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Abstract

Background: Large-scale analysis of the transmission, mutation characteristics and the relationship between the
reading frame and phenotype of the DMD gene has previously been performed in several countries, however,
analogous studies have yet to be performed in Chinese populations.

Methods: Clinical data from 1053 Chinese patients with DMD/BMD were collected, and the DMD gene was tested
by MLPA in all patients and 400 proband mothers. In 20 patients with negative MLPA, sequencing was also
performed.

Results: We found that 27.50% of cases had a family medical history of DMD/BMD, and large rearrangements were
identified in 70.56% of the probands, of which 59.35% and 11.21% were deletions or duplications, respectively. The
carrier status of the mothers in the study was determined to be 50.75%, and it was established that the DMD
mutation was inherited from the mother in 51.72% of the probands. Exons 45–54 and 3–22 were the most
frequently deleted regions, and exons 3–11 and 21–37 were the most prevalently duplicated regions of the gene.
Breakpoints mainly occurred in introns 43–55 for deletion mutations and in introns 2 and 7 for duplication
mutations. No breakpoints were found at the 50 or 30 end of introns 31, 35, 36, 40, 65, 68, and 74–78 in any of the
deletion or duplication mutations. The reading frame rule held true for 86.4% of the DMD patients and 74.55% of
the BMD patients.

Conclusion: It is essential to increase physicians’ understanding of DMD/BMD, to promote scientific information,
and to increase awareness in regards to genetic counseling and prenatal diagnosis in pedigrees with a family
history of the disease, particularly in families with small DMD lesions in China. In addition, such a large-scale analysis
will prove to be instructive for leading translational studies between basic science and clinical medicine.
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Background
Duchenne muscular dystrophy (DMD) and its less severe
allelic form, Becker muscular dystrophy (BMD), are com-
mon X-linked recessive neuromuscular diseases caused by
mutations in the DMD gene. This gene consists of 79 exons
and encodes a 14.6 kb mRNA, which is mainly expressed
in skeletal muscle and myocardial and brain tissue [1-3].
The estimated incidence of DMD and BMD is 1/3500 and
1/18,000 of male live births, respectively [4,5]. Levels of
dystrophin protein are remarkably reduced or absent in
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DMD (<3% of normal), whereas BMD patients have
10–40% of the normal amount of dystrophin but of
an abnormal molecular weight [6,7]. DMD/BMD patients
first present with either complaints of progressive proximal
muscular weakness and atrophy of the limbs or remarkably
elevated transaminase levels upon examination. Because
many clinicians lack a complete understanding of the
disease, there are often several patients with DMD/BMD
within a family pedigree due to a late diagnosis of the
disease. To date, no effective therapy is available for DMD/
BMD patients. Therefore, it is essential to perform genetic
counseling and prenatal screening to prevent passing on
the disease. Furthermore, it will be instructive to lead trans-
lational studies between basic science and clinical medicine
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by large-scale analyses of DMD gene defects. Recently,
large-scale analyses of the transmission, the mutation
characteristics and the relationship between the reading
frame and phenotype of the DMD gene have been
performed in several countries. However, analogous studies
have yet to be performed in Chinese populations.
In this study, multiplex ligation-dependent probe ampli-

fication (MLPA)-based genotype–phenotype analysis was
performed in 1053 Chinese patients with DMD/BMD.

Methods
Subjects
A total of 1053 male patients in China were studied, in-
cluding 951 with DMD, 96 with BMD and 6 with IMD.
Of the 1053 cases, 793 had detailed information about
their family history, and in which 218 had a family his-
tory. In addition to these cases, 400 mothers of probands
were included in this study. Diagnosis was based on clin-
ical presentations, markedly elevated serum creatine kin-
ase levels, electromyography and muscle biopsy. This
study was approved by the institutional review board of
Sun Yat-sen University Affiliated First Hospital, and
informed consent was obtained from all participants.

Methods
MLPA
Genomic DNA was extracted from peripheral blood
according to standard procedures (QIAamp DNA Blood
Mini Kit Handbook,QIAGEN), and the DMD gene was
detected by MLPA [8] according to instructions of SALSA
MLPA probemix P034-A3/P035-A3 DMD/Becker (MRC
Holland) for use in all patients and proband mothers . All
initial data of MLPA were analyzed by Excel-based
Coffalyser, the allele copy numbers were determined by
cut-off values. The MLPA results from male patients were
initially assessed visually for the detection of deletions, as
the absence of DMD specific peaks. Absence of DMD
peaks corresponding to two or more contiguous exons
was taken to represent a genuine deletion and no further
investigations were performed. The absence of only one
DMD peak in males, corresponding to a single exon, was
investigated further using PCR primers flanking the
exon in question designed using Primer Premier 5.0.
If a deletion could not be confirmed by PCR, the potential
PCR products of these exons were sequenced. In females,
the absence of a single peak was investigated by direct
sequencing. MLPA was replicated to confirm them
in any case ambiguous duplications or amplifications
were found.

Sequencing
PCR amplification and direct sequencing were performed
using forward and reverse primers [9] complementary to
all 79 exons and exon-intron junctions (ABI Prism 3100
Genetic Analyzer, Applied Biosystem, Foster City, USA).
Mutation nomenclature of small lesions was performed
according to standard conventions [10].

Result
Detection of DMD gene mutations with MLPA
Large rearrangements were identified in 743 of the 1053
probands (743/1053, 70.56%) using MLPA. The rearran-
gements consisted of 625 large deletions and 118 large
duplications spanning one or more exons, representing
59.35% (625/1053) and 11.21% (118/1053) of all
mutations identified in this study, respectively. Among
1053 probands, no DMD gene defects were identified by
MLPA in 310 cases. There were 576 DMD (576/625,
92.16%), 46 BMD (46/625, 7.36%) and 3 IMD (3/625,
0.48%) probands with deletions, and 106 DMD (106/118,
89.83%), 9 BMD (9/118, 7.63%) and 3 IMD (3/118,
2.54%) probands with duplications. Figure 1 shows an
example of MLPA-detected single-exon deletions.

Small fragment deletions are predominant in the
DMD gene
Among the 1053 probands, single-exon deletions (150)
were the most frequent, followed by deletions of 3 exons,
deletions of 2 exons and deletions of 5 exons. Our results
showed that deletions of 6 exons or fewer accounted for
45.68% (481/1053) of cases. Deletions of 10 exons or fewer
accounted for 53.18% (560/1053) of the probands.

Exons 45–54 and exons 3–22 are the most commonly
deleted regions
Single-exon deletions represented up to 24.00%(150/625)
of the 625 deletions identified and mainly occurred in
exons 44–45 and 50–54. Exons 51 and 45 were the most
commonly deleted exons in single-exon deletions,
accounting for 5.44% (34/625) and 4.64% (29/625) of
deletions, respectively. Of 475 cases with multi-exon
deletions, a 6-exon deletion of 45–50 was the most
prevalent (36), followed by a 3-exon deletion of 48–50
(30), 2-exon deletion of 49–50 (24), and 3-exon deletion
of 45–47 (23). However, there were 21 cases with 8-exon
deletions of 45–52 and 20 cases with 2-exon deletions of
46–47, respectively. Exons 45–54 and exons 3–22 were
the most commonly deleted regions. Of all the exons,
exon 50 was the most frequently deleted, followed by
exons 49, 48, 47, and 46. We also observed 1 case that
resulted from all 79 exons.

Small fragment duplications are prevalent in the
DMD gene
Single-exon duplications accounted for 20.34% (24/118) of
the 118 duplications, of which the duplication of exon 2
(12) was the most prevalent, followed by the 5-exon dupli-
cation of 3–7 (7). Our results showed that a duplication of



Figure 1 Deletion of exon 45 of the DMD gene in one affected boy (C). (A) Positive control (Deletion of exons 3–10), (B) Normal control and
(D) blank control.
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6 exons or fewer accounted for 51.69% of all duplications
(61/118). All duplications involving 10 exons or fewer
accounted for 67.80% (80/118) of the duplications
identified in the probands. Hotspot regions of dupli-
cation were located in exons 3–11 and 21–37. Exons
8 and 9 were the most frequently duplicated exons,
whereas no duplications were found in each exon
from 72 to 79. Furthermore, 7 cases of two-tandem-dupli-
cation and 1 case of three-tandem-duplication were found
in our study. Figure 2 showed rearrangement frequency of
each exon in the DMD gene.
Breakpoint distribution
Deletion breakpoints were clustered at introns 43–55 of
the DMD gene. Intron 50 was by far the most frequently
involved (14.40%, 180/1250), preferentially as a starting
breakpoint (66.67%, 120/180), followed by introns 44
(12.88%, 161/1250), 45 (8.48%, 106/1250), 47 (8.32%,
104/1250) and 52 (7.20%,90/1250). No deletion
breakpoints were observed in introns 15, 24, 31, 35,
36, 38–40, 59, 65, 68 and 74–78. As an ending breakpoint,
intron 44 was the most frequently involved (11.44%, 143/
1250). Intron 45 was the second most frequently observed
3’ breakpoint site (5.92%, 74/1250), both introns 47 and
50 was the third (60/1250, 4.80%), followed by introns 2
(3.60%, 45/1250) and 48 (3.12%, 39/1250). The proportion
of starting breakpoints was reduced successively in introns
50 (9.60%, 120/1250), 52 (6.24%, 78/1250), 51 (3.60%,
45/1250), 47 (3.52%, 44/1250), 54 (3.12%, 39/1250)
and 45 (2.56%, 32/1250).
Figure 2 Arrangement frequency of each exon in the DMD gene (625
Duplication breakpoints were clustered at the 50 end of
the DMD gene. Intron 2 was the most frequently involved
(14.57%, 37/254), followed by introns 7 (10.24%, 26/254), 1
(7.48%, 19/254) and 44 (7.09%, 18/254). No duplication
breakpoints were found in introns 3, 8, 10, 14, 23, 27, 28,
31–33, 35, 36, 40, 46, 58, 64–66, 68–70 and 72–78. Intron
2 was most frequently involved in both starting and ending
breakpoints and accounted for 5.12% (13/254) and 9.45%
(24/254) of each, respectively. Corresponding to the dupli-
cation frequency, a high proportion of ending breakpoints
were present in introns 1 (6.69%, 17/254), 7 (5.91%, 15/254)
and 43 (2.36%, 6/254), whereas intron 44 contained a high
proportion of starting breakpoints (5.12%, 13/254).
Figure 3 showed distribution of intronic breakpoints
of large rearrangements within the DMD gene.
Sequencing of probands with negative MLPA
Considering the high cost related to the large DMD gene,
in this study, only 20 unrelated probands with negative
MLPA were selected randomly for further investigation.
Small lesions were identified by sequencing for these
probands, of which 8 cases were nonsense point mutations,
7 cases were splice-site deletion/substitution mutations and
5 cases were missense mutations. Sequencing results were
listed in Table 1.
Transmission
Among a total of 387 DNA samples from the
mothers of 379 unrelated cases (311 with deletions,
68 with duplications), 12 cases with deletions in 6
deletions and 118 duplications).



Figure 3 Distribution of intronic breakpoints of large rearrangements within the DMD gene. (A) Intronic deletions breakpoints and (B)
Intronic duplications breakpoints. The number of starting breakpoint (50 breakpoint) and ending breakpoint (30 breakpoint) of either deletion or
duplication localized in each intron is indicated.
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families (2 cases per family), and 4 cases with
duplications in 2 families (2 cases per family), 192
carriers were detected by MLPA: 137 with deletions,
55 with duplications. In addition, among 13 DNA
samples from the mothers of 13 unrelated cases with
small lesions, 11 mothers were identified to be
carriers by sequencing. Combining all mutations,
50.75% [(192 + 11)/(387 + 13)] of the mothers were
carriers, and it was established that the DMD gene
mutation was inherited from the mother in 51.72%
[(192 + 6 + 2 + 11)/(379 + 12 + 4 + 13)] of cases. Therefore,
cases resulting from de novo mutations represented up to
48.28% (1–51.72%).
Reading frame and phenotype
Excluding 10 DMD patients with deletions in exon 1 or
exon 79, of the 625 deletions, 566 resulted in DMD, inclu-
ding 70 cases of in-frame and 496 cases of frame-shift
mutations. The 46 BMD patients included 36 cases of
in-frame and 10 cases of frame-shift mutations, and
the 3 IMD cases resulted from frame-shift mutations.
Excluding 3 DMD patients with duplications in exon 1 or

exon 79, of the 118 duplications, 103 resulted in DMD,
including 21 cases of in-frame and 82 cases of frame-shift
mutations. The 9 BMD cases were caused by either
in-frame (5) or frame-shift (4) mutations, and the 3 IMD
cases resulted from frame-shift mutations. Deletions



Table 1 Sequencing results of 20 male probands with negative MLPA

No. Phenotype Family history Exon/Intron Sequencing results Change of protein Carrier status of mother

1 DMD Unknown Exo 2 c.70 T > C p.Trp24Arg Unknown

2 DMD Unknown Exo 2 c.77A > G p.Asn26Ser Yes

3 DMD No Exo 6 c.436C > T p.Gln146X No

4 DMD Unknown Int 16 c.1993-37 T > G/ Unknown Unknown

Int 49 c.7200 + 53C > G

5 DMD Unknown Exo 19 c.2302C > T p.Arg768X Yes

6 DMD Unknown Int 20 c.2623-34C > T/ Unknown Yes

Int 66 c.9649 + 15 T > C

7 DMD Unknown Int 21 c.2804-1 G > T Unknown No

8 DMD Unknown Exo 29 c.4057 G > T p.Glu1353X Unknown

9 DMD Unknown Exo 32 c.4375C > T p.Arg1459X Yes

10 DMD Yes Int 32 c.4518 + 5 G > A Unknown Yes

11 DMD Unknown Exo 34 c.4729C > T p.Arg1577X Unknown

12 DMD Unknown Exo 37 c.5234 G > A p.Arg1745His Unknown

13 DMD Unknown Exo 44 c.6373C > T p.Gln2125X Yes

14 DMD Unknown Exo 48 c.7096C > A p.Gln2366Lys Unknown

15 DMD No Exo 52 c.7657C > T p.Arg2553X Yes

16 DMD Yes Int 61 c.9164-3_9164-1delCAG Unknown Yes

17 DMD Unknown Int 66 c.9649 + 15 T > C Unknown Yes

18 DMD Unknown Exo 68 c.9934A > C p.Lys3312Thr Yes

19 DMD Unknown Exo 70 c.10141C > T p.Arg3381X Unknown

20 DMD Unknown Int 70 c.10223 + 1 G > A Unknown Yes
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contradicting the reading frame rule were clustered at the
50 end of the DMD gene, whereas duplications were
clustered at the 30 end of the gene (See Table 2).

Discussion
Though no other methods were used to detect large re-
arrangement of the DMD gene in our study, several stud-
ies have shown that MLPA is useful to quantitatively
detect mutations in the DMD gene, not only for identify-
ing deletions but also for duplications and female carriers
[11,12]. More mutations can be detected when MLPA is
integrated with sequencing. Our results indicate that
59.35% of the probands carry deletions and 11.21% carry
duplications, which resulted in a sensitivity of detecting
DNA rearrangement by MLPA of 70.56%. In agreement
with similar studies, DMD is the most common pheno-
type resulting from large rearrangements or small lesions
of the DMD gene. Most large rearrangements result in de-
letion mutations, whereas small lesions are often nonsense
mutations [13]. As an economical, rapid, sensitive and
easy genetic testing method, MLPA should be considered
as the initial test for suspected DMD/BMD patients; it
should also be considered to provide better genetic coun-
seling to women with a family history of DMD/BMD.
Certainly, sequencing can be further used to test for DMD
gene defects in instances where MLPA did not detect
a mutation.
In China, DMD/BMD patients present initially at the

hospital with either progressive proximal muscular
weakness and atrophy of the limbs or significantly
elevated transaminase level on examination. Because
many physicians lack a complete understanding of the
disease, there are often several patients with DMD/BMD
within the same family pedigree due to a late diagnosis
of the disease. In our study, 27.49% of the probands had a
family medical history of the disease, and 50.75% of the
mothers were carriers (small lesion>duplication>deletion).
It was also established that the DMD gene mutation
was inherited from the mother in 51.72% of cases,
whereas 48.28% of the mutations were de novo. These
data demonstrate it is essential to increase physicians’
understanding of DMD/BMD, to promote scientific
information, and to increase awareness in regards to
genetic counseling and prenatal diagnosis in pedigrees
with a family history of the disease, particularly in
families with small DMD lesions. In addition, it will
be important to prioritize DMD/BMD as a prenatal
screening project in the future.



Table 2 Large rearrangements contrary to reading
frame rule

Genotype IF/OF Phenotype (No.)

DelEx3-6 OF DMD(1)/BMD(2)

DelEx3-7 OF DMD(15)/BMD(1)

DelEx3-10 IF DMD (1)

DelEx3-13 IF DMD (1)

DelEx3-26 IF DMD (2)

DelEx3-27 IF DMD (2)

DelEx3-29 IF DMD (1)/BMD (1)

DelEx3-30 IF DMD (1)

DelEx3-33 IF DMD (1)

DelEx3-37 IF DMD (1)

DelEx3-44 IF DMD (3)

DelEx5-33 IF DMD (1)

DelEx6-48 IF DMD (1)

DelEx8-21 IF DMD(3)/BMD(1)

DelEx10-30 IF DMD (1)

DelEx10-34 IF DMD (1)

DelEx10-41 IF DMD (1)

DelEx10-44 IF DMD (1)

DelEx12-43 IF DMD (1)

DelEx13-34 IF DMD (1)

DelEx14 IF DMD (1)

DelEx17-30 IF DMD (1)

DelEx26-34 IF DMD (1)

DelEx34 IF DMD (1)

DelEx44 OF DMD(9)/BMD(1)/IMD(1)

DelEx44-45 IF DMD (1)

DelEx45-46 IF DMD (1)

DelEx45-47 IF DMD(12)/BMD(11)

DelEx45-48 IF DMD(9)/BMD(2)

DelEx45-49 IF DMD(4)/BMD(2)

DelEx45-52 OF DMD(19)/BMD(1)/IMD(1)

DelEx45-53 IF DMD(3)/BMD(1)

DelEx45-55 IF DMD (1)

DelEx48 IF DMD (3)

DelEx48-49 IF DMD (2)/BMD(1)

DelEx48-50 OF DMD (29)/BMD(1)

DelEx48-51 IF DMD (1)/BMD(1)

DelEx48-67 IF DMD (1)

DelEx50 OF DMD (15)/BMD(1)

DelEx51 OF DMD (33)/BMD(1)

DelEx51-52 IF DMD (3)/BMD(2)

DelEx51-53 OF DMD (8)/IMD(1)

DelEx51-55 OF DMD (4)/BMD(1)

Table 2 Large rearrangements contrary to reading
frame rule (Continued)

DelEx63 OF BMD(1)

DelEx64 IF DMD (1)

DupEx2 OF DMD (11)/BMD(1)

DupEx2-7 IF DMD (2)

DupEx2-44 OF IMD (1)

DupEx3-4 IF DMD (2)

DupEx3-5 IF DMD (1)

DupEx3-6 OF DMD (1)/BMD(1)

DupEx3-7 OF DMD (5)/BMD(1)/IMD (1)

DupEx3-9&17-41 IF DMD (1)

DupEx3-15 IF DMD (1)

DupEx3-18 IF DMD (1)

DupEx3-39 IF DMD (1)

DupEx3-41 IF DMD (1)

DupEx3-44 IF DMD (1)

DupEx8-44 OF BMD (1)

DupEx19-43&49-51 OF IMD (1)

DupEx19-44 IF DMD (2)

DupEx21-25 IF DMD (1)

DupEx21-37 IF DMD (2)

DupEx21-44 IF DMD (1)

DupEx31-44 IF DMD (1)

DupEx45-49 IF DMD (1)

DupEx49-55 IF DMD (1)

DupEx53-63 IF DMD (1)
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Exons 2–20 and 44–53 had been previously reported
as hotspot regions in the DMD gene. In this study, we
analyzed the distribution of individual exons based on
their frequency of deletion or duplication. Our data indi-
cate that the deletion regions occurring in exons 45–54
and exons 3–22 are the most frequent, that deletions in
exons 1–2 and 56–79 were extraordinarily rare. In
agreement with previous work, small regional deletions
were found to be more common in the DMD gene, and
exon 51 was the most prevalent in single-exon deletions.
Previous studies have suggested that there is a relation-
ship between repetitive sequences and breakpoints
within introns: the more the repetitive sequence, the
more breakpoints there are and the higher the incidence
of mutation. Intron 44 is the most frequent starting
breakpoint, followed by intron 47 and intron 50. The
proportion of ending breakpoints compared to starting
breakpoints within introns gradually increases from
intron 47 to intron 52. There is a relationship between
the clustering breakpoints and the formation of deletion
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hotspots [13]. In contrast to the literature, our study
found deletion breakpoints mainly clustered at the
introns 43–55 of the DMD gene and duplications at the
50 end of the DMD gene. Deletion breakpoints mainly
occurred at the 50 terminal of introns 43–45, 47–55 and
7 and at the 30 terminal of introns 43–45, 47–51, 2 and
7. Intron 44 is the most frequent ending breakpoint,
followed by introns 45, 50/47, 2, 48 and 49. The frequency
of breakpoints reduced with each successive exon, and no
increasing trend was found from intron 47 to intron 52. A
similar pattern was not found in duplication breakpoints.
Whether it was deletion or duplication, no starting
breakpoints or ending breakpoints were found in introns
31, 35, 36, 40, 65, 68and 74–78. We speculate that the dis-
tribution of breakpoints is one of the determining factors
leading to the formation of hotspot mutation regions. In
this study, the distribution of duplications is in agreement
with other countries. It was reported that the predominant
cause of duplications in the DMD gene is the unequal
crossing over between sister chromatids [14]. It is possible
that interchromosomal events may be another mechanism
of genomic duplication because no nucleotide differences
were found in the duplicated alleles [15]. Recently, the
occurrence of tandem duplication via non-homologous
end joining has been proposed as a mechanism for exon 2
duplications [16].
In general, the severity of the phenotype depends on

the occurrence of a translation reading frame disruption
and the premature termination of protein synthesis. The
reading frame rule has been shown to hold true for
96% and 93% of the mutations in DMD and BMD
patients, respectively [13]. In our study, there were
84.75% [(496 + 82)/(10 + 566 + 3 + 103)] of DMD and
74.55% [(36 + 5)/(46 + 9)] of BMD cases, which were
consistent with the reading frame rule. The deletion
beginning with exon 3 represented 35.56% of the
exceptions in DMD patients. Several groups have reported
that 41% of cases with deletions in exons 3–7 presented
with BMD due to the correction of alternative splicing
events, usage of the potential promoter within the intron,
and recoding after ribosomal frameshift [17-19]. However,
excluding 1 case of BMD, the other 15 cases with the dele-
tion of exons 3–7 presented with DMD in our study.
Tuffery-Giraud et al. reported a case with a deletion of
exon 48 that did not present with any neuromuscular
complaints or neuromuscular physical signs by 9 years of
age [13]. However, 3 cases in our study with a single exon
deletion of exon 48 presented with DMD. In addition to
differences between unrelated patients, variable clinical
phenotypes were observed in cases with identical gene
mutations, even within the same pedigree. The deletion of
exons 13–29 was found in a large family in which two
male patients were mildly affected with BMD, whereas
three other family members aged 2, 12, and 39 were
clinically unaffected [13]. Multiple mechanisms may
have a role in modulating these differences, including
recoding after ribosomal frameshift, unusual alternative
splicing [20,21], usage of novo promoters, exon skipping
subsequent to special exon mutation and somatic mosai-
cism [13]. One study found that each exon duplicated in
the DMD gene was incorporated into the fully spliced
mRNA and that duplicated fragments were present in
tandem to their respective fragments [15]. However, it
is challenging to predict clinical phenotypes at the
genomic level using the reading frame rule for
unknown effects of inserted fragments and several
complex duplication rearrangements or translocations
on the structure and function of dystrophin. There-
fore, further studies are required to determine precise
genotype/phenotype correlations, and reading frame
theory should be further refined.
Exon skipping is another therapy for DMD that can

transform DMD into BMD, which is based on the recovery
of the reading frame induced by alternative splicing of anti-
sense oligonucleotides. Exon skipping has been confirmed
as an effective DMD treatment by animal experiments and
clinical trials [22,23]. Presently, only patients with deletions
of certain exons can benefit from the development of anti-
sense oligonucleotides. The strategy of exon skipping needs
to be further improved to account for variations in clinical
phenotype and sensitivity to antisense oligonucleotides in
different patients and to account for the specific effects of
each integral exon on the structure and function of
dystrophin. More patients may benefit from individual
exon skipping therapies following a comprehensive
understanding of the correlation between genotypes
and phenotypes under the guidance of large-scale
genetic epidemiological studies.

Conclusion
Considering a large number of DMD/BMD cases have
family medical history in China, it is essential to increase
physicians’ understanding of DMD/BMD, to promote sci-
entific information, and to increase awareness in regards to
genetic counseling and prenatal diagnosis in pedigrees with
a family history of the disease, particularly in families with
small DMD lesions in China. In addition, such a large-scale
analysis will prove to be instructive for leading translational
studies between basic science and clinical medicine.
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