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Abstract

Background: Polymorphisms within the MTHFD1L gene were previously associated with risk of neural tube defects
in Ireland. We sought to test the most significant MTHFD1L polymorphisms for an association with risk of cleft in an
Irish cohort. This required the development of a new melting curve assay to genotype the technically challenging
MTHFD1L triallelic deletion/insertion polymorphism (rs3832406).

Methods: Melting curve analysis was used to genotype the MTHFD1L triallelic deletion/insertion polymorphism
(rs3832406) and a Single Nucleotide Polymorphism rs17080476 in an Irish cohort consisting of 981 Irish case-parent
trios and 1,008 controls. Tests for association with nonsyndromic cleft lip with or without cleft palate and cleft
palate included case/control analysis, mother/control analysis and Transmission Disequilibrium Tests of case-parent
trios.

Results: A successful melting curve genotyping assay was developed for the deletion/insertion polymorphism
(rs3832406). The TDT analysis initially showed that the rs3832406 polymorphism was associated with isolated cleft
lip with or without cleft palate. However, corrected p-values indicated that this association was not significant.

Conclusions: Melting Curve Analysis can be employed to successfully genotype challenging polymorphisms such
as the MTHFD1L triallelic deletion/insertion polymorphism (DIP) reported here (rs3832406) and is a viable alternative
to capillary electrophoresis. Corrected p-values indicate no association between MTHFD1L and risk of cleft in an Irish
cohort.
Background
Cleft lip with or without cleft palate (CLP) and cleft palate
only (CPO) are common birth defects of complex and het-
erogeneous aetiology. Previous studies suggest that folate
deficiency before or during pregnancy can increase risk of
clefting in the resulting offspring [1-4]. Folate supplemen-
tation in pregnancy has been shown to reduce the recur-
rence of CLP in families and to have a modest reduction in
birth prevalence on a population basis [5]. Nevertheless
this association is still controversial [6,7]. Numerous candi-
date gene association studies between clefts and folate
related genes have shown mixed results and include
methylenetetrahydrofolate reductase (MTHFR [Genbank:
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NP_005948.3]) [4,8-16], methylenetetrahydrofolate de-
hydrogenase (NADP+dependent) (MTHFD1 [Genbank:
NP_005947.3]) [1,16,17], 5,10-methenyltetrahydrofolate
synthetase (MTHFS [Genbank: NP_001186689.1]) and
methionine synthase (MTR [Genbank: NP_000245.2])
[4,17-19]. However, candidate gene studies to date have
not considered MTHFD1L [Genbank: NP_001229696.1] in
relation to nonsyndromic clefts. Environmental factors
were reported for this cohort previously [16] and included
data on the mother’s medication use, folic acid exposure,
alcohol and smoking. No interaction between genotype
and these environmental factors were found in that study.
Based on its association with neural tube defects

(NTDs) [20], and the previously detected association of
its cytoplasmic homologue MTHFD1 in our cleft cohort,
we considered the mitochondrial enzyme MTHFD1L to
be a prime candidate for consideration for association
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with cleft. The relevance of this gene is increasing given its
identification in genome wide association screens as being
associated with coronary artery disease [21,22] and
Alzheimer’s disease [23]. Moreover a previous study
has shown that MTHFD1L is upregulated in human colon
adenocarcinoma [24]. The MTHFD1L gene encodes the
mitochondrial C1-Tetrahydrofolate(THF) Synthase protein
which has a monofunctional 10-formyl-THF synthetase
activity while lacking the 5,10-methylene-THF dehydro-
genase and 5,10-methenyl-THF cyclohydrolase activities
typically found in the trifunctional cytoplasmic protein
encoded by MTHFD1 [25]. It has been shown that the
MTHFD1L gene produces 2 alternatively spliced mRNAs
with the shorter transcript lacking synthetase activity [26].
Previously, we reported that the MTHFD1L rs3832406
DIP and numerous SNPs in linkage disequilibrium (LD)
are associated with the risk of NTDs in the Irish popula-
tion [20]. We proposed that the DIP polymorphism is the
direct disease causing variant within the associated LD
block by affecting alternative splicing of the gene [20].
In this study, we genotyped the MTHFD1L DIP

rs3832406 and the most statistically significant NTD-
associated SNP in the adjacent LD block i.e.,
rs17080476, in 981 Irish case-parent trios affected by
CPL or CPO. We developed a melting curve method
capable of genotyping deletion/insertion polymorphisms
without the need for capillary electrophoresis.
Methods
Subjects
Buccal swab or blood samples were obtained at the Dublin
Cleft Centre in Ireland as previously described [16] from
subjects with cleft palate only (CPO) or cleft lip with or
without cleft palate (CLP) along with their mothers and
fathers. A total of 2,688 samples including 758 complete
triads and 223 incomplete triads were collected for this
study. Out of the total number of cleft cases this included
347 (33.8%) isolated CPO cases plus an additional 108
(10.5%) with multiple defects and 531 (51.7%) isolated
CLP cases plus an additional 42 (4%) with multiple defects.
All the cases of this study were non-syndromic. Multiple
cases included children with one or multiple defects along
with cleft. Chromosomal anomalies and other conditions
(i.e. mother had diabetes or epilepsy or was exposed to
potentially teratogenic drugs) were excluded. Control
samples (n = 1,008) were collected from a population of
56,049 pregnant women attending the three main mater-
nity hospitals in the Dublin area between 1986 and 1990
as previously described [16,27]. Written informed con-
sent was obtained from all participants. Ethical approval
was granted by the Research Ethics Committees of the
Health Research Board of Ireland, the participating hos-
pitals, and the Institutional Review Board at NIH.
Genotyping
Genomic DNA was extracted from blood or buccal swab
collected samples using a QIAamp DNA Blood Mini Kit
(Qiagen, UK). HybProbe melting curve assays were
designed to genotype DIP rs3832406 and SNP
rs17080476 on a LightCycler 480 Real Time PCR ma-
chine (Roche) and are described in more detail below.
Genotyping quality was verified by repeat genotyping of
at least 10% of samples with agreement rate of >99%
and overall success rate of >99%. In addition, 10% of the
controls were genotyped by the HybProbe melting curve
assays described here and compared to the assays used
previously [20]. Comparison of control genotype calls
gave a 95.7% agreement for DIP rs3832406 and 99%
agreement for SNP rs17080476. All discrepant genotype
calls for any sample were resolved by re-genotyping or
were left out of the final analysis.

SNP rs17080476 assay
SNP rs17080476 reagents and analysis conditions are:
Forward Primer 5′-GCAACTTTGTTTAGTATGAAAA
TTTGAT-3′ (4 μM), reverse primer5′-TCTGTCTTCAC
CCAGCC (2 μM), anchor probe 5′-Bodipy630/650-
AAGAGGGGAAAAAAAACCTTTCTCCATTATTCCTA-
PHO-3′(0.4 μM), sensor probe 5′-ATTCATTTCTTTA
CAGCAGTGGGATTATGAAA-Fluorescein 3′ (0.2 μM),
pre-incubation 10 minutes at 95°C, amplification 45 cycles
of 15 seconds at 95°C, 15 seconds at 56°C, 15 seconds at
72°C, melting curve 1 minute at 95°C, 2 minutes at 50°C,
acquisition ramp up to 80°C (0.11°C/s, 5 acquisitions
per°C).

DIP rs3832406 assay
DIP rs3832406 reagents and analysis conditions are: for-
ward primer 5′-AAGCTTCCTGTTACCAC-3′ (4 μM), re-
verse primer 5′-AGGAGAATCACTTCAACC-3′ (2 μM),
anchor probe: 5′-AGCCCCACGTTTGAATTTTATGTT
TTTCCTAAAGT-Fluorescein-3′ (0.2 μM). Sensor probe:
5′BODIPY630/650-AGGGAAGATTATTATTATTATTAT
TATTATTATTTTCTTTTTCAGACGGA-Phosphate-3′
(0.2 μM),pre-incubation 10 minutes at 95°C, amplifica-
tion 45 Cycles of 10 seconds at 95°C, 10 seconds at
56°C, 10 seconds at 72°C, melting curve 10 seconds
at 95°C, 1 minute at 50°C, acquisition ramp up to 70°C
(0.02°C/s, 30 acquisitions per°C).

Statistical methods
Power calculations to detect an odds ratio of 1.5 assuming
a dominant model for the case–control analyses were as
follows: rs3832406 Allele 1 60%, Allele 2 95%, Allele 3
93%; rs17080476 G 95%. Assuming a recessive model:
rs3832406 Allele 1 96%, Allele 2 36%, Allele 3 23%;
rs17080476 G 34%. Our primary analysis was carried out
with isolated nonsyndromic cases of CLP and CPO and
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their parents. A secondary analysis was then carried out
including nonsyndromic cleft cases with other defects.
Hardy-Weinberg equilibrium (HWE) was tested within
each subject class (case, mother, father and controls) for
each polymorphism by chi-squared test. Associations with
CLP and CPO were tested for each polymorphism in
cases/controls and separately in mothers/controls by logis-
tic regression and odds ratios using either a dominant or
recessive genetic disease model. Triads (case, mother, and
Figure 1 Modified Melting Curve Analysis for DIP rs3832406. The Sens
shown. The Sensor probe is designed to perfectly match the complement
Sensor probe bound to Allele 2 has a Tm of 60.3°C. C. Sensor probe bound
peaks for each of the three alleles. E. Examples of heterozygote melting pe
father) were used to perform the Transmission Disequilib-
rium Test (TDT) of Spielman et al. [28]. The TDT P-values
were adjusted using permutational correction [29].

Results and discussion
Development of a novel assay to genotype DIP rs3832406
by Melting Curve Analysis
The MTHFD1L gene has received particular attention in
recent years owing to its association with coronary artery
or probe design for detection of all three alleles of DIP rs3832406 is
of Allele 3. A. Sensor probe bound to Allele 1 has a Tm of 58.8°C. B.
to Allele 3 has a Tm of 63°C. D. Examples of homozygote melting
aks for all three allele combinations.
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disease, Alzheimer’s disease and NTDs. Our previous
study, demonstrated that the MTHFD1L rs3832406 DIP
is functional by impacting on alternative splicing effi-
ciency [20]. We report a new modified melting curve
assay to genotype this functionally relevant triallelic
MTHFD1L polymorphism without the need for trad-
itional capillary electrophoresis methods. A single assay
which is able to distinguish 3 alleles contemporaneously
was developed taking advantage of the GC-rich regions
flanking the DIP (Figure 1). As described previously [20],
this polymorphism is a repeated “ATT” sequence that
has three common alleles, Allele 1 (ATT7) Allele2
Table 1 MTHFD1L Genotyping Results in Triads (Cases, Mothe
with Other Defects (Multiple)

DIPrs3832406 Isolated defects

CLP Fathers Mothers Cases

n % n % n %

11 162 41.8 187 40.1 209 41.9

12 102 26.3 128 27.5 149 29.9

13 76 19.6 89 19.1 84 16.8

22 18 4.6 24 5.2 18 3.6

23 24 6.2 31 6.7 28 5.6

33 6 1.5 7 1.5 11 2.2

Total 388 466 499

CPO Fathers Mothers Cases

n % n % n %

11 98 37.3 118 38.1 134 41.7

12 78 29.7 82 26.5 88 27.4

13 60 22.8 69 22.3 62 19.3

22 8 3.0 12 3.9 7 2.2

23 18 6.8 20 6.5 23 7.2

33 1 0.4 9 2.9 7 2.2

Total 263 310 321

SNPrs17080476 Isolated defects

CLP Fathers Mothers Cases

n % n % n %

AA 268 68.2 296 63.1 320 63.1

AG 110 28.0 160 34.1 170 33.5

GG 15 3.8 13 2.8 17 3.4

Total 393 469 507

Isolated defects

CPO Fathers Mothers Cases

n % n % n %

AA 173 65.5 205 65.7 214 65.6

AG 86 32.6 93 29.8 100 30.7

GG 5 1.9 14 4.5 12 3.7

Total 264 312 326
(ATT8) and Allele 3 (ATT9). A wide 50-base sensor
probe was designed to perfectly match Allele 3 with 9
ATT repeats and its flanking regions, producing a melt-
ing temperature (Tm) of 63°C (Figure 1c). The same
probe produces a 3-base mismatched bubble on Allele 2
and a 6-base mismatched bubble on Allele 1 causing a
Tm of 60.3°C and 58.8°C respectively (Figure 1a-b). The
probe pairing starts from the GC-rich external regions
allowing the formation of an internal mismatched bubble
for Alleles 1 and 2. A slow acquisition ramp allowed
melting peaks for each homozygote and heterozygote
genotype to be distinguished (Figure 1d-e).
r and Fathers) and Controls for CLP and CPO (Isolated) or

Multiple defects

Fathers Mothers Cases Controls

n % n % n % n %

174 42.0 203 40.8 231 43.5 419 42.1

116 28.0 140 28.1 163 30.7 267 26.8

82 19.8 97 19.5 91 17.1 196 19.7

18 4.3 24 4.8 18 3.4 40 4.0

24 5.8 34 6.8 28 5.3 52 5.2

6 1.4 7 1.4 11 2.1 21 2.1

420 505 542 995

Fathers Mothers Cases

n % n % n %

145 40.8 154 36.9 175 41.0

97 27.3 110 26.4 118 27.6

77 21.7 99 23.7 86 20.1

8 2.3 18 4.3 9 2.1

25 7.0 26 6.2 29 6.8

3 0.8 10 2.4 10 2.3

355 417 427

Multiple defects

Fathers Mothers Cases Controls

n % n % n % n %

285 67.1 320 62.9 344 62.5 660 65.9

124 29.2 176 34.6 188 34.2 308 30.8

16 3.8 13 2.6 18 3.3 33 3.3

425 509 550 1001

Multiple defects

Fathers Mothers Cases

n % n % n %

234 65.9 274 65.6 288 66.8

115 32.4 127 30.4 125 29.0

6 1.7 17 4.1 18 4.2

355 418 431
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DIP rs3832406, SNP rs17080476 and risk of CLP
We genotyped rs3832406 DIP and SNP rs17080476 in
an Irish cleft cohort in a bid to test for association. The
genotype frequencies of SNP rs17080476 and DIP
rs3832406 in our CLP, CPO and control samples are
shown in Table 1. Genotype distributions in all groups
were in HWE. DIP rs3832406 showed an association
with CLP case status based on TDT analysis (Table 2).
The TDT analysis showed that Allele 1 is transmitted to
the offspring 55.2% of times (p = 0.037) in isolated CLP
cases, indicating that this allele is associated with
increased disease risk. The addition of multiple case fam-
ilies to this analysis enhances the statistical significance
(56.1% transmission, p = 0.011). Allele 3 has the lowest
frequency and was passed to the offspring only 42.8% of
Table 2 TDT analysis for DIP rs3832406 and SNP rs17080476

Allele Passed

DIP rs3832406 n

Isolated CLP 1 194

2 119

3 88

Total 401

Multiple CLP 1 216

2 128

3 92

Total 436

Isolated CPO 1 145

2 86

3 77

Total 308

Multiple CPO 1 188

2 115

3 101

Total 404

SNP rs17080476 Isolated CLP G 132

A 111

Total 243

Multiple CLP G 144

A 121

Total 265

Isolated CPO G 87

A 85

Total 172

Multiple CPO G 119

A 115

Total 234
1 GRR = genotype relative risk
2 CI = confidence interval
3 Significant values are marked in bold.
times (p = 0.035) in multiple CLP cases, appearing to
have a protective role against the disease. However, cor-
rection of these significant p-values using permutational
adjustment resulted in loss of statistical significance. We
did not observe statistical significance with SNP
rs17080476 which shares a D’ value of 0.61 with DIP
rs3832406 and represented the most statistically compel-
ling variant from this genomic region in our NTD study
[20] (Table 2). The majority of other analyses performed
showed no significant association with the risk of cleft
(Table 3).

Conclusion
Our analysis shows no strong association between spe-
cific polymorphisms within the MTHFD1L gene and risk
in all cleft sample

Not Passed GRR1 (95% CI) P-value

% n %

55.6 155 44.4 1.3 (1.0, 1.5) 0.0372

47.2 133 52.8 0.9 (0.7, 1.1) 0.3781

43.8 113 56.2 0.8 (0.6, 1.0) 0.0786

401

56.5 166 43.5 1.3 (1.1, 1.6) 0.0107

46.5 147 53.5 0.9 (0.7, 1.1) 0.2523

42.8 123 57.2 0.7 (0.6,1.0) 0.0351

436

52.5 131 47.5 1.1 (0.9, 1.4) 0.3996

47.8 94 52.2 0.9 (0.7, 1.2) 0.5511

48.1 83 51.9 0.9 (0.7, 1.3) 0.6353

308

52.2 172 47.8 1.1 (0.9, 1.3) 0.3992

48.9 120 51.1 1.0 (0.7, 1.2) 0.7443

47.4 112 52.6 0.9 (0.7, 1.2) 0.4512

404

54.3 111 45.7 1.2 (0.9, 1.5) 0.1785

45.7 132 54.3

243

54.3 121 45.7 1.2 (0.9, 1.5) 0.1582

45.7 144 54.3

265

50.6 85 49.4 1.0 (0.8, 1.4) 0.8788

49.4 87 50.6

172

50.9 115 49.1 1.0 (0.8, 1.3) 0.7937

49.1 119 50.9

234



Table 3 Logistic regression analysis of case/controls and mother/controls for DIP rs3832406 and SNP rs17080476 in all
cleft samples

Polymorphism/Allele Name Dominant Recessive Multiplicative

OR1(95% CI2) p- value OR(95% CI) p-value OR (95% CI) p-value

Isolated CLP DIP Allele 1 Case-CTRL 1.1 (0.8, 1.5) 0.6159 1 (0.8, 1.3) 0.8468 1 (0.9, 1.2) 0.7022

Mother-CTRL 0.9 (0.6, 1.2) 0.3917 0.9 (0.7, 1.1) 0.4774 0.9 (0.8, 1.1) 0.3476

DIP Allele 2 Case-CTRL 1.1 (0.9, 1.4) 0.3358 0.8 (0.5, 1.4) 0.4926 1.1 (0.9, 1.3) 0.5534

Mother-CTRL 1.1 (0.9, 1.4) 0.2363 1.2 (0.7, 2) 0.5077 1.1 (0.9, 1.4) 0.2176

DIP Allele 3 Case-CTRL 0.9 (0.7, 1.1) 0.1928 1 (0.5, 2) 0.9158 0.9 (0.7, 1.1) 0.2349

Mother-CTRL 1 (0.8, 1.3) 0.9044 0.7 (0.3, 1.5) 0.3311 1 (0.8, 1.2) 0.8726

SNP Case-CTRL 1 (0.6, 1.8) 0.9798 0.9 (0.7, 1.1) 0.1816 0.9 (0.7, 1.1) 0.2494

Mother-CTRL 1.3 (0.7, 2.5) 0.4286 0.9 (0.7, 1.1) 0.2382 0.9 (0.8, 1.1) 0.4336

Multiple CLP DIP Allele 1 Case-CTRL 1 (0.7, 1.4) 0.9697 1 (0.8, 1.2) 0.9333 1 (0.8, 1.2) 0.9358

Mother-CTRL 0.8 (0.6, 1.2) 0.2857 0.9 (0.7, 1.2) 0.4737 0.9 (0.8, 1.1) 0.2955

DIP Allele 2 Case-CTRL 1.1 (0.9, 1.4) 0.258 0.9 (0.5, 1.6) 0.6969 1.1 (0.9, 1.3) 0.4046

Mother-CTRL 1.1 (0.9, 1.4) 0.2396 1.3 (0.8, 2.2) 0.3264 1.1 (0.9, 1.4) 0.1809

DIP Allele 3 Case-CTRL 0.9 (0.7, 1.1) 0.323 1 (0.5, 2.2) 0.9053 0.9 (0.7, 1.1) 0.3998

Mother-CTRL 1 (0.8, 1.3) 0.9303 0.7 (0.3, 1.7) 0.4316 1 (0.8, 1.2) 0.8883

SNP Case-CTRL 1 (0.5, 1.8) 0.9538 0.9 (0.7, 1.1) 0.2786 0.9 (0.8, 1.1) 0.3381

Mother-CTRL 1.2 (0.6, 2.3) 0.5906 0.9 (0.7, 1.1) 0.2905 0.9 (0.8, 1.1) 0.4526

Isolated CPO DIP Allele 1 Case-CTRL 1 (0.7, 1.4) 0.9498 1 (0.8, 1.2) 0.6933 1 (0.8, 1.2) 0.7915

Mother-CTRL 0.9 (0.6, 1.2) 0.3981 0.8 (0.6, 1) 0.0708 0.9 (0.7, 1) 0.0808

DIP Allele 2 Case-CTRL 1 (0.8, 1.3) 0.8703 0.5 (0.2, 1.1) 0.0749 1 (0.8, 1.2) 0.6497

Mother-CTRL 1 (0.8, 1.3) 0.7614 1.1 (0.6, 1.9) 0.798 1 (0.8, 1.3) 0.7284

DIP Allele 3 Case-CTRL 1.1 (0.9, 1.4) 0.3873 1.1 (0.5, 2.4) 0.7843 1.1 (0.9, 1.4) 0.3963

Mother-CTRL 1.3 (1, 1.7) 0.04313 1.1 (0.5, 2.4) 0.7368 1.2 (1, 1.5) 0.0576

SNP Case-CTRL 0.8 (0.4, 1.4) 0.4111 1 (0.8, 1.3) 0.7454 1 (0.8, 1.2) 1

Mother-CTRL 0.8 (0.4, 1.5) 0.4739 1 (0.8, 1.3) 0.8894 1 (0.8, 1.2) 0.7186

Multiple CPO DIP Allele 1 Case-CTRL 1 (0.7, 1.5) 0.9335 1 (0.8, 1.3) 0.9081 1 (0.8, 1.2) 0.8998

Mother-CTRL 0.8 (0.6, 1.2) 0.3735 0.8 (0.7, 1.1) 0.2065 0.9 (0.7, 1.1) 0.1723

DIP Allele 2 Case-CTRL 1 (0.8, 1.3) 0.8253 0.5 (0.2, 1.2) 0.1285 1 (0.8, 1.2) 0.7474

Mother-CTRL 1 (0.8, 1.3) 0.824 1 (0.5, 1.9) 0.9076 1 (0.8, 1.3) 0.882

DIP Allele 3 Case-CTRL 1.1 (0.8, 1.4) 0.5704 1 (0.4, 2.5) 0.9392 1.1 (0.8, 1.4) 0.598

Mother-CTRL 1.2 (0.9, 1.6) 0.1179 1.4 (0.6, 3.1) 0.4179 1.2 (1, 1.6) 0.1044

SNP Case-CTRL 0.9 (0.5, 1.7) 0.7393 1 (0.8, 1.3) 0.9235 1 (0.8, 1.2) 0.847

Mother-CTRL 0.7 (0.4, 1.4) 0.3247 1 (0.8, 1.3) 0.9406 1 (0.8, 1.2) 0.6925
1 OR =odds ratio
2 CI = confidence interval
3 Significant values are marked in bold.
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of cleft in an Irish cohort. The main limitation of our
study would be sample size and the uncorrected p-values
do indicate a possible association between the rs3832406
DIP and risk of CLP. However, we suggest further
screening of rs3832406 DIP in a larger cohort and de-
scribe a new assay that will facilitate this. We have
demonstrated that the modified Melting Curve Analysis
developed for DIP rs3832406 could be a valid alternative
to capillary electrophoresis for the genotyping of multiple
allele deletion/insertion polymorphisms and can be
employed by any laboratory with a Real-Time PCR in-
strument with melting curve capacity.

Abbreviations
CLP: Cleft lip with or without cleft palate; CPO: Cleft palate only;
DIP: Deletion/insertion polymorphism; HWE: Hardy-Weinberg equilibrium;
LD: Linkage disequilibrium; MTHFD1: Methylenetetrahydrofolate
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dehydrogenase (NADP +dependent); MTHFD1L: Methylenetetrahydrofolate
dehydrogenase (NADP +dependent) 1-like;
MTHFR: Methylenetetrahydrofolate reductase; MTR: Methionine synthase;
MTHFS: Methenyltetrahydrofolate synthetase; NTD: Neural tube defect;
SNP: Single nucleotide polymorphism; TDT: Transmission disequilibrium test.
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