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Abstract

Background: Left ventricular mass (LVM) is an important risk factor for cardiovascular disease. Previously we found
evidence for linkage to chromosome 12p11 in Dominican families, with a significant increase in a subset of families
with high average waist circumference (WC). In the present study, we use association analysis to further study the
genetic effect on LVM.

Methods: Association analysis with LVM was done in the one LOD critical region of the linkage peak in an
independent sample of 897 Caribbean Hispanics. Genotype data were available on 7085 SNPs from 23 to 53 MB
on chromosome 12p11. Adjustment was made for vascular risk factors and population substructure using an
additive genetic model. Subset analysis by WC was performed to test for a difference in genetic effects between
the high and low WC subsets.

Results: In the overall analysis, the most significant association was found to rs10743465, downstream of the SOX5
gene (p = 1.27E-05). Also, 19 additional SNPs had nominal p < 0.001. In the subset analysis, the most significant
difference in genetic effect between those with high and low WC occurred with rs1157480 (p = 1.37E-04 for the
difference in b coefficients), located upstream of TMTC1. Twelve additional SNPs in or near 6 genes had p < 0.001.

Conclusions: The current study supports previously identified evidence by linkage for a genetic effect on LVM on
chromosome 12p11 using association analysis in population-based Caribbean Hispanic cohort. SOX5 may play an
important role in the regulation of LVM. An interaction of TMTC1 with abdominal obesity may contribute to
phenotypic variation of LVM.

Background
Increase in left ventricle mass (LVM) is considered a
compensatory process which maintains cardiac function
in response to noxious stimuli, such as hypertension,
obesity and heart damage [1]. Increase in LVM is one of
the most important cardiac risk factors for stroke and
cardiovascular disease (CVD), including myocardial
infarction (MI), and chronic heart failure (HF), indepen-
dent of age, sex and race-ethnicity [2]. Previously in the
Northern Manhattan Study (NOMAS), we demonstrated

that LVM was significantly associated with risk of
stroke, especially in Caribbean Hispanic individuals [3].
Hypertension, obesity, and diabetes are the most

important determinants for hypertrophy of the left ven-
tricle (LVH) [4]. Many genes related to these and other
vascular risk factors may act independently or synergisti-
cally to increase risk for LVH. However, many subjects
develop LVH and subsequently heart dysfunction by a
process that remains poorly understood [1]. There is
substantial variability in the risk to develop LVH at
equal blood pressure or other risk factor levels, suggest-
ing that LVH is a complex disorder not simply related
to known vascular risk factors [5]. For this reason, a sig-
nificant effort has been made to identify the genetic
components underlying LVH. Studies performed in
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twins clearly established the heritability of LVM [6],
which ranges from 0.3 to 0.7 in different study popula-
tions [7]. In Caribbean Hispanics from the Northern
Manhattan Family Study, the LVM heritability ranged
from 0.23 to 0.49 for the different left ventricle pheno-
types [8]. The heritability for LVM was 0.58 among
Dominican families [9].
Recently, we mapped a novel quantitative trail locus

(QTL) for LVM to chromosome (Ch) 12p11 (MLOD =
3.11, p = 0.0003, peak marker = DS12S1042) indepen-
dently of traditional cardiovascular risk factors among
1360 individuals from 100 Dominican families in the
Family Study of Stroke Risk and Carotid Atherosclerosis
[10]. The evidence for linkage was significantly increased
(MLOD = 4.45, p = 0.0045 for increase in evidence of
linkage) in a subset of families with high average waist
circumference (WC) [9]. In the current study we present
association analyses of single nucleotide polymorphisms
(SNPs) in the 1 LOD critical region under this pre-
viously reported linkage peak (Ch12p11) with LVM [9]
in an independent NOMAS subset.

Methods
Subjects and Data collection
In NOMAS [11], a prospective cohort study, 1137 indivi-
duals with brain MRI data were genotyped in a genome-
wide association study (GWAS) to primarily study subcli-
nical brain phenotypes. This group provided a conveni-
ence sample to further investigate genetic association
with LVM on Ch12. While the 100 probands in the
Family Study were drawn from NOMAS as described
previously [10], only 67 were included in the NOMAS
subset of 1137. These 67 individuals were excluded in the
current association analysis so as to create a subset which
was independent of the Family Study of Stroke Risk and
Carotid Atherosclerosis. Also, because these NOMAS
samples were genotyped primarily to study subclinical
brain phenotypes, some samples did not have LVM data
collected (N = 86) and were therefore dropped from ana-
lysis in addition to samples dropped because of genotyp-
ing quality control as described below (N = 87).
Therefore, a total of 897 unrelated NOMAS individuals
who were independent of the Family Study were available
for the final analysis. The study was approved by the
Institutional Review Boards of Columbia University, Uni-
versity of Miami, and the Independent Ethics Committee
of Instituto Oncologico Regional del Cibao in the
Dominican Republic. All subjects provided informed con-
sent to participate.

Phenotyping
Baseline transthoracic echocardiography was done on all
897 individuals in our NOMAS subset. Standard two-
dimensional echocardiography, including colour flow and

spectral Doppler examination, was performed according
to the guidelines of the American Society of Echocardio-
graphy [12]. Special attention was paid to obtaining high
quality parasternal long axis views of the left ventricle,
from which left ventricular end-diastolic diameter
(LVDD), left ventricular end-systolic diameter (LVSD),
interventricular septum (IVS), and posterior wall thick-
ness (PWT) were derived [13]. Sonographer performance
was monitored quarterly after review of a random sample
for technical adequacy of the images. Readers were
blinded to vascular risk factors. Inter-observer variability
for the variables of interest ranged between 8% and
10%. LVM was calculated according to the modified
American Society of Echocardiography formula:
LVM = 0.8[1.04(LVDD + IVS + PWT)3 − (LVDD)3] + 0.6 [14].

Genotyping and Quality Control
Genotyping was performed using the Genome-Wide
Human SNP Array 6.0 chip (AffyMetrix). Samples were
excluded because of failed genotyping in the lab or call
rates below 95% (N = 44), relatedness because of unin-
tentional enrollment of a parent, sibling, aunt/uncle (N
= 22), gender discrepancies (N = 16), or were outliers
beyond 6 SD from the mean based on Eigenstrat analy-
sis (N = 5) [15]. SNPs with severe deviation from
Hardy-Weinberg equilibrium (p < 10-6) or a genotyping
call rate less than 95% were removed using PLINK 1.05
[16].

Statistics
In the 1 LOD down critical region as identified in the
family study on Ch 12p11 (MLOD = 3.11) [9], linear
regression was performed on the 897 NOMAS indivi-
duals with PLINK using an additive genetic model. After
quality control, genotype data were available on 7085
SNPs in the region from 23 to 53 MB, which includes 2
MB on either side of the 1 LOD down critical region.
We did not limit this analysis to the 1 LOD critical
region of the peak from a subset of families with high
WC (MLOD = 4.45) based on the assumption that there
may be multiple loci associated with LVM under our
linkage peak, some of which contribute to an increase in
LVM regardless of WC and others which contribute to
an increase in LVM only in the presence of high WC.
To reduce potential bias due to population stratification,
we first performed principal component analysis to
examine population substructure using EIGENSTRAT
and selected the top two principal components (PCAs)
as covariates for genomic control. Additionally, a covari-
ate screening was done on risk factors such as age, sex,
smoking, diabetes, dyslipidemia, hypertension, WC, and
body mass index (BMI) using a stepwise selection proce-
dure, and any with p < 0.10 were included as covariates
in the final model. The number of years between risk
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factor information collection and LVM measurement
was also included as a covariate. LVM measurements
were natural log transformed to be consistent with our
previous family analysis. Smoking was defined as never
versus ever. Dyslipidemia was defined as a history of
hyperlipidemia or total cholesterol greater than 240 mg/
dL. Diabetes was defined as a history of diabetes or fast-
ing blood sugar greater than 126 mg/dL, or use of insu-
lin or hypoglycemic medications. Hypertension was
defined as systolic blood pressure (SBP) ≥ 140, diastolic
blood pressure (DBP) ≥ 90, history of hypertension, or
on hypertensive medications. One of these conditions
was sufficient to establish the diagnosis of hypertension.
In order to follow-up on the ordered subset analysis

(OSA) used in the family study, which demonstrated a
significant increase in the LOD score on Ch 12p11 in a
subset of families with high WC [9], a subset analysis
was also performed in the NOMAS subset of 897. High
WC was defined as ≥ 40 inches in men and ≥ 35 inches
in women according to the Third Report of the National
Cholesterol Education Program - Adult Treatment Panel
III (NCEP-ATP-III) [17]. Linear regression analysis was
performed with PLINK, separately in the high (N = 495)
and low WC (N = 402) subsets. An additive genetic
model was used with the same covariate adjustments.
After quality control, genotype data were available on
4334 SNPs in the region from 23 to 41 MB, which
includes 2 MB on either side of the 1 LOD down critical
region of the OSA peak. To test the difference in effect
size between the high and low WC subsets, or a
WC*SNP interaction in association with LVM, a Z-score
was computed for the difference in b coefficients and
significance assessed.
To correct for multiple testing of SNPs, we applied

SimpleM [18]. SimpleM estimates the number of inde-
pendent tests such that a standard Bonferroni correction
can be applied while maintaining the prescribed level of
a. The effective number of independent tests is 4730 for
the 7085 SNPs surveyed. Using standard Bonferroni cor-
rection, the peak-wide significance threshold is 1.06E-
05. For the 1 LOD critical region of the OSA peak, the
effective number of independent tests is 2883 for the
4334 SNPs surveyed. Using standard Bonferroni correc-
tion, the peak-wide significance threshold is 1.73E-05.
Quanto [19] was used to calculate statistical power.

Assumptions included independence of individuals,
MAF of 0.20, an additive genetic effect, a population
mean of 5.22 and standard deviation of 0.27 for the nat-
ural logarithm of LVM (estimated in the 897 NOMAS
subjects used in the final analysis), and a two-sided a of
0.001. With 897 multi-ethnic samples from NOMAS we
had over 80% power to detect an effect size of 0.065
(corresponding to an approximate change of 12 grams
from the mean of LVM). Given the above assumptions,

in addition to assuming a population prevalence of 0.55
for high waist circumference, we had over 80% power to
detect a difference in beta coefficients of 0.125 between
the high and low WC subsets.

Results
The NOMAS cohort is mainly composed of Caribbean
Hispanics (65%), with most Hispanics being Dominican
(64%). Table 1 summarizes the sociodemographic, vas-
cular risk factors, and LVM in the final NOMAS
sample.
For association analysis, a total of 7085 SNPs were

located within the 23 to 53 MB critical region. Covari-
ates included age, sex, WC, BMI, hypertension, and dia-
betes, in addition to years between risk factor and LVM
measurement, PCA1, and PCA2. The top associated
SNP, rs10743465 (p = 1.27E-05, beta=-0.066) is located
downstream of sex determining region Y-box 5 (SOX5).
There are nineteen SNPs with a nominal p ≤ 0.001,
more than the seven expected by chance alone, but not
meeting peak-wide significance which reside in potential

Table 1 Sociodemographics, vascular risk factors, and
LVM measurements among 897 subjects from NOMAS

n %

Hypertension 569 63.4

Diabetes 178 19.8

Ever Smoking 469 52.3

Dyslipidemia 427 47.9

Race

White 140 15.6

Black 156 17.4

Hispanic 583 65.0

Other 18 2.0

Sex

Male 368 41.0

Female 529 59.0

Mean ± SD

Age 70.8 ± 8.9

Body mass index (kg/m2) 28.3 ± 4.9

Waist circumference (inch) 37.8 ± 4.8

Fast glucose (mg/dl) 101.2 ± 33.6

Total cholesterol (mg/dl) 194.2 ± 39.7

LDL (mg/dl) 115.3 ± 35.6

HDL (mg/dl) 53.8 ± 17.4

Triglyceride (mg/dl) 127.0 ± 81.9

SBP (mmHg) 136.4 ± 17.4

DBP (mmHg) 78.0 ± 9.6

Pack years among smokers 22.9 ± 26.4

Years b/w left ventricular mass and covariate
measurements

0.6 ± 2.1

Left ventricular mass (g) 191.8 ± 53.9
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candidate genes for LVM; including Solute carrier family
38, member 1 (SLC38A1) and Bicaudal D homolog 1
(BICD1) (Table 2 and Figure 1).
The NOMAS multi-ethnic sample of 897 individuals

was used to maximize statistical power. However, to
evaluate potential substructure bias, we have performed
the same analyses in the Dominican subset only (368
individuals). The trends of association are all in the
same direction for SNPs with p ≤ 0.001, as indicated by
the b values (Table 2). While all but three of the twenty
SNPs are still significant with p < 0.10 in the Dominican
subset, the p-values are less significant. This is expected
as we only have 26% power to detect an effect size of
0.065 in the Dominican subset, compared to over 80%
power to detect the same effect size in the multi-ethnic
NOMAS sample.
There were 495 individuals with high and 402 indivi-

duals with low WC. For the WC subset analysis, 4334
SNPs were located within the 23 to 41 MB critical
region of the OSA peak. While no SNPs met the peak
wide significance criterion of 1.73E-05 for the test of the
difference in effect sizes between the high and low WC
subset, there are thirteen SNPs with p ≤ 0.001, which is
more than the five expected by chance alone (Table 3
and Figure 2). Also, most of the differences seen in beta
coefficients between the high and low WC subsets were
less than 0.125, and so we may not have had adequate

power to detect the effects more significantly. Note that
none of these SNPs are significant (p ≤ 0.001) in the
overall sample (N = 895), and so their effect on LVM is
masked without consideration of their interaction with
WC. The most significant difference in genetic effect
between individuals with high and low WC occurred
with rs1124636 (p = 1.45E-04), located upstream of
transmembrane and tetratricopeptide repeat containing
1 (TMTC1). Associations were seen in several other
interesting candidate genes such as Inositol 1,4,5-tripho-
sphate receptor type 2 (ITPR2) for SNP rs1124636 (p =
1.45E-04) and in multiple intronic SNPs of Solute Car-
rier Family 2 (facilitated glucose transporter), Member
13 (SLC2A13) and BICD1 (Table 3 and Figure 2).

Discussion
Using our well-characterized extended Dominican
Republic families, we have previously mapped a novel
QTL near D12S1042 on Ch 12p11 for LVM, with an
increase in the evidence for linkage seen for a subset of
families with high WC. This provides a well defined
chromosome region and phenotype for validation [9]. In
this study, we follow up with SNPs in the 1 LOD critical
region of Ch 12p11 peak in an independent NOMAS
subset. We found SNPs in or near several notable genes
(SOX5, SLC38A1, BICD1) associated with LVM. A sig-
nificant difference in genetic effects between individuals

Table 2 Top associated SNPs (p < 00.001) in the overall sample on chromosome 12p11

Overall Data Set (N = 897) Dominican Subset (N = 368)

SNP MB Gene Function Minor Allele MAF Beta SE P* MAF Beta SE P†

rs10743465 23.315 SOX5 flanking A 0.202 -0.066 0.015 1.27E-05 0.23 -0.043 0.022 5.11E-02

rs4321001 23.323 SOX5 flanking A 0.195 -0.064 0.015 1.69E-05 0.22 -0.036 0.021 9.76E-02

rs16919217 32.110 BICD1 flanking C 0.079 -0.085 0.020 2.31E-05 0.11 -0.082 0.027 2.68E-03

rs6582621 44.878 SLC38A1 intron A 0.268 -0.054 0.013 3.91E-05 0.29 -0.062 0.020 2.17E-03

rs16919218 32.110 BICD1 flanking T 0.082 -0.081 0.020 4.96E-05 0.11 -0.082 0.027 2.99E-03

rs7958592 23.399 SOX5 flanking C 0.340 -0.048 0.012 6.33E-05 0.38 -0.047 0.018 7.80E-03

rs11183394 44.882 SLC38A1 intron A 0.239 -0.054 0.013 6.50E-05 0.25 -0.060 0.021 4.30E-03

rs10047623 23.368 SOX5 flanking G 0.092 -0.078 0.020 8.28E-05 0.12 -0.066 0.027 1.70E-02

rs4129991 23.340 SOX5 flanking G 0.202 -0.059 0.015 8.28E-05 0.23 -0.038 0.021 7.54E-02

rs7307902 46.209 intergenic G 0.213 0.050 0.014 2.98E-04 0.19 0.022 0.022 3.14E-01

rs1967110 48.681 RACGAP1 intron G 0.086 -0.075 0.021 2.99E-04 0.09 -0.063 0.031 3.86E-02

rs7133522 44.888 SLC38A1 intron T 0.292 -0.046 0.013 3.48E-04 0.31 -0.055 0.019 4.53E-03

rs12310555 29.278 FAR2 intron A 0.189 -0.053 0.015 3.97E-04 0.21 -0.083 0.023 2.88E-04

rs7955257 23.376 SOX5 flanking T 0.260 -0.044 0.013 4.64E-04 0.28 -0.038 0.019 4.78E-02

rs17128396 39.198 intergenic A 0.063 -0.082 0.024 5.80E-04 0.07 -0.055 0.034 1.03E-01

rs7956629 44.877 SLC38A1 intron A 0.120 -0.061 0.018 7.18E-04 0.14 -0.065 0.026 1.27E-02

rs7310702 44.535 ARID2 intron G 0.168 -0.055 0.016 7.78E-04 0.19 -0.044 0.023 5.90E-02

rs12227330 49.969 BIN2 intron A 0.121 -0.063 0.019 7.95E-04 0.12 -0.062 0.028 2.98E-02

rs10875764 46.869 C12orf68 flanking C 0.482 0.039 0.012 8.34E-04 0.46 0.035 0.019 5.94E-02

rs309045 28.841 intergenic A 0.413 0.039 0.012 9.07E-04 0.36 0.017 0.018 3.39E-01

*adjused for PCA1, PCA2, age, sex, hypertension, diabetes, BMI, WC, and years between LVM and risk factor measurements

† adjusted for PCA1, age, sex, hypertension, diabetes, BMI, WC, and years between LVM and risk factor measurements.
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with high and low WC was seen for SNPs in or near
TMTC1, SLC2A13, ITPR2, and BICD1.
LVH has been largely recognized as one of the most

important independent risk factors for CVD and stroke
[2]. LVH is associated with biochemical and molecular
changes in myocardial cells. Changes in gene expression
patterns play a pivotal role in determining the

hypertrophic phenotype. A linkage study performed in a
cohort of African-American hypertensive siblings from
the Genetic Epidemiology Nertwork of Arteriopathy
(GENOA) study demonstrated genetic linkage for LV
structure in Ch 3, 12, and 19. Interestingly on Ch 12,
the solute carrier family 15, member 4 (SLC15A4) was
discussed as a possible candidate gene implicated in

Table 3 SNPs with differential association (p < 0.001) with LVM among High and Low Waist Circumference (WC)”

Overall (N = 897) High WC (N = 495) Low WC (N = 402)

SNP MB Gene Function Minor
Allele

Beta SE P* Beta SE P* Beta SE P* Difference
in Betas

P†

rs1157480 30.264 TMTC1 flanking A 0.004 0.014 7.88E-01 0.053 0.019 6.30E-03 -0.056 0.021 8.20E-03 0.109 1.37E-04

rs1124636 26.424 ITPR2 intron T -0.016 0.014 2.54E-01 0.032 0.019 9.31E-02 -0.072 0.020 2.85E-04 0.104 1.45E-04

rs9669515 30.261 TMTC1 flanking T 0.002 0.014 8.74E-01 0.049 0.019 1.04E-02 -0.055 0.021 8.68E-03 0.104 2.31E-04

rs7970841 30.274 TMTC1 flanking T -0.007 0.015 6.31E-01 0.042 0.020 3.04E-02 -0.064 0.021 3.03E-03 0.106 2.46E-04

rs7963790 38.515 SLC2A13 intron C 0.022 0.013 1.03E-01 0.064 0.017 2.40E-04 -0.030 0.019 1.20E-01 0.095 2.87E-04

rs10877703 38.561 SLC2A13 intron A 0.012 0.013 3.37E-01 0.052 0.017 2.47E-03 -0.041 0.019 3.22E-02 0.093 2.87E-04

rs1679695 28.845 CCDC91 flanking T -0.044 0.022 5.20E-02 -0.106 0.028 2.12E-04 0.050 0.035 1.55E-01 0.156 5.56E-04

rs326644 32.293 BICD1 intron C -0.009 0.012 4.41E-01 0.024 0.016 1.34E-01 -0.059 0.018 1.23E-03 0.083 5.73E-04

rs261889 32.371 BICD1 intron T 0.014 0.014 3.40E-01 -0.030 0.019 1.11E-01 0.066 0.021 1.65E-03 0.096 6.18E-04

rs326641 32.291 BICD1 intron T 0.015 0.014 2.75E-01 0.059 0.018 1.23E-03 -0.032 0.020 1.06E-01 0.091 6.82E-04

rs2650128 32.352 BICD1 intron G 0.014 0.015 3.32E-01 -0.026 0.019 1.77E-01 0.074 0.023 1.10E-03 0.100 7.10E-04

rs4356315 31.105 DDX11 flanking G 0.014 0.012 2.38E-01 0.050 0.015 1.18E-03 -0.028 0.017 1.07E-01 0.078 7.21E-04

rs11610493 40.345 PDZRN4 flanking G 0.014 0.013 2.57E-01 -0.023 0.017 1.70E-01 0.061 0.018 1.05E-03 0.084 7.82E-04

*adjusted for PCA1, PCA2, age, sex, hypertension, diabetes, BMI, WC, and years between LVM and risk factor measurements

† p-value calculated using a normal approximation to test for differences between the beta coefficients of high and low WC.
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Figure 1 Peak wide association results on Chromosome 12p11. The region shown (23-53 MB) is approximately the 1 LOD down region of
the multipoint linkage analysis in the Family Study of Stroke Risk and Carotid Atherosclerosis.

Della-Morte et al. BMC Medical Genetics 2011, 12:100
http://www.biomedcentral.com/1471-2350/12/100
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molecular mechanisms controlling the LV wall thick-
ness, a precursor of LVM [20]. This gene has a function
similar to SLC38A1 which was associated with LVM in
the present study. Several other polymorphisms have
been associated with LVM including polymorphisms in
Transforming Growth Factor (TGF)-beta3 [21]; in insu-
lin-like growth factor (IGF)-1 receptor gene [22]; in the
G protein beta subunit (GNB3) gene [23]; and in the
aldosterone synthase gene [24]. However, findings from
different studies are often controversial and provide lit-
tle or no overlap. For this reason, we performed valida-
tion of our LVM linkage in an association study of the
SNPs in the region under the linkage peak in an inde-
pendent sample derived from a multi-ethnic population.
While no markers met our peak-wide significance

threshold, we found the most significant association to
rs10743465, downstream of SOX5, an interesting candi-
date gene. This gene encodes transcription factors with
a high-mobility-group (HMG) box DNA-binding
domain similar to that of the sex-determining region
(Sry) protein. SOX5 gene expression is modulated by
Nitric Oxide (NO) and Guanylyl Cyclase after shear
stress in endothelial cells [25]. Endothelial NO levels
were significantly correlated with LVM [26]. In addition,
SOX5 plays a pivotal role in the expression of the mus-
cle L-type Ca2+ channel or dihydropyridine-sensitive
receptor (DHPR) [27]. Variation in the expression of

these channels is associated with cardiac hypertrophy
[28]. Recently, a meta-analysis of GWAS for the PR
interval, a direct measurement of atrial and atrioventri-
cular nodal conduction, implicated SOX5 to be most
prominent gene in controlling the PR interval [29].
We found associations of LVM with SNPs located in

or near SLC38A1 and BICD1. Expression of SLC38A1
has been proposed as a marker for cardiac development
[30]. BICD1 plays a role in controlling telomere length
variation in humans, which is pivotal in controlling
DNA replication and cellular proliferation [31]. Telo-
mere length has been proposed as a new marker of
CVD especially for its role in atherosclerotic process,
arterial hypertension, and myocardial infarction [32].
Recently, BICD1 has been shown to directly modulate G
protein signaling, cell proliferation, and endocytosis
downstream of Protease-activated receptor-1 (PAR1)
[33] that is involved in cardiomyocytes contractility dys-
function [34].
Association with LVM was also found in other notable

genes such as Rac GTPase activating protein 1 (RAC-
GAP1), Open reading frame 68 (C12orf68), and fatty
acyl CoA reductase 2 (FAR2). The RACGAP1, has been
implicated in mechanisms regulating cellular prolifera-
tion [35]. Similarly to SOX5, Ch12 C12orf68 also regu-
lates the PR interval [29]. FAR2 plays an important role
in the biosynthesis of functional lipids, such as
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Figure 2 Differential association with LVM among individuals with Low and High WC. The region shown (23-41 MB) is approximately the
1 LOD down region of the high waist circumference OSA analysis in the Family Study of Stroke Risk and Carotid Atherosclerosis.
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phospholipids, through peroxisomal beta-oxidation [36].
The cardiomyocytes body grows when it is present a
deregulation in the synthesis of phospholipids [37].
Complex molecular mechanisms lead to LVH, such as

fibrotic changes in the extracellular matrix, adaptive cel-
lular changes within the sarcomere, biochemical and
molecular changes in myocardial cells [7]. In addition,
hemodynamic mechanisms have a direct functional
effect on LVH [26]. Therefore, genes that encode for
proteins regulating LV structure, calcium homeostasis,
substrate metabolism, growth factors, cell signaling, and
hemodynamic mechanisms are promising candidate
genes.
Previously we reported a significant increase of the

LOD score on Ch 12p11 in a subset of families with
high WC [9]. The relationship between LVM and WC
or visceral obesity has been demonstrated, especially in
women [38,39]. Moreover, a study conducted in a popu-
lation of 341 twins demonstrated the genetic correlation
between weight and LVM. The mechanism seems
related to an increase in sympathetic activity and insulin
resistance [40].
In the present study, the most significant difference in

genetic effect between individuals with high and low
WC occurred in SNPs flanking TMTC1. In a meta-ana-
lysis of GWAS, rs2046383 in TMTC1 has been asso-
ciated with heart failure in an African ancestry
population [41]. Moreover, TMTC1 genetic variants
have been associated with modulation in lipids metabo-
lism [42]. These findings may explain, at least in part,
its relationship with LVM and WC.
Other differential associations with LVM between

individuals with high and low WC were found in nota-
ble genes such as SLC2A13, ITPR2, and BICD1.
SLC2A13 regulates glucose viability through the tissue,
which might in part explain its role in the relationship
between WC and LVM [43]. ITPR2 has been associated
with greater SBP [44], which is a risk factor for both
LVM and increased WC. The main role of the protein
synthesized by ITPR2 is to regulate the Ca2+ fluxes in
myocytes [45]. The alteration in ITPR2 is coupled with
initiation and/or progression of hypertrophy and heart
failure [46]. An in vivo study showed difficulties in
nutrient digestion and metabolism in ITPR2 knockout
mice compared to wild type due to the lack of Ca2+ sig-
naling in exocrine tissues [47]. As previously mentioned,
BICD1 plays a role in controlling telomere length varia-
tion in humans and for this activity might play a role in
LVM. However, telomere length variation has been also
associated with insulin resistance, oxidative stress, and
uncoupling protein 2 (UCP2), all of which one related
to fat metabolism [48].
There are several strengths of our study. First, the

LVM assessment was performed by the same

investigators in all patients, adopting a common proto-
col to assure consistent phenotyping. Second, we fol-
lowed the genome-wide linkage approach by high-
resolution association analysis in an independent cohort,
which allowed for evaluation of the genetic contribution
to LVM through the genome. We also acknowledge sev-
eral limitations. There is the possibility that other cov-
ariates or confounders may not have been evaluated.
However, we included the most well established risk fac-
tors for LVH. Finally, our validation sample was com-
posed primarily of Hispanics. The average age of our
population was around 71 years, and therefore we risk
potential bias of studying survivors. As a result, our
findings may not be directly generalized to other
populations.

Conclusion
LVH has been identified as an independent risk factor
for stroke and cardiovascular disease. Previously we
found evidence for linkage for LVM on Ch 12p11 [9]. In
the present peak-wide association study, we identified
suggestive evidence of novel SNPs located on Ch 12
associated with LVM. The candidate genes, such as
SOX5 reported here, may have important functional
relevance for LVM. In addition, an interaction of genes,
e.g. TMTC1 with abdominal obesity, may contribute to
phenotypic variation of LVM. While our results did not
reach peak-wide significance, they point to interesting
candidate genes. Confirmation studies are needed to
verify these associations.
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