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Abstract

Background: Intellectual disability (ID) is frequently associated with sleep disorders. Treatment with melatonin
demonstrated efficacy, suggesting that, at least in a subgroup of patients, the endogenous melatonin level may
not be sufficient to adequately set the sleep-wake cycles. Mutations in ASMT gene, coding the last enzyme of the
melatonin pathway have been reported as a risk factor for autism spectrum disorders (ASD), which are often
comorbid with ID. Thus the aim of the study was to ascertain the genetic variability of ASMT in a large cohort of
patients with ID and controls.

Methods: Here, we sequenced all exons of ASMT in a sample of 361 patients with ID and 440 controls. We then
measured the ASMT activity in B lymphoblastoid cell lines (BLCL) of patients with ID carrying an ASMT variant and
compared it to controls.

Results: We could identify eleven variations modifying the protein sequence of ASMT (ID only: N13H, N17K, V171M,
E288D; controls only: E61Q, D210G, K219R, P243L, C273S, R291Q; ID and controls: L298F) and two deleterious splice
site mutations (IVS5+2T>C and IVS7+1G>T) only observed in patients with ID. We then ascertained ASMT activity in
B lymphoblastoid cell lines from patients carrying the mutations and showed significantly lower enzyme activity in
patients carrying mutations compared to controls (p = 0.004).

Conclusions: We could identify patients with deleterious ASMT mutations as well as decreased ASMT activity.
However, this study does not support ASMT as a causative gene for ID since we observed no significant
enrichment in the frequency of ASMT variants in ID compared to controls. Nevertheless, given the impact of sleep
difficulties in patients with ID, melatonin supplementation might be of great benefit for a subgroup of patients
with low melatonin synthesis.

Background
Intellectual disability (ID), is defined as IQ < 70 and is
associated with functional deficits in adaptive behavior,
such as daily-living skills, social skills and communica-
tion. It affects 1-3% of the general population and
results from heterogeneous environmental, chromoso-
mal and monogenic causes [1]. Besides the cognitive
deficit, patients with ID often present with sleep

disorders, which are persistent and a burden for the
patients and their families. The most commonly
reported disorders are delayed settling to sleep and fre-
quent waking at night, with frequencies ranging from 58
up to 86% [2-4]. Several therapeutic strategies have been
considered for treating sleep disturbances in ID. Among
them, pharmacological use of melatonin was demon-
strated to be efficient in several studies, recently
reviewed in a meta-analysis [5]: exogenous melatonin
appeared to decrease sleep latency and number of wakes
per night, and increase total sleep time in individuals
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with ID. This positive effect of melatonin treatment
could suggest that, in some patients with ID, endogen-
ous melatonin level may not be sufficient to adequately
set the sleep-wake cycles.
Melatonin is considered as a major biological signal of

day-night rhythms, and thus a major endogenous “Zeit-
geber” (time-giver). It is synthesized in the dark in the
pineal gland from serotonin, first acetylated by aryl alky-
lamine N-acetyltransferase (AA-NAT) and then con-
verted into melatonin by acetyl serotonin methyl
transferase (ASMT also known as hydroxyindole
O-methyltransferase or HIOMT). Besides sleep induc-
tion and circadian rhythms regulation, melatonin is also
involved in various other physiologic functions, includ-
ing immune response, antioxydative defense, metabolic
regulations and memory [6-8]. Abnormal melatonin
synthesis or signaling was reported as a risk factor for
diverse medical conditions such as diabetes, circadian
and psychiatric disorders [9-14]. Among these, autism
spectrum disorders (ASD) - which are also often asso-
ciated with ID and with sleep disorders - have been
associated with low melatonin levels in at least four
independent studies [15-18]. Melke et al [17] showed
that melatonin deficit in patients with autism is corre-
lated with low activity of the ASMT enzyme, and, in
some patients, associated with mutations in the ASMT
gene. This study provided the first insight into a mole-
cular mechanism for melatonin deficit associated with
neurodevelopmental disorders.
We hypothesized that patients with ID could carry

deleterious ASMT mutations. If this was the case, these
mutations might act as risk factors for sleep/circadian
disorders and subsequently exacerbate the effect of inde-
pendent genetic/environmental causes of ID. To address
this question, we first screened the ASMT gene for rare
variants in 361 patients with ID and 440 controls. For
patients carrying ASMT mutations, we then measured
the ASMT activity in B lymphoblastoid cell lines (BLCL)
and if available provided information on sleep.

Methods
Subjects
In this study, we tested 361 clinically characterized male
patients with established or putative X-linked ID, col-
lected by the European XLMR Consortium (France, Bel-
gium, Germany and the Netherlands). This panel
included 182 established X-linked ID families character-
ized by at least two boys affected in two different gen-
erations and 113 brother-pair families with two or more
affected brothers. Of 66 families, the exact number of
affected males is not known, but linkage to the X chro-
mosome was highly suspected. To study the frequency
of ASMT mutations, we did not exclude from this
cohort 68 previously described families with established

X-linked mutations. The majority of the patients were
from European ancestry. All samples were obtained
after receiving informed consent. CGG expansions for
fragile X syndrome, assessed by Southern blot analysis
using DNA digested with EcoRI/EagI endonucleases and
an StB12-3 probe corresponding to FRAXA, were
excluded. Unrelated healthy controls of French origin
(n = 220, 155 males, 65 females) were recruited among
blood donors in two French university hospitals (Pitié-
Salpêtrière and Henri-Mondor hospitals, Paris, France).
Unrelated Swedish participants from the general popula-
tion (n = 220, 142 males, 78 females) were recruited
through advertisements. The local research ethics boards
reviewed and approved the study. Informed consent was
obtained from all participants.

Screening of the ASMT gene for rare variations
DNA was extracted from blood cells by the phenol/
chloroform method. All PCRs were performed with Qia-
gen HotStar Taq kit. Primers and PCR conditions have
been described previously [17]. PCR products were
sequenced with the BigDye Terminator Cycle Sequen-
cing Kit (V3.1, Applied Biosystems) and then subjected
to electrophoresis, using an ABI PRISM genetic analyzer
(Applied Biosystems). For all non-synonymous muta-
tions, genotyping was confirmed by sequencing of an
independent PCR product. The nomenclature of genetic
variations was determined according to reference pro-
tein sequence ENSP00000370627 in Ensembl database
(345 aa). In silico functional predictions were assessed
using PolyPhen (http://genetics.bwh.harvard.edu/pph/)
and SIFT (http://sift.jcvi.org/) algorithms.

Measurement of ASMT enzyme activity in BLCL
BLCL were established from EBV-transformed lympho-
cytes according to standard protocol, and grown at 37°C
in RPMI-1640 medium (Life Technologies Inc.) supple-
mented with undialysed fetal calf serum, 2 mM gluta-
mine, 2,5 mM sodium, 100 mg/mL streptomycin and
100 IU/mL penicillin, under standard conditions. ASMT
enzyme activities were determined on BLCL pellets, at
least in duplicate, by radioenzymology, as described pre-
viously [17], after lysis with 100 hemolytic units of a
purified SH-activated toxin (streplolysin O, generously
provided by Prof. J. Alouf, Institut Pasteur, Paris).

Results
Non-synonymous variants in the ASMT gene
We investigated whether rare non-synonymous varia-
tions in the ASMT gene could be identified in patients
with ID by directly sequencing all ASMT exons in 361
patients with ID and 440 controls. Thirteen variants
affecting exonic or splice-site sequences were identified,
involving eight patients and eight controls (Table 1). Six
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of them were only found in patients and not in con-
trols. Those include two splice site variants, which
affect the splicing donor sites of intron 5 (IVS5+2T>C)
and intron 7 (IVS7+1G>T). Both are predicted to
introduce a stop codon shortly after the nucleotide
change, and thus lead to a truncated protein. Interest-
ingly, in five patients carrying an ASMT variant, a
genetic cause for ID had been identified previously
(Table 2). The patient with the N17K variant is a boy
carrying a mutation in ZNF41. One of the two patients

with an E288D variant is a boy diagnosed with FG syn-
drome. The index patient with the L298F variant is
carrier of a mutation in the MCT8 gene. The patient
with the IVS7+1G>T variant is a boy displaying the
24 bp duplication of ARX exon 2, and has one brother
also carrying both ASMT variant and the same ARX
duplication. The patient with the V171M variant is a
boy carrying a duplication of MECP2. The other
patients with ASMT variants have no known genetic
anomaly involved in ID.

Table 1 ASMT mutations identified in 361 patients with ID and 440 controls

Variant ID Patients (n = 377) Controls (n = 440) Functional prediction (Polyphen/SIFT)

ID only

N13H 1 0 Benign/tolerated

N17K* 1 0 Possibly damaging/tolerated

V171M 1 0 Possibly damaging/affects protein function

IVS5+2T > C 1 0 Damaging

IVS7+1G > T 1 0 Damaging

E288D 2 0 Benign/tolerated

ID and Controls

L298F 1 2 Possibly damaging/affects protein function

Controls only

E61Q 0 1 Benign/tolerated

D210G 0 1 Probably damaging/affects protein function

K219R 0 1 Benign/tolerated

P243L 0 1 Probably damaging/affects protein function

C273S 0 1 Probably damaging/affects protein function

R291Q 0 1 Probably damaging/tolerated

* N17K variant is rs17149149 and is mentioned in the SNP database at an allelic frequency of 6.7% in the Han Chinese population.

Table 2 Clinical observations and ASMT activity in B lymphoblastoid cell line of patients with ID and ASMT mutations

Individuals Variants ASMT activity
(pmol/mg prot/

30 min)

Clinical observations Other known
genetic
anomalies

Patient D27 N13H 1.5 Mild ID. No other abnormalities or autistic features. None

Patient P42 N17K 1.2 IQ:76, hyperkinesis, language delay, attention deficit and impulsivity, no
epilepsy, no dysmorphic features.

ZNF41 mutation

Patient D33 V171M 1.6 Moderate ID, spasticity and severe language delay. No sleep-wake anomaly. MECP2
duplication

Patient N6 IVS5
+2T>C

0.9 Some autistic features; some compulsive behavior. Normal sleep pattern,
although sleeps lightly and is easily wakened.

None

Patient P104 IVS7
+1G>T

ND Moderate ID, hyperactivity, attention deficit. No dysmorphic features. No
evidence for sleeping problems or autistic features.

ARX duplication

Patient N79 E288D 0.9 Mild ID, epilepsy, dysmorphic features, scoliosis, strabismus, epilepsy, corpus
callosum agenesis, subdural hygroma, hypermetry. Normal sleep pattern,
although sleeps lightly. Some autistic features, with relatively low expressive
communication and interpersonal relations, and compulsive behavior.

None

Patient T76 E288D 2.2 Severe ID, a few words. Dysmorphic features, hypotonia. Abnormal EEG,
moderately enlarged lateral ventricles. No evidence for autistic features
(’friendly behavior’).

FG syndrome

Patient L45 L298F 1.7 Severe ID and no speech, however good social and eye contact. Never
walked. No evidence for sleeping problems, or autistic features.

MCT8 mutation

Controls (n = 31)
median (range)

WT 3.8 (0.2 - 9.5)
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Six variants were found only in controls and not in
patients, and one variant (L298F) was found both in the
ID group and in the control group. One variant, N17K
(rs17149149), is mentioned in the SNP database at an
allelic frequency of 6.7% in the Han Chinese population.
When considering all the identified rare variations, we
could not detect an enrichment of mutations in patients
with ID compared to the control group (8/361 vs 8/440
or 2.2% vs 1.8%; p = 0.88; OR = 1.25 (0.46-3.46)).

Impact of non-synonymous genetic variations
on ASMT enzyme activity
In order to investigate the functional effect of the
genetic variations identified, ASMT enzyme activity was
measured in BLCL of seven patients carrying ASMT var-
iants (cells from the patient carrying variant IVS7+1G>T
were not available) and 31 controls without coding
mutations of ASMT (Figure 1). For six of the patients
carrying variants, ASMT activity ranged in the first
quartile of the control group (≤1.9 pmol/mg proteins/
30 min). For the patient carrying variant E288D, ASMT
activity ranged in the second quartile of the control
group (2 - 3.3 pmol/mg proteins/30 min). Interestingly,
for E288D, both PolyPhen and SIFT algorithms pre-
dicted little impact of the substitution on protein func-
tion. Surprisingly, the two unrelated patients carrying

E288D variants displayed quite different BLCL ASMT
activity (0.9 and 2.2 pmol/mg proteins/30 min), indicat-
ing that additional factors influence the enzyme activity.
On average, ASMT activity in BLCL of ID patients

carrying variants was much lower as compared to con-
trol subjects without coding mutations of ASMT (1.4 ±
0.2 pmol/mg protein/30 min and 4.1 ± 0.4 pmol/mg
protein/30 min, respectively, Wilcoxon test: p = 0.004).
These data suggest that most variants identified in
patients, although heterozygous, are associated with a
low ASMT activity ex vivo.

Discussion
Alterations of the melatonin pathway have been
suggested as susceptibility factors to developmental dis-
orders, and especially to ASD [15-17,19-23]. The
mechanisms leading to ASMT/melatonin deficit in
humans are most likely diverse, including genetic/epige-
netic alterations. The impact of melatonin deficit on
sleep and on the susceptibility to developmental disor-
ders (such as ASD or ID) also remains unclear. It may
involve its role as a circadian synchronizer and sleep
inducer, its effects on synaptic plasticity, and/or its anti-
oxidant properties [8,14,19,24,25]. Melatonin deficit may
also alter and/or desynchronize many physiological pro-
cesses, and indirectly exacerbate other pathological
processes.
We could identify predicted deleterious variants in a

subgroup of patients with ID, including two deleterious
splice site variants of ASMT found only in patients with
ID. The splice site mutation in intron 7 (IVS7+1G>T)
was never observed before. The splice site mutation
in intron 5 (IVS5+2T>C) was previously identified in
patients with ASD and reported to be more frequent in
patients compared to controls (6/749 vs 1/861; p = 0.04)
[17,20,22]. In addition, biochemical studies indicated
that several of the variants, although present at the het-
erozygous state, were associated with low ASMT activity
and might thus impair melatonin synthesis in vivo.
These results were consistent with the biochemical stu-
dies performed by Melke et al. on families carrier of the
L298F and IVS5+2T>C mutations and presenting with a
dramatic decrease in ASMT activity and blood melato-
nin concentration [17]. Nevertheless, despite these inter-
esting findings, we could not detect ASMT mutation
enrichment in patients with ID compared to the con-
trols. Our results were similar to those previously
reported in patients with ASD, for whom no significant
enrichment in ASMT rare variants was found [17,20,22],
although melatonin deficit is very frequently associated
with this condition [15,16], and is correlated with low
ASMT activity in vivo [17]. Low ASMT activities were
also observed in BLCL of some controls subjects who
did not carry a coding mutation of ASMT. Low ASMT
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Figure 1 ASMT activity in B lymphoblastoid cell lines of 31
unaffected controls and 7 patients with ID and ASMT mutation.
Grey boxes indicate medians and quartiles. Wilcoxon test: p = 0.004.
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activity can thus be observed even in the absence of
coding mutations. For example, SNPs within the promo-
ter were associated with low ASMT mRNA levels
[17,21].
Several limitations exist in this study. First, the sample

of patients with ID was initially collected for the identi-
fication of X-linked genes (e.g. families with multiple
affected males). Therefore, this population is not repre-
sentative of the broad diversity of patients with ID and
is negatively biased for the identification of mutations in
the ASMT gene, located on the pseudo-autosomal
region 1 (PAR1) shared by the X and Y chromosomes.
Another limitation is the sparse information that we
could collect about sleep disorders. Further studies will
be required to establish the precise link between ASMT
variants, melatonin levels and sleep disorders.

Conclusions
This study does not support ASMT as a causative gene
for ID since we observed no significant enrichment in
the frequency of ASMT variants in ID compared to con-
trols. Nevertheless, we could identify patients with dele-
terious ASMT mutations as well as decreased ASMT
activity. Given the importance of sleep difficulties in
patients with ID, for this subgroup of patients, melato-
nin supplementation might be beneficial.
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