Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

Association study of genetic variants in eight genes/loci with type 2 diabetes in a Han Chinese population

  • Ying Lin1, 2,
  • Pengqiu Li3,
  • Li Cai3,
  • Ben Zhang1,
  • Xin Tang1,
  • Xuejun Zhang3,
  • Ying Li3,
  • Yang Xian3,
  • Yang Yang2,
  • Li Wang3,
  • Fang Lu1, 2,
  • Xiaoqi Liu1, 2,
  • Shaoqin Rao2,
  • Ming Chen3,
  • Shi Ma1, 2,
  • Yi Shi1, 2,
  • Mingjing Bao3,
  • Jichuan Wu3,
  • Yan Yang3,
  • Jiyun Yang1, 2 and
  • Zhenglin Yang1, 2Email author
Contributed equally
BMC Medical GeneticsBMC series ¿ open, inclusive and trusted201011:97

DOI: 10.1186/1471-2350-11-97

Received: 19 September 2009

Accepted: 15 June 2010

Published: 15 June 2010

Abstract

Background

At least twenty genes/loci were shown to be associated with type 2diabetes in European original populations. Five of these genes were shown to be associated with type 2 diabetes (T2D) in Chinese populations. The purpose of this study was to replicate the association of genetic vairants in the eight diabetes-related genes/loci with type 2 diabetes in a Han Chinese cohort from western part of China. Nineteen single nucleotide polymorphisms (SNPs) from the eight genes/loci including TCF7L2, HHEX, CDKAL1, SLC30A8, PPARG, IGF2BP2, KCNJ11, and CDKN2A/CDKN2B were genotyped in 1,529 cases and 1,439 controls in a Han Chinese population using the ABI SNaPshot method. The meta-analysis of the association between rs7903146 in TCF7L2 gene and T2D in the Han Chinese was performed.

Results

Among the eight genes/loci examined, we found that four were significantly associated with T2D. Although previous studies showed that the association between the SNP rs7903146 in the TCF7L2 gene and T2D was controversial within the Han Chinese population, we have confirmed the significant association between the SNP rs7903146 in the TCF7L2 gene and T2D in both this study and the meta-analysis in the population. In addition, we also confirmed that three SNPs (rs1111875, rs7923837 and rs5015480) in HHEX , one SNP (rs10946398) in CDKAL1, and three SNPs (rs13266634, rs3802177 and rs11558471) in SLC30A8 were significantly associated with T2D in the population being studied.

Conclusions

We demonstrated that the variants in TCF7L2, CDKAL1, HHEX, and SLC30A8 genes are associated with T2D in a Han Chinese population.

Background

Diabetes is characterized as hyperglycemia that occurs when the pancreas does not produce enough insulin, or when the body cannot effectively use the insulin it produces. Globally, diabetes causes about 5% of all deaths each year; this statistic is likely to increase by more than 50% in the next ten years without urgent action http://www.who.int/diabetes/en. In China, it is estimated that the number of diabetes patients will increase from the previous figure of 20.8 million in 2000, to 42.3 million in 2030 [1]. Type 2 diabetes (T2D) is the most common form of diabetes, which is caused by an interaction of multiple genes and environmental factors.

Previous linkage studies and candidate gene approaches have identified several genes associated with T2DM, such as CAPN10, ENPP1, HNF4A, ACDC, PPARG, and KCNJ11 [28]. The TCF7L2 gene, initially mapped by a linkage study, is the strongest known T2D association gene in European original populations [9]. Whole genome association studies (WGAS) offer a new approach to gene discovery for T2D. For example, genetic variants in more than 15 genes/loci including CDKN2A/B, CDKAL1, SLC30A8, IGF2BP2, HHEX/IDE, FTO, KCN1, NOTCH2, CDC123/CAMK1D, ADAMTS9, THADA, TSPAN8/LGR5, JAZF1, MTNR1B and IRS genes, have been showed to be associated with T2D by genome-wide association studies (GWAS) [1019]. Although more and more T2D associated gene/loci are being identified, the replication study has played a critical role in confirming the reported T2D associated genes/loci, especially within different ethnic populations. Among the T2D genes/loci, single nucleotide polymorphisms (SNPs) in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes were also shown to have an association with T2D in two Chinese cohorts [2023]. The association between rs7903146 in the TCF7L2 and T2D in the Chinese population is still considered to be controversial in Han Chinese populations from north, east and south China [2427]. In this study, we examined the associations of nineteen SNPs in eight T2D genes/loci in a Han Chinese population in western part of China.

Methods

Subjects

This study was approved by the Clinical Research Ethics Committee of the Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital. All subjects provided informed consent prior to participation in the study. Diabetes patients were recruited in the diabetes clinic at Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital. Included were 1,529 diabetic cases and 1,439 non-diabetic controls. Diabetes was diagnosed in accordance with the criteria of the World Health Organization [28]. There was not exposure to glucose-lowering treatment for the controls, controls with a fasting plasma glucose concentration <5.6 mmol were enrolled from the same geographical region. The age of the patients, body mass index (BMI), SBP, DBP, GLU, TC, TG, LDL, HDL, HbA1c, and duration of T2D were recorded. All cases and controls were Han Chinese from Chengdu area of China. The basic characteristics of the cases and controls are listed in Table 1.
Table 1

Characteristics of cases and controls for age and ethnicity

Variables

Subject group

p value

 

Cases (n = 1529)

Controls (n = 1439)

 

Age at test (years)

60.2 ± 10.1

58.1 ± 10.8

<0.001

Gender (male %)

47.8

50.0

0.225

BMI (kg/m2)

23.9 ± 2.7

23.5 ± 2.8

<0.001

SBP (mmHg)

136.1 ± 12.0

123.9 ± 16.0

<0.001

DBP (mmHg)

80.04 ± 6.8

76.7 ± 9.3

<0.001

GLU(mmol/L)

8.3 ± 2.7

4.9 ± 0.6

<0.001

TC (mmol/L)

5.22 ± 0.77

5.17 ± 0.87

0.139

TG (mmol/L)

2.09 ± 1.45

1.45 ± 1.14

<0.001

LDL (mmol/L)

3.10 ± 0.85

3.08 ± 0.81

0.497

HDL (mmol/L)

1.40 ± 0.74

1.41 ± 0.30

0.822

HBA1C (%)

7.97 ± 0.73

/

/

DURATION ( years)

8.73 ± 4.57

/

/

Data are shown as mean ± SD; The p values were obtained by comparison of cases and controls

Genotyping

The Han Chinese series of 1,529 diabetic patients was genotyped and allele frequencies were compared to 1,439 ethnicity-matched non-diabetic control subjects by lab personnel blinded to case/control status. The DNA was isolated from white blood cells using the phenol/chloroform and ethanol precipitation method. SNPs in eight genes/loci from the first round of European GWASs were analyzed in this study, most significant SNPs in the GWASs or in the replication studies in East Asians were selected to perform genotyping. Nineteen SNPs in eight genes/loci were genotyped using the ABI SNapShot method (Applied Biosystem, CA, USA). In brief, PCR was performed using specific PCR primers; the specific SNaPshot primer was used for a SNaPshot reaction using the purified PCR products as templates. The SNaPshot reaction products were then analyzed on an ABI 3130 Genetic Analyzer (Applied Biosystem, CA, USA). All PCR and SNaPshot primers are listed in Additional file 1. To confirm the genotyping results, 10% of the samples were randomly selected and re-genotyped by direct sequencing using a BigDye terminator (Applied Biosystem, CA, USA); no more than a 2% discrepancy was observed in all SNPs between the two genotyping methods.

Statistical Analysis

Continuous variables were described as mean ± std ( https://static-content.springer.com/image/art%3A10.1186%2F1471-2350-11-97/MediaObjects/12881_2009_Article_658_IEq1_HTML.gif ± s) or quartiles (P25, M, and P75) for data with and without normality, respectively, and were tested by a Student t-test. Categorical variables such as gender (male vs. female) were analyzed using a Chi-square test.

We tested the Hardy-Weinberg equilibrium (HWE) for each SNP separately in both the case and control populations by using the Fisher's exact method, as reported by Emigh, et al. [29]. Linkage disequilibrium (LD) coefficients (r2 and D') were computed by using Haploview 4.1 http://www.broad.mit.edu/haploview.

A standard chi-square test with a 1-degree-of-freedom (df) was used to calculate the differences of allele frequencies for each SNP between the case and control group. Odds ratios (ORs) with 95 percent confidence intervals (CIs) were assessed for the risk allele of each SNP based on a multiplicative model. For the genotypes, we tested a series of genetic models including additive, dominant/recessive for the SNPs with a p value of < 0.05 of allelic, trend test by using unconditional logistic regression with adjustment for age, gender, and body mass index (BMI).

SAS 9.1 (SAS Institute Inc., Cary, NC, USA) was used to process the data. Results were confirmed by R 2.7.2 http://cran.r-project.org/; a two-sided P value < 0.05 was considered statistically significant unless stated otherwise. Different genetic models, including dominant and recessive model, were evaluated through pearson X 2 test by comparing genotypic counts between cases and controls. Allelic p value is obtained by comparing the allele frequency difference in cases and controls under the assumption of a multiplicative model. An additive model is tested using Armitage's test for a trend [30].

Meta-analysis of the association between rs7903146 in the TCF7L2 gene and T2D in the Han Chinese population

We obtained the data for rs7903146 in the TCF7L2 gene in Han Chinese populations by searching Pub Med using key words of TCF7L2, Han Chinese, and Diabetes [21, 24, 25, 31]. Additional four association studies representing four different parts of China were included in this meta-analysis. The data was then combined with our data in this study and the p value and OR were calculated under the assumption of a multiplicative model. A total of 3203 cases and 3109 controls of Han Chinese population for rs7903146 in the TCF7L2 gene were included in this meta-analysis (Table 2).
Table 2

Meta-analysis of rs7903146 in TCF7L2 with T2D in the Han Chinese populations

   

Genotyping count

Allele frequency

Multiplicative model

Authors

Samples collected

References

Cases

Controls

Risk allele (T)

  
   

Total N

CC

CT

TT

Total N

CC

CT

TT

Case

Control

p value

OR (95% CI)b

Ren et al

Beijing (North China)

24

481

438

41

2

491

463

26

2

0.047

0.03

0.063

1.93 (1.13-3.49)

Ng et al

Hong Kong (South China)

27

433

408

24

1

419

399

20

0

0.031

0.024

0.17

1.29 (0.90-1.87)

Chang et al

Taiwan (East China)

25

760

724

35

1

760

716

44

0

0.024

0.029

0.36

0.81 (0.50-1.31)

Lin et al

Chengdu (West China)

This study

1529

1348

178

3

1439

1328

107

4

0.060

0.040

0.00038

1.54 (1.21-1.95)

Combined all

Han Chinese in China

 

3203

2918

278

7

3109

2906

197

6

0.046

0.034

0.00058

1.37 (1.15-1.65)

N, Number; b, OR, odds ratio, CI, confidence interval

      

Results

We genotyped nineteen representative SNPs in eight potential T2D genes/loci a Han Chinese population, comprised of 1,529 cases and 1,429 controls. All SNP were within Hardy-Weinberg equilibrium in controls (P > 0.05, Table 3). Linkage disequilibrium (LD) analysis of SNPs genotyped for each gene/locus demonstrated that SNPs in SCL30A8 and PPARG genes, but not in other genes, were at the same LD, respectively (Table 3).Three SNPs in the SCL30A8 gene were at the same LD with D' of 0.95 to 0.99, but they were not completely at the same LD because the r2 was less than 0.8 from 0.55 to 0.67. Three SNPs in the PPARG gene were also showed at the same LD with D' from 0.7 to 0.89, but they were not strongly at the same LD because of lower r2 (0.022 to 0.38) (Table 3).
Table 3

Association between type 2 diabetes and 19 SNPs in the eight genes/loci

Gene

SNP

No.

LDa D'(r2)

P value for HWEb

Allel Frequency

Additive model

    

Cases

Controls

Cases

Controls

Trend p value

Adjusted p value

ORc (95% CI)d

Adjusted p value

OR (95% CI)

Adjusted p value

OR (95% CI)

TCF7L2

rs6585205 (T)

1

1 vs 2: 0.28 (0.0070)

0.54

0.31

0.43

0.39

0.003

0.055

 

4.0 × 10-4

1.31 (1.13, 1.53)

0.287

1.11 (0.92, 1.35)

 

rs7903146 (T)

2

1 vs 3: 0.72 (0.33)

0.25

0.24

0.06

0.04

3.6 × 10-4

0.007

1.54 (1.19, 1.99)

0.001

1.58 (1.25, 2.03)

0.691

1.41 (0.40, 5.02)

 

rs11196218 (A)

3

2 vs 3: 0.28 (0.01)

0.26

0.60

0.29

0.30

0.520

9.880

     

HHEX

rs1111875 (G)

4

5 vs 4: 0.39 (0.11)

0.11

0.32

0.32

0.28

0.001

0.016

1.11 (0.97, 1.27)

0.005

1.23 (1.07, 1.42)

0.011

1.43 (1.08, 1.89)

 

rs7923837 (G)

5

5 vs 6: 0.53 (0.18)

0.24

0.99

0.30

0.25

1.4 × 10-5

2.7 × 10-4

1.08 (0.93, 1.25)

8.6 × 10-6

1.39 (1.20, 1.61)

0.062

1.30 (0.99, 1.72)

 

rs5015480 (C)

6

4 vs 6: 0.69 (0.21)

0.69

0.41

0.21

0.17

0.001

0.027

1.20 (0.96, 1.54)

3.3 × 10-4

1.32 (1.14, 1.54)

0.657

1.08 (0.75, 1.59)

CDKLA1

rs736425 (C)

7

8 vs 9: 0.55 (0.056)

0.48

0.93

0.07

0.07

0.782

14.849

     
 

rs10946398 (C)

8

7 vs 8: 0.11 (0.0011)

0.79

0.36

0.45

0.37

1.2 × 10-9

2.2 × 10-8

1.36 (1.20, 1.55)

2.7 × 10-6

1.44 (1.24, 1.68)

6.3 × 10-9

1.78 (1.46, 2.17)

 

rs4712527 (G)

9

7 vs 9: 0.086 (0.0020)

0.07

0.52

0.22

0.21

0.270

5.132

     

SCL30A8

rs13266634 (C)

10

10 vs 11 0.99 (0.55)

0.13

0.08

0.59

0.54

1.4 × 10-4

0.003

1.37 (1.20, 1.56)

0.005

1.32 (1.09, 1.60)

0.001

1.31 (1.11, 1.53)

 

rs3802177 (C)

11

10 vs 12 0.95 (0.64)

0.96

0.15

0.60

0.53

9.9 × 10-8

1.9 × 10-6

1.33 (1.18, 1.52)

0.007

1.29 (1.07, 1.57)

1.2 × 10-8

1.58 (1.35, 1.84)

 

rs11558471 (A)

12

11 vs 12 0.96 (0.67)

0.96

0.86

0.58

0.52

3.5 × 10-6

6.6 × 10-5

1.25 (1.11, 1.41)

1.7 × 10-4

1.41 (1.18, 1.69)

1.5 × 10-4

1.35 (1.16, 1.59)

PPARG

rs180282 (G)

13

13 vs 14: 0.87 (0.079)

0.30

0.78

0.06

0.05

0.394

7.482

     
 

rs12636454 (C)

14

14 vs 15: 0.89 (0.38)

0.95

0.81

0.32

0.33

0.523

9.928

     
 

rs11128597 (A)

15

13 vs 15: 0.70 (0.022)

0.14

0.43

0.48

0.46

0.296

5.618

     

IGF2BP2

rs4402960 (T)

16

 

0.46

0.53

0.23

0.22

0.176

3.335

     

KCNJ11

rs5215 (C)

17

 

0.21

0.28

0.42

0.41

0.225

4.277

     

CDKN2A/

rs564398 (C)

18

18 vs 19 0.12 (0.0011)

0.00

0.27

0.01

0.01

0.627

11.913

     

CDKN2B

rs10811661 (C)

19

 

0.26

0.56

0.05

0.05

0.880

1.670

     

a: Linkage disequilibrium (LD), b: Hardy-Weinberg equilibrium, c: Odds ratio (OR), d: Confidence interval (CI).

SNPs in four genes including TCF7L2, CDKAL1, SLC30A8 and HHEX/IDE showed significant association with T2D in the studied cohort even after a stringent Bonferroni correction (adjust p values < 0.05, Table 3). One SNP (rs7903146) in the TCF7L2 gene, and three SNPs (rs1111875, rs7923837 and rs5015480) in the HHEX gene showed significant association with T2D both in multiplicative and dominant models (adjusted p < 0.027, Table 3). In addition, one SNP (rs10946398) in the CDKAL1 gene and three SNPs (rs13266634, rs3802177 and rs11558471) in the SLC30A8 gene showed significant association with T2D in multiplicative, dominant and recessive models (adjusted p < 0.0026, Table 3). The rs10946398 in CDKAL1 had the strongest association with T2D, the frequency of allele T was 0.45 in case subjects and 0.37 in control subjects. Individuals with risk allele T of rs10946498 conferred a 1.78 fold (95% CI: 1.46~2.17) of increased likelihood of T2D (adjust p = 6.26 × 10-9) with recessive model (Table 3). In the studied cohort, no association with T2D was found in the typed SNPs in the four potential T2D genes/loci, including PPARG, IGF2BP2, KCNJL1, and CDKN2A/B (Table 3).

Meta-analysis of rs7903146 in the TCF7L2 gene with T2D in four cohorts of Han Chinese populations composed of 3,203 cases and 3,109 controls also supported that rs7903146 in the TCF7L2 was significantly associated with T2D in the Han Chinese population (trend p = 6.2 × 10-4) with OR of 1.37.

Discussion

The Chinese population accounts for approximately 20 percent of the world's population. The replication study of T2D genes/loci in this population has expanded the genetic investigation of T2D in a large ethnic group. Previous association studies of genetic variants in the eight genes and T2D of the Han Chinese populations were from Hong Kong (south), east and north China. The Chinese population of this study was taken from a Han Chinese population in western part of China. Because significant differences exist among Han Chinese subpopulations in China [32, 33], the population in this study represented a different type of Han Chinese subpopulalation for T2D association study of genetics, which was also supported by the allele frequency differences of SNPs in the significantly associated T2D genes among Han Chinese subpopulations from different parts of China, for instance, the C allele frequency of rs1326634 in SCL30A8 gene was 0.59 in cases and 0.54 in controls in this study compared to 0.42 in cases and 0.47 in controls in the study by Xiang et al. [23]. Therefore, this study not only replicated, but also complemented the previous studies of genetic variants and T2D in the Chinese population.

Although rs7903146 in TCF7L2 was confirmed as the strongest T2D genetic variant in European original populations [14], the association of rs7903146 with T2D in east Asian populations, especially in China, remains unclear due to the low frequency of the risk allele of rs7903146 (<5%). Miyake et al. demonstrated that SNP rs7903146 in the TCF7L2 gene was significantly associated with T2D in the Japanese population; the adjusted p value was 0.0011 in a study composed of 1,921 cases and 1,696 controls [14]. In another study dealing with the Japanese population, there was a marginal association between rs7903146 and T2D. The p value was 0.0485 in a cohort composed of 1,630 cases and 1,064 controls [34]. Although Chang, et al. did not find a signifcant association between rs7903146 and T2D in Taiwan Han Chinese populaiton study that included a p value of 0.36 (a study of 760 cases and 760 controls) [25], Maggie, et al. showed that rs7903146 was significantly associated with T2D in a Hong Kong Chinese population; the p value was 0.038 with 433 cases and 419 controls [26]. Ren, et al. also indicated that a trend association between rs7903146 and T2D with a p value of 0.063 in a study of 481 cases and 491 controls [24]. Our results further demonstrated that rs7903146 in the TCF7L2 gene was significantly associated with T2D in the Han Chinese population in mainland China; the T risk allele of rs7903146 conferred a 1.58 fold increasing the likelihood of having T2D, as compared with individuals who do not carry any of the four risk alleles (adjusted p = 1.0 × 10-3, dominant model). This results was also supported by the meta- analysis of the association between rs7903146 in TCF7L2 gene and T2D in the four Han Chinese population(Table 2) and in the East Asian populations [31]. Given the factor of low MAF (minor allele frequency) of rs7903146 (<5%), and the 5.5% T2D prevalence in adults in China [26], a power calculation using an additive genetic model showed that approximately 1,500 cases and 1,500 controls would be necessary to achieve 80% power for rs7903146. This indicated that the sample size in some of the previous studies was underpowered in evaluating the association of rs7903146 and T2D in the Chinese populations [24, 25, 27]. Nevertheless, all studies redarding the association of TCF7L2 and T2D in Chinese populations indicated that other different genetic variants in the TCF7L2 gene showed a significant association with T2D in Chinese populations [20, 2426]. We also confirmed that another SNP rs6585205 in TCF7L2 gene was significantly associated with T2D in the studied cohort with an odd ratio of 1.31 (adjust p = 4.0 × 10-4, dominant model). Although it is certain that TCF7L2 plays an important role in the development of T2D in east Asian populations, it appears that the contribution of TCF7L12 to T2D development in east Asian populations is not as strong as that in Caucasian populations.

Consistent with previous findings [20, 21, 23, 35], we also confirmed that SNPs in the CDKAL1, HHEX, and SLC30A8 genes showed a significant association with T2D in the Han Chinese population being studied. In this study, we found a significant association between all three SNPs typed, including rs1111875, rs7923837 and rs5015480, in the IDE-KIF11-HHEX region, and T2D in the Chinese population. Among the three SNPs in this region, rs7923837 showed the most significant association with T2D with an odds ratio of 1.39 (adjusted p = 8.62 × 10-6, dominant model). The association is similar to that previously reported in Chinese populations [21], which further confirmed that the variants in this region play an important role in T2D for different races. However, the frequencies of risk alleles in the three SNPs were much lower in east Asian populations including China and Japan, than those reported in European original populations.

Among the four T2D associated genes, SNPs in CDKAL1 and SLC30A8 showed the most significant association with T2D in this study, and the significant association between the SNPs of both genes and T2D was observed all three models (multiplicative, dominant and recessive models) being tested. Only one SNP rs10946398 among the three SNPs we typed in CDKAL1 showed a significant association with T2D in this study, however this SNP showed to have the most significant association with T2D in all three models (multiplicative, dominant and recessive models) being tested among all nineteen SNPs we typed, indicating that the CDKAL1 gene may contribute more than the other three T2D-related genes in the development of T2D in Chinese patients being studied. All three SNPs, including rs13266634, rs3802177 and rs11558471 in the SLC30A8 gene were strongly associated with T2D in this study; however, rs3802177 had the most significant assocaition with T2D among the three SNPs with an adjusted p value of 1.22 × 10-8 and an odd ratio of 1.58 when a recessive model was tested. The SLC30A8 gene plays the second important role among the four genes/loci in the development of T2D in Chinese Han population among the four T2D-related genes/loci in the study. However, these pre-mature conclusions require further investigaton in different Han Chinese populations.Although we could not replicate the significant association in the SNPs in the PPARG, IGF2BP2, KCNJ11, EXT2, CDKN2A/B, and LOC387761 genes with T2D, which can be explained by investigating a different population in our study. In addition, we cannot exclude the possibility of the association of other SNPs in these genes/loci with T2D in the Han Chinese population. Further studies regarding other SNPs for these genes in large Chinese populaiotns are needed to answer these questions. Because T2D is one of the most common diseases, and there are many genes invloved in the development of this disorder, each gene represents a relatively small risk or protection when they are used to assess a disease threat in a patient.

Conclusions

We demonstrated that the genetic variants in TCF7L2, CDKAL1, HHEX, and SLC30A8 were significantly associated with T2D in a different Han Chinese population from those of previous studies, further indicating that these gene/loci may play an important role in the development of T2D in the Han Chinese population. We further confirmed that TCF7L2 rs7903146 was significant association with T2D in the Han Chinese population.

Notes

Abbreviations

TCF7L2: 

Transcription factor 7-like 2

HHEX: 

Hematopoietically expressed homeobox

CDKAL1: 

CDK5 regulatory subunit associated protein 1-like 1

SLC30A8: 

Solute carrier family 30 (zinc transporter), member 8

PPARG: 

Peroxisome proliferator-activated receptor gamma

IGF2BP2: 

Insulin-like growth factor 2 mRNA binding protein 2

KCNJ11: 

Potassium inwardly-rectifying channel, subfamily J, member 11

EXT2: 

Exostoses (multiple) 2

CDKN2A/CDKN2B: 

Cyclin-dependent kinase inhibitor 2A/cyclin-dependent kinase inhibitor 2B

CAPN10: 

Calpain 10

ENPP1: 

Ectonucleotide pyrophosphatase/phosphodiesterase 1

HNF4A: 

Hepatocyte nuclear factor 4, alpha

ACDC: 

Pcyl-CoA dehydrogenase

PCR: 

Polymerase Chain Reaction

SBP: 

Systemic blood pressure

DBP: 

Diastole blood pressure

GLU: 

Glucose

TC: 

Total cholesterol

TG: 

Total triglyceride

LDL: 

Low-density lipoprotein

HDL: 

High-density lipoprotein

HBA1C: 

Glycosylated haemoglobin

ADAMTS9: 

ADAM metallopeptidase with thrombospondin type 1 motif, 9

THADA: 

thyroid adenoma associated

TSPAN8/LGR5: 

transmembrane 4 superfamily member 3/leucine-rich repeat-containing G protein-coupled

JAZF1: 

JAZF zinc finger 1

MTNR1B: 

melatonin receptor 1B

IRS: 

insulin receptor substrate 1

LD: 

Linkage disequilibrium

HWE: 

Hardy-Weinberg equilibrium

Declarations

Acknowledgements

We thank all participating patients and their families for their cooperation in this study. The authors wish to acknowledge the grant support of the Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (Z. Yang), the Department of Science and Technology of Sichuan Province, China (Z. Yang, Y. Lin).

Authors’ Affiliations

(1)
Center for Human Molecular Biology & Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
(2)
Institute of laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
(3)
Department of Internal Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital

References

  1. Boutayeb A, Boutayeb S: The burden of non communicable diseases in developing countries. Int J Equity Health. 2005, 4 (1): 2-10.1186/1475-9276-4-2.PubMed CentralView ArticlePubMed
  2. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, Lane CR, Schaffner SF, Bolk S, Brewer C, et al: The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000, 26 (1): 76-80. 10.1038/79216.View ArticlePubMed
  3. Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K, Yamauchi T, Otabe S, Okada T, Eto K, et al: Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes. 2002, 51 (2): 536-540. 10.2337/diabetes.51.2.536.View ArticlePubMed
  4. Abate N, Chandalia M, Satija P, Adams-Huet B, Grundy SM, Sandeep S, Radha V, Deepa R, Mohan V: ENPP1/PC-1 K121Q polymorphism and genetic susceptibility to type 2 diabetes. Diabetes. 2005, 54 (4): 1207-1213. 10.2337/diabetes.54.4.1207.View ArticlePubMed
  5. Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, Fajans SS, Signorini S, Stoffel M, Bell GI: Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature. 1996, 384 (6608): 458-460. 10.1038/384458a0.View ArticlePubMed
  6. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, Walker M, Levy JC, Sampson M, Halford S, et al: Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003, 52 (2): 568-572. 10.2337/diabetes.52.2.568.View ArticlePubMed
  7. Weedon MN, Schwarz PE, Horikawa Y, Iwasaki N, Illig T, Holle R, Rathmann W, Selisko T, Schulze J, Owen KR, et al: Meta-analysis and a large association study confirm a role for calpain-10 variation in type 2 diabetes susceptibility. Am J Hum Genet. 2003, 73 (5): 1208-1212. 10.1086/379285.PubMed CentralView ArticlePubMed
  8. Hanis CL, Boerwinkle E, Chakraborty R, Ellsworth DL, Concannon P, Stirling B, Morrison VA, Wapelhorst B, Spielman RS, Gogolin-Ewens KJ, et al: A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet. 1996, 13 (2): 161-166. 10.1038/ng0696-161.View ArticlePubMed
  9. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, et al: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006, 38 (3): 320-323. 10.1038/ng1732.View ArticlePubMed
  10. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, et al: A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007, 445 (7130): 881-885. 10.1038/nature05616.View ArticlePubMed
  11. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JR, Rayner NW, Freathy RM, et al: Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007, 316 (5829): 1336-1341. 10.1126/science.1142364.PubMed CentralView ArticlePubMed
  12. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ, et al: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007, 316 (5829): 1331-1336. 10.1126/science.1142358.View ArticlePubMed
  13. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, et al: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007, 316 (5829): 1341-1345. 10.1126/science.1142382.PubMed CentralView ArticlePubMed
  14. McCarthy MI, Zeggini E: Genome-wide association studies in type 2 diabetes. Curr Diab Rep. 2009, 9 (2): 164-171. 10.1007/s11892-009-0027-4.PubMed CentralView ArticlePubMed
  15. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007, 447 (7145): 661-678. 10.1038/nature05911.
  16. Salonen JT, Uimari P, Aalto JM, Pirskanen M, Kaikkonen J, Todorova B, Hypponen J, Korhonen VP, Asikainen J, Devine C, et al: Type 2 diabetes whole-genome association study in four populations: the DiaGen consortium. Am J Hum Genet. 2007, 81 (2): 338-345. 10.1086/520599.PubMed CentralView ArticlePubMed
  17. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, Styrkarsdottir U, Gretarsdottir S, Emilsson V, Ghosh S, et al: A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007, 39 (6): 770-775. 10.1038/ng2043.View ArticlePubMed
  18. Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, Andersen G, Ng DP, Holmkvist J, Borch-Johnsen K, Jorgensen T, et al: SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008, 40 (9): 1098-1102. 10.1038/ng.208.View ArticlePubMed
  19. Rung J, Cauchi S, Albrechtsen A, Shen L, Rocheleau G, Cavalcanti-Proenca C, Bacot F, Balkau B, Belisle A, Borch-Johnsen K, et al: Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet. 2009, 41 (10): 1110-1115. 10.1038/ng.443.View ArticlePubMed
  20. Wu Y, Li H, Loos RJ, Yu Z, Ye X, Chen L, Pan A, Hu FB, Lin X: Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Diabetes. 2008, 57 (10): 2834-2842. 10.2337/db08-0047.PubMed CentralView ArticlePubMed
  21. Ng MC, Park KS, Oh B, Tam CH, Cho YM, Shin HD, Lam VK, Ma RC, So WY, Cho YS, et al: Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes. 2008, 57 (8): 2226-2233. 10.2337/db07-1583.PubMed CentralView ArticlePubMed
  22. Zhou D, Zhang D, Liu Y, Zhao T, Chen Z, Liu Z, Yu L, Zhang Z, Xu H, He L: The E23K variation in the KCNJ11 gene is associated with type 2 diabetes in Chinese and East Asian population. J Hum Genet. 2009
  23. Xiang J, Li XY, Xu M, Hong J, Huang Y, Tan JR, Lu X, Dai M, Yu B, Ning G: Zinc transporter-8 gene (SLC30A8) is associated with type 2 diabetes in Chinese. J Clin Endocrinol Metab. 2008, 93 (10): 4107-4112. 10.1210/jc.2008-0161.View ArticlePubMed
  24. Ren Q, Han XY, Wang F, Zhang XY, Han LC, Luo YY, Zhou XH, Ji LN: Exon sequencing and association analysis of polymorphisms in TCF7L2 with type 2 diabetes in a Chinese population. Diabetologia. 2008, 51 (7): 1146-1152. 10.1007/s00125-008-1039-3.View ArticlePubMed
  25. Chang YC, Chang TJ, Jiang YD, Kuo SS, Lee KC, Chiu KC, Chuang LM: Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes. 2007, 56 (10): 2631-2637. 10.2337/db07-0421.View ArticlePubMed
  26. Gu D, Reynolds K, Duan X, Xin X, Chen J, Wu X, Mo J, Whelton PK, He J: Prevalence of diabetes and impaired fasting glucose in the Chinese adult population: International Collaborative Study of Cardiovascular Disease in Asia (InterASIA). Diabetologia. 2003, 46 (9): 1190-1198. 10.1007/s00125-003-1167-8.View ArticlePubMed
  27. Ng MC, Tam CH, Lam VK, So WY, Ma RC, Chan JC: Replication and identification of novel variants at TCF7L2 associated with type 2 diabetes in Hong Kong Chinese. J Clin Endocrinol Metab. 2007, 92 (9): 3733-3737. 10.1210/jc.2007-0849.View ArticlePubMed
  28. Alberti KG, Zimmet PZ: New diagnostic criteria and classification of diabetes--again?. Diabet Med. 1998, 15 (7): 535-536. 10.1002/(SICI)1096-9136(199807)15:7<535::AID-DIA670>3.0.CO;2-Q.View ArticlePubMed
  29. Emigh T: A comparison of tests for Hardy-Weinberg equilibrium. Biometrics. 1980, 36: 627-642. 10.2307/2556115.View ArticlePubMed
  30. Lewis CM: Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002, 3 (2): 146-153. 10.1093/bib/3.2.146.View ArticlePubMed
  31. Luo Y, Wang H, Han X, Ren Q, Wang F, Zhang X, Sun X, Zhou X, Ji L: Meta-analysis of the association between SNPs in TCF7L2 and type 2 diabetes in East Asian population. Diabetes Res Clin Pract. 2009, 85 (2): 139-146. 10.1016/j.diabres.2009.04.024.View ArticlePubMed
  32. Xu S, Yin X, Li S, Jin W, Lou H, Yang L, Gong X, Wang H, Shen Y, Pan X, et al: Genomic dissection of population substructure of Han Chinese and its implication in association studies. Am J Hum Genet. 2009, 85 (6): 762-774. 10.1016/j.ajhg.2009.10.015.PubMed CentralView ArticlePubMed
  33. Abdulla MA, Ahmed I, Assawamakin A, Bhak J, Brahmachari SK, Calacal GC, Chaurasia A, Chen CH, Chen J, Chen YT, et al: Mapping human genetic diversity in Asia. Science. 2009, 326 (5959): 1541-1545. 10.1126/science.1177074.View ArticlePubMed
  34. Hayashi T, Iwamoto Y, Kaku K, Hirose H, Maeda S: Replication study for the association of TCF7L2 with susceptibility to type 2 diabetes in a Japanese population. Diabetologia. 2007, 50 (5): 980-984. 10.1007/s00125-007-0618-z.View ArticlePubMed
  35. Liu Y, Yu L, Zhang D, Chen Z, Zhou DZ, Zhao T, Li S, Wang T, Hu X, Feng GY, et al: Positive association between variations in CDKAL1 and type 2 diabetes in Han Chinese individuals. Diabetologia. 2008, 51 (11): 2134-2137. 10.1007/s00125-008-1141-6.View ArticlePubMed
  36. Pre-publication history

    1. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2350/11/97/prepub

Copyright

© Lin et al; licensee BioMed Central Ltd. 2010

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advertisement