR [46,53].

The majority of mammalian GPCRs are related to central
nervous system activity, which often requires high and dif-
ferential expression of many genes [53,54].

Conclusion
Multiple promoters and transcripts have been reported for
the CHRM2 gene suggesting that the associated regions we
identified harbour functional elements involved in regu-
lation of transcription and/or alternative splicing [17-19].
Further investigation involving functional assays and
non-coding polymorphisms may aid the search and sub-
sequent identification of regulatory variants underlying
normal cognitive variation.

Table 4: Population and family-based QTDT results for young cohort for the most significant variants among CHRM2 gene

Population-based Family-based
position (bp) Phenotype NPOPULATION χ2 P GE NFAMILY χ2 P GE

rs2350780 PIQ 366 0.74 0.390 1.34 (G) 95 1.81 0.179 3.63 (A)
(136243509) VIQ 366 1.62 0.203 1.42 (G) 95 2.11 0.147 2.47 (A)

FSIQ 366 1.82 0.177 1.68 (G) 95 2.94 0.086 3.48 (A)
rs1364409 PIQ 362 0.13 0.718 0.57 (T) 96 0.67 0.413 2.33 (A)

(136262573) VIQ 362 1.46 0.227 1.42 (T) 96 1.02 0.313 1.84 (A)
FSIQ 362 0.92 0.337 1.37 (T) 96 1.14 0.286 2.23 (A)

rs7782965 PIQ 346 0.17 0.680 0.77 (T) 85 0.18 0.671 2.00 (C)
(136274673) VIQ 346 1.57 0.210 1.42 (T) 85 0.43 0.512 1.74 (C)

FSIQ 346 1.03 0.310 1.37 (T) 85 0.94 0.332 2.05 (C)
rs1378646 PIQ 366 0.00 1.000 0.00 (G) 98 0.20 0.655 1.26 (A)

(136214872) VIQ 366 0.88 0.348 1.03 (G) 98 0.66 0.417 1.39 (A)
FSIQ 366 0.32 0.572 0.76 (G) 98 0.59 0.442 1.55 (A)

rs2061174 PIQ 363 0.01 0.920 0.19 (G) 111 0.41 0.522 1.69 (A)
(136311940) VIQ 363 3.25 0.071 1.94 (G) 111 1.10 0.294 1.68 (A)

FSIQ 363 1.10 0.294 1.37 (G) 111 0.98 0.322 1.91 (A)
rs17411561 PIQ 345 1.20 0.273 1.91 (C) 85 0.23 0.632 1.47 (C)
(136332728) VIQ 345 2.51 0.113 1.81 (C) 85 5.09 0.024 4.35 (C)

FSIQ 345 2.79 0.095 2.29 (C) 85 2.59 0.108 3.61 (C)
rs324640 PIQ 363 0.62 0.620 1.34 (G) 105 1.51 0.219 3.45 (A)

(136339536) VIQ 363 2.83* 0.093 1.94 (G) 105 6.67 0.010 4.59 (A)
FSIQ 363 2.39 0.122 1.98 (G) 105 4.57 0.033 4.42 (A)

rs324650 PIQ 363 1.65 0.199 2.10 (T) 100 2.51 0.113 4.40 (T)
(136344201) VIQ 363 4.56* 0.033 1.42 (T) 100 9.50 0.002 5.30 (T)

FSIQ 363 4.55 0.033 2.74 (T) 100 7.14 0.008 5.35 (T)

*Stratification significant at P = 0.05
Note: N denotes the number of individuals informative for the within family association test, i.e. those individuals that occur in families with more 
than one genotype. QTDT assumes equal genotypes for MZ twins and includes non-typed MZ co-twins with IQ scores. Abbreviation: GE genotypic 
effect (increaser allele).
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