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Abstract

Background: Treacher Collins syndrome (TCS) is an autosomal dominant craniofacial disorder caused
by frameshift deletions or duplications in the TCOF| gene. These mutations cause premature termination
codons, which are predicted to lead to mRNA degradation by nonsense mediated mRNA decay (NMD).
Haploinsufficiency of the gene product (treacle) during embryonic development is the proposed molecular
mechanism underlying TCS. However, it is still unknown if TCOF | expression levels are decreased in post-
embryonic human cells.

Methods: We have estimated TCOF/ transcript levels through real time PCR in mRNA obtained from
leucocytes and mesenchymal cells of TCS patients (n = 23) and controls (n = 18). Mutational screening and
analysis of NMD were performed by direct sequencing of gDNA and cDNA, respectively.

Results: All the 23 patients had typical clinical features of the syndrome and pathogenic mutations were
detected in 19 of them. We demonstrated that the expression level of TCOF/ is 18-31% lower in patients
than in controls (p < 0.05), even if we exclude the patients in whom we did not detect the pathogenic
mutation. We also observed that the mutant allele is usually less abundant than the wild type one in
mesenchymal cells.

Conclusions: This is the first study to report decreased expression levels of TCOF/ in TCS adult human
cells, but it is still unknown if this finding is associated to any phenotype in adulthood. In addition, as we
demonstrated that alleles harboring the pathogenic mutations have lower expression, we herein
corroborate the current hypothesis of NMD of the mutant transcript as the explanation for diminished
levels of TCOFI expression. Further, considering that TCOF| deficiency in adult cells could be associated
to pathologic clinical findings, it will be important to verify if TCS patients have an impairment in adult stem
cell properties, as this can reduce the efficiency of plastic surgery results during rehabilitation of these
patients.
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Background

Treacher Collins syndrome (TCS; OMIM 154500) is a rare
autosomal dominant craniofacial disorder (1:50.000)
characterized by bilateral and symmetrical malforma-
tions, which frequently includes hypoplasia of the mandi-
ble and zygomatic complex, down-slanting palpebral
fissures, coloboma of the lower eyelid and absence of eye-
lashes medial to this defect, external and middle ear mal-
formation, and conductive hearing loss [1]. The
penetrance is considered to be complete, but there is a
high inter and intra-familial phenotypic variation, rang-
ing from cases with perinatal death due to airway obstruc-
tion by severe orofacial malformations to those that are
not clinically diagnosed [2].

In most of the cases the disorder is caused by frameshift
deletions or duplications of 1-41 bp in TCOF1 coding
region which cause premature termination codons (PTC).
Except for a recurring 5 bp deletion in exon 24 that is
responsible for 17% of the cases, mutations are usually
family-specific [3]. TCOF1 gene product is a nucleolar
protein (treacle) involved in rRNA transcription and in
pre-TRNA post-transcriptional modification [4]. Trun-
cated proteins are not detected in TCS patients' fibroblasts
and lymphocytes, suggesting that mRNA bearing PTCs are
being degraded by nonsense mediated mRNA decay
(NMD) [5]; however, NMD has never been demonstrated
in human or mouse cells with null mutations in TCOFI.

No genotype-phenotype correlation has been observed in
TCS and there is also no evidence of association between
the disease severity and parental origin or type of the path-
ogenic mutation, male or female sex, sporadic or familial
cases [5-9].

TCOF1 is expressed in various adult and embryonic tis-
sues and haploinsufficiency of treacle during embryonic
development has been proposed as the molecular mecha-
nism underlying TCS [10]. In situ hybridization studies of
the Tcof1 orthologue demonstrated that there is a peak of
expression of the gene in E8.5-9.5 mice embryos, espe-
cially in the first and second pharyngeal arches [11]. Crit-
ical dosage of Tcofl for appropriate craniofacial
development has been further demonstrated in Tcof1+/-
mice [12,13]. Interestingly, a previous study observed that
cellular amount of treacle in fibroblasts and lymphocytes
derived from TCS patients was indistinguishable from
that of control individuals, and the authors suggested that
a dosage compensation mechanism could occur in adult-
hood to compensate the null allele [5]. However, until the
present, these findings have not been confirmed.

The relevance of TCOF1 happloinsufficiency during adult
life is still rarely studied: it can predispose to age related
macular degeneration [14] and explain the absence of
long-term stable results in mandibular distraction for
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facial reconstruction [15-17]. These findings might imply
that TCOF1 adult stem cells present a decreased regenera-
tive capacity in comparison to wild-type cells. We have
therefore conducted the present study to verify if TCOF1
expression is altered in adult TCS cells as well as to iden-
tify a source of human tissue suitable for functional stud-
ies of treacle in adulthood.

Methods

Patients and controls

We studied peripheral blood samples from 20 TCS
patients (TCS1 to 20, ranging from 3 to 41 years old)
referred to our center for genetic counseling and 12 con-
trols (ranging from 20 to 50 years old). We also obtained
tissue samples from TCS16, from three other patients
(TCS21 to 23), and from six controls submitted to recon-
structive plastic surgery at University of Sdo Paulo Medical
School. The study was approved by the ethical committee
of our Institution and informed consent was obtained
from both patients and control subjects or from their legal
tutors. In total, 23 TCS patients were studied.

Isolation of cells from periosteum of TCS patients

During corrective surgery, overlying periosteum from the
face of four TCS patients (two males and two females aged
from 6 to 29 years) was meticulously dissected away from
surrounding tissues to isolate intact periosteal flaps. Con-
trol periosteum was obtained using the same procedure
from facial region of six subjects (four males and two
females aged from 11 months to 20 years) with no evi-
dence of bone disease during corrective surgery.

Mesenchymal cells were isolated as described by previous
reports from our group [18,19]. The periosteal flaps were
thoroughly washed with sterile phosphate-buffered saline
(PBS) supplemented with 4% antibiotics (100 units/mL
penicillin and 100 mg/mL streptomycin; Invitrogen), and
digested with trypsin solution (TrypLe; Invitrogen) for 1 h
at 37°C. Once digested, the tissue was transferred with
minimal dissection into 35 mm Petri dishes (Corning,
NY) containing Dulbecco's modified Eagle's medium
(DMEM; GIBCO) with 10% fetal bovine serum (FBS;
GIBCO), 100 units/mL penicillin, and 100 mg/mL strep-
tomycin (Invitrogen). After two weeks, cells were washed
with PBS, then dissociated in trypsin solution and seeded
at 104 cells per 25 cm? for the first passage. For expansion,
cells were cultured in monolayer in growth medium at
37°C in a humidified atmosphere of 5% CO2. The
medium was replaced every 3 days. In order to prevent cell
differentiation, cultures were maintained semiconfiuent
and subcultured every 4-5 days with daily medium
changes.

Flow cytometry
Cells were harvested with TrypLe (Invitrogen), washed
with PBS, and incubated at 4°C for 30 min with the fol-
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lowing anti-human antibodies: CD29-PE CY5, CD90
(Thy-1), CD45-FITC, CD73, CD105, CD117, CD 31-PE
(Becton Dickinson) and SH3 (Case Western Reserve Uni-
versity). After the wash, unconjugated primary antibodies
were incubated with anti-mouse-PE secondary antibody
(Guava Technologies) for additional 15 min at 4°C.
Finally, the cell suspension was washed with PBS, and 104
labeled cells were acquired with an EasyCyte flow cytom-
eter (Guava Technologies). Control samples were incu-
bated with PBS instead of primary antibody, followed by
incubation with anti-mouse-PE secondary antibody. All
the generated plots were analyzed in Guava ExpressPlus
software (Guava Technologies).

DNA and RNA isolation and cDNA synthesis

Genomic DNA from peripheral blood samples was
obtained according to reference [20] and genomic DNA
from culture cells was extracted using NucleoSpin Tissue
extraction kits (Macherey-Nagel). Total RNA was isolated
from leucocytes and mesenchymal cells using TRIzol®
(Gibco BRL), treated with DNAse (Promega) and submitted
to reverse transcription using Superscript 1I Reverse Tran-
scriptase (Gibco BRL), according to manufacturer's proto-
col. Aliquots from DNAse treated RNAs were used for
amplification of an intronic region of MLH1 gene as a
control for DNA contamination (primers sequences on
request).

Mutation screening

Seven of the 23 patients included in the present report
were previously studied by our group [3,9,21]. Pathogenic
mutations were identified in six of these seven individuals
(Table 1). Except for patient TCS17, for whom we did not
have enough DNA, all the other 15 patients were submit-
ted to molecular analysis to identify the pathogenic muta-
tion. Screening of TCOF1 mutations by direct sequencing
of genomic DNA was performed with primers described
elsewhere [9]. Sequencing of the patients' cDNA was per-
formed in identical conditions, but using primers that
amplify only the coding region flanking the pathogenic
mutation (see Additional file 1).

Real Time PCR

Real time quantitative PCR reactions were performed in
duplicates with a final volume of 20 pl, using 12.5 ng of
cDNA, 1x SYBR Green PCR Master Mix (Applied Biosystems)
and 200 or 400 nM of each primer. We used ABI Prism
7700 Sequence Detection System (Applied Biosystems) with
standard temperature protocol. Primers were designed
with Primer Express software V.2.0 (Applied Biosystems;
primers sequence in Additional file 1) and the amplifica-
tion efficiency (E) of each primer was calculated according
to the equation E = 10(-1/slope). The expression data of
TCOF]1 transcripts was determined by relative quantifica-
tion in comparison to a pool of RNA from 10 controls.
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Four endogenous controls genes (GAPDH, BCRP, HPRT1,
and HMBS), were used and their stability was verified
through geNorm VBA applet designed for Microsoft Excel.
This tool calculates the most stable reference genes from a
set of tested candidate reference genes in a given sample
panel, and calculates the gene expression normalization
factor (NF) for each target sample based on the geometric
mean of a user-defined number of housekeeping genes
[22]. We calculated the NF for each sample based on the
four endogenous controls and the expression data was cal-
culated according to reference [23].

Results

Molecular characterization of the TCS patients
Pathogenic mutations were identified in 13 of the novel
15 screened individuals: five had already been reported as
pathogenic [9,21,24] and eight are herein described for
the first time. These new mutations were considered path-
ogenic because they are a nonsense mutation
(c.1609C>T), disrupt splicing (c.639+1G>A) or alter the
reading frame (c.3853delC, c.1298delC,
€.218_222insAACC, c.4344dupA, c.431delC). Mutation
€.4375_4377delAAG (TCS18) causes an in phase deletion
and excludes a Lysine residue from the protein C-terminal
nucleolar localization signal [25]. In Table 1, mutation
and tissue availability of each patient are depicted.

RT-PCR in leucocytes

We first verified the range of TCOF1 transcript levels in
leucocytes from 20 patients (Table 1) and 12 controls by
real-time PCR, using as reference a pool of RNA from 10
controls. We observed a wide variation in TCOF1 expres-
sion in leucocytes from normal individuals (Figure 1; SD
= 1.24). This wide variation of gene expression was also
observed among TCS patients (Table 1; SD = 1.46), and
was not correlated to age (p = 0.39; Two-tailed Pearson
correlation regression).

Comparing patients (mean + SEM = 6.846 + 0.3278; N =
20) and controls (mean + SEM = 8.093 + 0.3587; N = 12),
we observed that TCOF1 expression levels were signifi-
cantly lower in patients than in controls (p = 0.0164; Two-
tailed unpaired t test with Welch's correction; Figure 1),
and the variances were not significantly different between
these two groups (p = 0.5828, F test). TCS patients had
approximately 18% less TCOF1 transcript levels than nor-
mal individuals. Excluding the four patients without an
identified pathogenic mutation, we obtained similar
results (~18.5%, p = 0.0039).

RT-PCR in mesenchymal cells

We also examined whether TCOF1 expression levels were
decreased in mesenchymal cells. Flow cytometry results
showed that most of the cells were positive for mesenchy-
mal cell markers (>95%) and negative for endothelial and
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Table I: Pathogenic mutations of TCS patients analyzed for TCOFI expression:

DNA and RNA from leucocytes

Patient Pathogenic Mutation genomic protein major isoform Screened in the present Reference
cDNA major isoform reference reference (AAR87774) study?
reference (AY460334) (NT_029289.10)
TCSI (intron 6) c.639+1G>A g.11932G>A disrupted splicing Yes New
TCS2 (exon 23) c.4061delC £.38890delC p.Prol354fs No [21]
TCS3 (exon 10) c.1609C>T g.17788C>T p.GIn537X Yes New
TCS4 (exon 14)c.2478G>A g21371G>A disrupted splicing No [6,9]
TCS5 (exon 23) c.3853delC £.38682delC p.GIn1285fs Yes New
TCS6 (exon 18) c.3053_3054delGA  g.32222_32223delGA p.Argl018fs No [9]
TCS7 (exon 18) c.3053_3054delGA  g.32222_32223delGA p.Argl018fs No [9]
TCS8 (exon 24) g.40706_40710delGAAAA p.Lys1457fs No [7,9,21]
c.4366_4370delGAAAA
TCS9 Not detected - - No [3]
TCSI0  (exon 8) c.1095_1096delAG  g.16957_16958delAG p.Gly366fs Yes [24]
TCSII  (exon 8) c.1095_1096delAG  g.16957_16958delAG p.Gly366fs Yes [24]
TCSI2  (exon 24) g.40701_40705delAAAAA p.Lys1454fs No [7,21]
c.4361_4365delAAAAA
TCSI3  (exon 9) c.1298delC g.17302delC p.Ala433fs Yes New
TCS14  Not detected - - Yes -
TCSI5  Not detected - - Yes -
TCS16  (exon 3) c.218_222insAACC  g.6495_6499insAACC p.Ala73fs Yes New
TCSI7  Not screened - - - -
TCSI8  (exon 24) g.40715_40715delAAG p.Lys1459del Yes New
€.4375_4377delAAG
TCSI19  (exon 12) g.18620_18623delTGAG p.Ser70Ifs Yes [21]
c.2103_2106delTGAG
TCS20  (exon 12) g.18620_18623delTGAG p.Ser70Ifs Yes [21]
c.2103_2106delTGAG
DNA and RNA from mesenchymal cells
TCS16  (exon 3) c.218_222insAACC  £.6495_6499insAACC p.-Ala73fs - -
TCS21 (exon 24) c.4344dupA g.40684dupA p.Argl448fs Yes New
TCS22  (exon 5) c.431delC g.11097delC p.Thri44fs Yes New
TCS23  (exon 23) c.4218dupG £.39047dupG p.Ser1407fs Yes [9]
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hematopoietic markers (see Additional files 2 and 3) in
primary cell cultures from four patients and four controls.

We also observed a great variance in TCOF1 expression
among mesenchymal cells from TCS patients (n = 4) and
controls (n = 6), and the variances in these samples were
also not significantly different between the groups (p =
0.90, F test). Although the number of tested individuals
was smaller, we also detected a significantly lower expres-
sion of TCOF1 in TCS patients (~31%; Figure 2; patients
mean + SEM = 0.9687 + 0.1122; controls mean + SEM =
1.414 + 0.09010; p = 0.0213; Two-tailed unpaired t test
with Welch's correction). For this analysis, we also used as
reference a pool of RNAs.

Mutant allele detection

In order to confirm the existence of NMD mechanism, we
evaluated the expression of mutant alleles. We compared
peak heights obtained through sequencing analysis of the
nucleotides flanking the pathogenic mutation of the
gDNA versus cDNA (Figure 2). We observed the expression
of the mutant alleles in two patients (TCS16 and 23), but
in patients TCS21 and 22 we could only detect the wild-
type allele (Figure 2).

Discussion

We present here the first quantification of TCOF1 tran-
scripts in leucocytes and mesenchymal cells from TCS
patients and controls. We observed a wide range of expres-
sion levels, with a variance that was very similar for indi-
viduals with or without a pathogenic mutation in the
TCOF1 gene, and also independently from the tissue
where the mRNA was obtained. The expression levels in
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leucocytes did not show dependence on age in TCS
patients.

We verified that the TCOF1 transcript levels were signifi-
cantly reduced in patients as compared to controls in all
the cell types studied. Our results demonstrated that the
dosage compensation mechanism, proposed elsewhere
[5], does not occur in adult leucocytes or mesenchymal
cells, at least at the mRNA level. However, we cannot rule
out the existence of post-translational regulatory mecha-
nisms that assure the same amounts of treacle. Alterna-
tively, the methods adopted for treacle quantification in
the previous report were not able to detect a slight reduc-
tion in protein levels [5].

Our findings are in accordance with the current hypothe-
sis of haploinsufficiency for TCS, which predicts that the
allele bearing a premature stop codon is degraded by
NMD, and consequently patients have less gene product
than normal individuals. In addition, the reduction of
TCOF1 expression (18-31%) in adult cells of TCS patients
as compared to controls is in accordance to the observed
5-25% reduction of transcript levels caused by NMD in
the presence of premature stop codon mutations in
mRNA molecules [26].

In order to confirm if NMD mechanism was associated
with the presence of null mutations in TCOF1, we evalu-
ated if the mutant allele had reduced expression in cell
culture from tissue samples of TCS patients. As we
observed complete absence of mutant alleles in individu-
als TCS21 and 22, but partial expression in TCS23 (Figure
2), we considered that NMD was present, but with varia-
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Normalized TCOFI expression levels in TCS patients (circles) and controls (squares). A) TCOF| expression levels
in leucocytes samples from patients (mean £ SEM = 6.846 + 0.3278) and controls (mean £ SEM = 8.093 + 0.3587). B) TCOF/
expression levels in mesenchymal cell samples from patients (mean + SEM = 0.9687 + 0.1122) and controls (mean + SEM =
[.414 + 0.09010). Mean expression value is represented by horizontal lines.
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Figure 2

Genomic DNA (gDNA) and complementary DNA (cDNA) sequencing of mesenchymal stem cells samples
from four TCS patients. The pathogenic mutation of TCS patients 16, 21, 22, and 23 are ¢.218_222insAACC (exon 3),
c.4344dupA (exon 24), c.431delC (exon 5), and c.4218dupG (exon 23), respectively. gDNA was sequenced with intronic prim-
ers and cDNA with exonic primers. Observing all gDNA samples, we can assume that all analyzed individuals are heterozygous
for the pathogenic mutation. Analyzing cDNA samples, we could detect the mutant allele expression in TCS 16 and 23; TCS 21
and 22 express only the wild-type allele. Note that even when the mutant allele is expressed (patients TCS16 and TCS23), the

peak heights are lower.

ble efficiency. Interestingly, TCS16 seemed to express
both alleles in similar proportion. Although it had been
described that NMD efficiency can vary according to the
position of the premature stop codon [26], in these sam-
ples we did not observe any correlation between the loca-
tion of the mutations at N or C-terminal and absence/
reduction of mutant allele expression (Figure 2). It is pos-
sible that, in addition to NMD, other mechanisms of tran-
scriptional regulation could be resulting in this observed
differential allelic expression, such as epigenetic, environ-
mental or stochastic events [27,28].

Conclusions

We demonstrated that adult leucocytes and mesenchymal
cells from TCS patients present significantly reduced levels
of TCOF1. In addition, we showed that the mutant allele
is much less abundant than the wild type and it might be
in accordance with the hypothesis of mutant transcript
degradation through NMD. Deficiency of TCOF1 in these
cells opens a perspective to study the function of this gene
in adulthood, particularly in adult stem cells. It will be
important to verify if TCOF1 levels interfere in the renewal
capacity of stem cells during bone regeneration process, as
successful reconstruction of facial defects in TCS patients
represents a challenge to plastic surgery.
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TCS: Treacher Collins syndrome; NMD: nonsense medi-
ated mRNA decay; PTC: premature termination codon;
NF: normalization factor.
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Additional file 3

Flow cytometry analysis of mesenchymal cells from patients TCS16,
21, 22, and 23. Values represent the mean percentage of all assessed cells
positively stained by the indicated antigens (CD31, CD73 (SH4), (SH2)
CD105) and analyzed by flow cytometry. Graphs show relative number of
cells (events) versus fluorescence intensity. Unmarked cells (control) were
used as negative controls in both non-conjugated and conjugated antibod-
ies. Solid histograms (black) show marker expression; open histograms
(grey) show no marker expression. Horizontal lines represent the range of
positive cells interval. CD means cluster of differentiation.

Click here for file
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2350-10-136-S3.JPEG]

Acknowledgements

We would like to gratefully acknowledge the patients and their relatives.
We also thank Constancia Gotto for secretarial assistance, Regina C. Min-
groni Netto for some samples, and Diogo Meyer for helpful discussions and
for carefully reading this manuscript. This work was supported by grants
from Fundagio de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP/
CEPID), Coordenagio de Aperfeicoamento de Pessoal de Nivel Superior
(CAPES), and Conselho Nacional de Pesquisa (CNPq).

References

I.  Gorlin RJ, Cohen MM, Hennekam RC: Branchial Arch and oral-
Acral Disorders. In Syndromes of the Head and Neck 4th edition.
Oxford: Oxford University Press; 2001:790-849.

2. Dixon MJ, Marres HAM, Edwards §J, Dixon J, Cremers CWR]:
Treacher Collins syndrome: correlation between clinical and
genetic linkage studies. Clin Dysmorphol 1994, 3:96-103.

3. Splendore A, Fanganiello RD, Masotti C, Morganti LSC, Passos-Bueno
MR: TCOFI mutation database: novel mutation in the alter-
natively spliced exon 6A and update in mutation nomencla-
ture. Hum Mut 2005, 25:429-434.

4.  Gonzales B, Henning D, So RB, Dixon ], Dixon MJ, Valdez BC: The
Treacher Collins syndrome (TCOFI) gene product is
involved in pre-rRNA methylation. Hum Mol Gene 2005,
14(14):2035-43.

5. Isaac C, Marsh KL, Panzekas WA, Dixon |, Dixon M, Jabs EW, Meier
UT: Characterization of the nucleolar gene product, treacle,
in Treacher Collins syndrome. Mol Biol Cell 2001, 11:188-192.

6.  Gladwin AJ, Dixon }, Loftus SK, Edwards S, Wasmuth ]J, Hennekam
RC, Dixon MJ: Treacher Collins syndrome may result from
insertions, deletions or splicing mutations, which introduce
a termination codon into the gene. Hum Mol Gen 1996,
5:1533-1538.

7.  Edwards S}, Gladwin A, Dixon M): The Mutational Spectrum in
Treacher Collins Syndrome Reveals a Predominance of
Mutations That Create a Premature-Termination Codon.
Am | Hum Genet 1997, 60:515-524.

8.  Teber OA, Gillessen-Kaesbach G, Fischer S, Bohringer S, Albrecht B,
Albert A, Arslan-Kirchner M, Haan E, Hagedorn-Greiwe M, Hammans
C, Henn W, Hinkel GK, Kénig R, Kunstmann E, Kunze |, Neumann
LM, Prott EC, Rauch A, Rott HD, Seidel H, Spranger S, Sprengel M,
Zoll B, Lohmann DR, Wieczorek D: Genotyping in 46 patients
with tentative diagnosis of Treacher Collins syndrome
revealed unexpected phenotypic variation. Eur | Hum Genet
2004, 12(11):879-90.

9. Splendore A, Silva EO, Alonso LG, Richieri-Costa A, Alonso N, Rosa
A, Carakushanky G, Cavalcanti DP, Brunoni D, Passos-Bueno MR:
High mutation detection rate in TCOFI among Treacher
Collins syndrome patients reveals clustering of mutations in
16 novel pathogenic changes. Hum Mutat 2000, 16:315-322.

10. The Treacher Collins Collaborative Group: Positional cloning of a
gene involved in the pathogenesis of Treacher Collins syn-
drome. Nat Gen 1996, 12:130-136.

http://www.biomedcentral.com/1471-2350/10/136

I'l1.  Dixon ], Hovanes K, Shiang R, Dixon MJ: Sequence analysis, iden-
tification of evolutionary conserved motifs and expression
analysis of murine Tcofl provide further evidence for a
potential function for the gene and its human homologue,
TCOFI. Hum Mol Genet 1997, 6:727-737.

12.  Dixon ], Brakebusch C, Fassler R, Dixon M: Increased levels of
apoptosis in the prefusion neural folds underlie the craniofa-
cial disorder, Treacher Collins. Hum Mol Gen 2000, 9:1473-1480.

13.  Dixon J, Jones NC, Sandell LL, Jayasinghe SM, Crane J, Rey JP, Dixon
M), Trainor PA: Tcofl/Treacle is required for neural crest cell
formation and proliferation deficiencies that cause craniofa-
cial abnormalities. Proc Natl Acad Sci USA 2006, 103(36):13403-8.

14.  Goverdhan SV, Temple IK, Self ], Lotery A}, Dixon M}, Evans AR: Macu-
lar degeneration associated with a novel Treacher Collins
TCOFI mutation and evaluation of this mutation in age related
macular degeneration. Br | Ophthalmol 2005, 89(8):1063-4.

15. Karp NS, McCarthy ]G, Schreiber JS, Sissons HA, Thorne CH: bone
lengthening: a serial histological study. Ann Plast Surg 1992,
29(1):2-7.

16.  Stelnicki EJ, Lin WY, Lee C, Grayson BH, McCarthy |G: Long-term
outcome study of bilateral mandibular distraction: a com-
parison of Treacher Collins and Nager syndromes to other
types of micrognathia. Plast Reconstr Surg 2002, 109(6):1819-25.

17.  Girsoy S, Hukki J, Hurmerinta K: Five year follow-up of mandib-
ular distraction osteogenesis on the dentofacial structures of
syndromic children. Orthod Craniofac Res 2008, 1 1:57-64.

18. Bueno DF, Kerkis I, Costa AM, Martins MT, Kobayashi GS, Zucconi
E, Fanganiello RD, Salles FT, Almeida AB, do Amaral CE, Alonso N,
Passos-Bueno MR: New Source of Muscle-Derived Stem Cells
with Potential for Alveolar Bone Reconstruction in Cleft Lip
and/or Palate Patients. Tissue Eng Part A 2009, 15(2):427-35.

19.  Fanganiello RD, Sertié AL, Reis EM, Yeh E, Oliveira NA, Bueno DF,
Kerkis I, Alonso N, Cavalheiro S, Matsushita H, Freitas R, Verjovski-
Almeida S, Passos-Bueno MR: Apert p.Ser252Trp mutation in
FGFR2 alters osteogenic potential and gene expression of
cranial periosteal cells. Mol Med 2007, 13(7-8):422-42.

20. Miller SA, Dykes DD, Polesky HF: A simple testing out proce-
dure for extracting DNA from human nucleated cells. Nucleic
Acids Res 1998, 16:1215.

21. Splendore A, Jabs EW, Passos-Bueno MR: Screening of TCOFI in
patients from different populations: confirmation of muta-
tional hot spots and identification of a novel missense muta-
tion that suggests an important functional domain in the
protein treacle. | Med Genet 2002, 39:493-495.

22. Vandesompele ], De Preter K, Pattyn F, Poppe B, Van Roy N, De
Paepe A, Speleman F: Accurate normalization of real-time
quantitative RT-PCR data by geometric averaging of multi-
ple internal control genes. Genome  Biol 2002,
3(7):RESEARCHO0034.

23. Pfaffl MW: A new mathematical model for quantification in
real-time-RT-PCR. Nucleic Acids Research 2001:2002-7.

24. Dixon J, Ellis |, Bottani A, Temple K, Dixon MJ: Identification of
mutations in TCOFI: use of molecular analysis in the pre- and
postnatal diagnosis of Treacher Collins syndrome. Am | Med
Genet A 2004, 127A(3):244-8.

25. Winokur ST, Shiang R: The Treacher Collins syndrome
(TCOFI) gene product, treacle, is targeted to the nucleolus
by signals in the C-terminus. Hum Mol Genet 1998, 7:1947-1952.

26. Kuzmiak HA, Maquat LE: Applying nonsense-metiated mRNA
dacay research to the clinic: progress and challenges.
TRENDS Mol Med 2006, 12(7):306-316.

27. Gimelbrant A, Hutchinson JN, Thompson BR, Chess A: Widespread
monoallelic expression on human autosomes. Science 2007,
318(5853):1136-40.

28. Kaern M, Elston TC, Blake W], Collins J: Stochasticity in gene
expression: from theories to phenotypes. Nat Rev Genet 2005,
6(6):451-64.

Pre-publication history
The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1471-2350/10/136/pre
pub

Page 7 of 7

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2350-10-136-S3.JPEG
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8055143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8055143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8055143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15832313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15832313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15832313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8894686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8894686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8894686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9042910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9042910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15340364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15340364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15340364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11013442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11013442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11013442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9158147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10888597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10888597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10888597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16938878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16938878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16938878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16024866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16024866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1497292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1497292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11994578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11994578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11994578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18199081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18199081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18199081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18816169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18816169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18816169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17622301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17622301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17622301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12114482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12114482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12114482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15150774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15150774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9811939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9811939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16782405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16782405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18006746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18006746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15883588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15883588
http://www.biomedcentral.com/1471-2350/10/136/prepub

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Patients and controls
	Isolation of cells from periosteum of TCS patients
	Flow cytometry
	DNA and RNA isolation and cDNA synthesis
	Mutation screening
	Real Time PCR

	Results
	Molecular characterization of the TCS patients
	RT-PCR in leucocytes
	RT-PCR in mesenchymal cells
	Mutant allele detection

	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References
	Pre-publication history

