Skip to main content

The association of 9p21-3 locus with coronary atherosclerosis: a systematic review and meta-analysis

Abstract

Background

Studies suggest that the 9p21-3 locus may influence susceptibility to myocardial infarction. We performed a systematic review and meta-analysis to assess whether this locus is associated with severity of coronary atherosclerosis and adverse clinical outcomes in those with known coronary disease.

Methods

Multiple electronic databases were searched from inception through August 2012. Studies examining 9p21-3 genotype in patients with known coronary artery disease were included. We extracted the association of the 9p21-3 locus with measures of severity of coronary atherosclerosis [number of diseased vessels, Gensini Score, Duke CAD Prognostic Index (DPI)], angiographic outcomes [change in minimum lumen diameter (∆MLD) and number of new lesions at follow-up], and key clinical outcomes (all-cause mortality, recurrent myocardial infarction and the need for coronary revascularization). Relative risks (RR) and weighted mean difference (WMD) were pooled using the random effects models.

Results

23 cohorts enrolling 16,860 participants were analyzed. There was no significant difference between HR and LR genotypes in terms of all-cause mortality, recurrent myocardial infarction or the frequency of coronary revascularization. HR genotype was associated with increased risk of triple vessel disease (RR = 1.34; 95% CI 1.08-1.65; P = 0.01) and increased baseline Gensini Score (WMD = 5.30; 95% CI 0.66-9.93; P = 0.03). However there was no association with DPI (WMD = 4.00; 95% CI 2.94-10.94; P = 0.26). HR genotype did not predict ∆MLD or number of new lesions at follow-up.

Conclusions

Patients of coronary atherosclerosis who carry the high risk genotype of the 9p21-3 allele may be more likely to have multi-vessel CAD. However the effect of this allele on CAD progression and disease specific clinical outcomes are not observed possibly due to diminishing genetic risk following dietary modification and therapy.

Peer Review reports

Background

Coronary artery disease (CAD) remains a worldwide leading cause of mortality. Modification of major environmental risks such as smoking and high cholesterol reduces CAD mortality by 20% to 30% [1]. The presence of a positive family history as a strong risk factor in CAD points to underlying genetic risk factors [2].

Genome wide association studies (GWAS) have identified over 30 risk variants for CAD [3, 4]. Of these, the variant on the p arm of chromosome 9 at position 21–3 (9p21-3) is the most well-known and replicated. Many studies have established and replicated the association of the 9p21-3 locus with CAD and myocardial infarction (MI). Other studies have revealed that targeted deletion of the 9p21 non-coding interval leads to excessive proliferation of vascular smooth muscle cells as well as their diminished senescence [5]. Some 9p21 variants also impair the inflammatory response in vascular cell types, which might explain some of the genetic susceptibility underpinning CAD [6]. Variants at this locus have also been associated with a lower ankle-brachial index (ABI), which is a marker of increased risk for death and incident cardiovascular disease (CVD) events [7]. The effect of the 9p21-3 locus on angiographic severity and clinical outcomes in patients with established CAD has been tested by several investigators. However, findings from these reports are conflicting.

We therefore conducted a systematic review and meta-analysis of the published literature investigating the association of the 9p21-3 locus with angiographic CAD severity, progression, and key clinical outcomes.

Methods

The reporting of this systematic review complies with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [8].

Eligible studies were comparative studies of human subjects, provided genotyping was done at the 9p21-3 locus in a population with known coronary artery disease (previous/recent MI, or known epicardial coronary stenosis at enrollment). Applicable study designs included observational studies (case–control, cohort and cross sectional) where an association between the 9p21-3 allele and poor outcome or prognostic marker was reported. Only studies written in English were included due to feasibility.

We searched Ovid MEDLINE from 1948 until August 2012 and Ovid EMBASE, Web of Science and SCOPUS, from inception to August 2012. Subject headings (MeSH, EMTREE) were used: Chromosomes, Pair 9, Coronary artery disease, alleles and atherosclerosis. Keywords (9p21*) were used in Web of Science and Scopus. The detailed search strategy is attached in Additional file 1.

A team of two trained reviewers independently screened all articles identified in the literature search. Discrepancies between the reviewers were resolved through discussions and consensus.

Markers of atherosclerotic severity included number of diseased vessels, Gensini Score and Duke CAD Prognostic Index (DPI). Markers of atherosclerotic severity and coronary disease progression are defined elsewhere [9]. We also assessed change in minimum lumen diameter (∆MLD) and number of new lesions at follow-up. Outcomes of interest included all-cause mortality, recurrent MI, need for coronary revascularization, triple vessel disease, Gensini score, DPI, ∆MLD, and number of new lesions. In studies where all-cause and cause-specific mortalities were separately tested, we analyzed all-cause mortality only.

Recurrent MI was defined any acute coronary syndrome associated with troponin elevation and/or ST segment elevation on electrocardiography (ECG). Need for coronary re-vascularization included surgical and percutaneous procedures performed either at target or non-target coronary vessels.

We extracted details on sample size, mean age, race, the identification (rs number) of the particular SNP genotyped, and outcomes of interest. SNPs previously reported in GWAS studies or in strong linkage disequilibrium with them were considered in the analysis.

In keeping with our goal to determine locus-outcome association we did not limit our analysis to a single SNP but instead tested for all available SNPs published in reports chosen for the meta-analysis. In studies reporting > 1 SNP-outcome association, we chose the SNP not elsewhere tested in other data sets. This allows us to capture all known markers in the locus and test as many markers as possible.

We used the Newcastle-Ottawa Quality Assessment to assess the risk of bias of the included studies [10]. The following items were used: selection of patients, comparability, assessment of exposure and/or outcome, length of follow-up, lost to follow-up. We were unable to assess potential publication bias due to limited number of studies included for each outcome [11].

Genotypes were classified as either homozygous low risk (LR) heterozygous intermediate risk (IR) or homozygous high risk (HR). Study results were variedly reported using recessive [LR vs. (IR + HR)], dominant [(LR + IR) vs. HR)] and additive models [LR vs. IR vs. HR]. For the purpose of this manuscript we included additive models. For dichotomized outcomes, we extracted or calculated relative risk (RR) and its 95% confidence intervals (CI). We then pooled RR across the studies using the DerSimonian and Laird random effects methods with the heterogeneity from the Mantel–Haenszel method [12]. For continuous outcomes, we pooled weighted mean difference (WMD) using the same DerSimonian and Laird random effects methods.

We assessed the optimal information size (OIS), similar to power calculation in clinical trials, to evaluate the minimum sample size required in the literature to reach reliable conclusions [8].

We assessed the consistency of the outcomes by testing heterogeneity using the I 2 statistic, where I 2 > 50% suggests a high level of heterogeneity [13]. All statistical analyses were conducted using STATA version 12 (StataCorp, College Station, TX).

Results

The literature search yielded 229 studies of which 21 (describing 23 distinct cohorts) met criteria for inclusion. Study selection process is described in (Figure 1). Table 1 lists the studies entered in the meta-analysis together with outcomes tested in each study.

Figure 1
figure 1

Flow Chart: PRISMA 2009 Flow Diagram.

Table 1 Characteristics of the included studies

The methodological quality of the included studies was fair, with the majority of them providing adequate representativeness of study patients, comparability between patient groups and sufficiently assessment of exposure and/or outcome (Figure 2). Also, in all of the outcomes, except all-cause mortality, triple vessel disease, and Gensini Score, the total sample size reported in the studies were less than the OIS. We, thus, were unable to reach conclusive findings for these outcomes.

Figure 2
figure 2

Risk of bias of the included studies.

We did not find a significant association between 9p21-3 and all-cause mortality (RR = 1.11; 95% CI 0.88-1.40; p = 0.39, I2 = 51.6%) (Figure 3).

Figure 3
figure 3

Pooled relative risk of all cause mortality using additive [LR vs. IR vs. HR], dominant [(LR + IR) vs. HR)], and recessive [LR vs. (IR + HR)] models.

Likewise, no significant association emerged in the meta-analysis of 9p21-3 with recurrent MI in patients with known CAD in the additive model (RR = 1.14; 95% CI 0.92-1.40; p = 0.24; I2 = 7.0%). Table 2 lists the summary statistics for the outcomes.

Table 2 Pooled statistics using additive [LR vs. IR vs. HR], dominant [(LR + IR) vs. HR)], and recessive [LR vs. (IR + HR)] models

Four cohorts from 3 studies reported need for re-vascularization. No significant association was identified between 9p21-3 and re-vascularization after development of CAD (RR = 1.11; 95% CI 0.78-1.57; p = 0.56; I2 = 78.1%).

The meta-analysis supported an association between 9p21-3 and triple vessel disease. Homozygotes (HR) for the risk allele had significantly greater risk (RR = 1.34, 95% CI 1.08-1.65, p = 0.01, I2 = 53.8%).

Three studies reported severity of CAD as measured by Gensini score at baseline. Combined analysis of these studies showed 5.30 higher mean Gensini score in the LR group vs. the HR group. This difference was significant (95% CI 0.66-9.93; p = 0.03; I2 = 80.2%). However the DPI which also quantifies CAD severity was not significant in the combined analysis of the two studies reporting it (WMD = 4.00; 95% CI −2.94-10.94; p = 0.26; I2 = 87.5%).

Combined analysis of two studies testing for association of angiographic progression as measured by Δ MLD and number of new lesions at follow-up revealed no association with the 9p21-3 allele. The combined WMD for Δ MLD was 0.07 (95% CI −0.02-0.15; p = 0.15; I2 = 1.0%) and new lesions at follow up was 0.03 (95% CI −0.05-0.10; p = 0.49; I2 = 0.0%).

Discussion

In this meta-analysis of studies investigating angiographic severity and clinical outcomes in patients with CAD, we found an association of 9p21-3 allele with increased risk of triple vessel disease and greater quantitative severity of atherosclerosis as measured with the Gensini score at baseline. The meta-analysis did not support an association of the allele with angiographic outcomes at follow up or clinical outcomes.

Our findings are consistent with the results of Chan et al. [35] who reported a 23% greater risk of triple vessel disease among high risk homozygotes when compared with their low risk genetic counterparts. Different from Chan’s study, we analyzed more outcomes, including measures of severity of coronary atherosclerosis [number of diseased vessels, Gensini Score, Duke CAD Prognostic Index (DPI)], angiographic outcomes [change in minimum lumen diameter (∆MLD) and number of new lesions at follow-up], and key clinical outcomes (all-cause mortality, recurrent myocardial infarction and the need for coronary revascularization). We have for the first time confirmed an association of the allele with a higher Gensini score in a meta-analysis. In quantitative angiography Gensini score is derived by assigning a severity score to each coronary stenosis according to the degree of luminal narrowing and its geographic importance [28]. The score correlates positively with number of vessel segments involved. Thus it is intuitive that an association of 9p21-3 allele with triple vessel disease would translate into an association with the Gensini score in the same direction. However the lack of association with the DPI was surprising. A positive linear correlation between the Gensini and the DPI score is reported in the literature [9]. It is possible that the analysis of DPI was underpowered due to fewer studies reporting this association compared to those reporting the Gensini score.

We found no association between the 9p21-3 allele and angiographic outcomes. This was also unexpected as the process underlying de-novo atherogenesis would remain unchanged over the course of time. One likely explanation can be index event bias [36]. Conceivably, the risk factors distribution among patients with high genetic risk may have shifted after diagnosis and subsequent lifestyle modification and initiation of therapy.

We found no association between genotypic risk and all-cause mortality among CAD patients. This negative finding is supportive of existing evidence published by Ganna et al. [37] which showed that increased risk of all-cause mortality was associated with polygenic risk factors dispersed across the genome. In a sample of over 16,000 participants, a genome wide risk score derived from 707 published SNPs was associated with a modest 10% increased hazard of death. In our study we tested for association between a single locus in a smaller sample which could have further lowered the likelihood of finding an association.

Most GWAS showing locus-disease association, have shown positive results in conditions which are observed to be heritable. Given that there is no published study reporting heritability of the risk of re-infarction, the genetic risk of recurrent events among survivors of ACS remains less probable; an observation noted in our meta-analysis. Likewise in the case of TLR, which could result either from progression of atherosclerosis or recurrent acute ischemic events, we anticipated no association given the absence of increased risk of disease progression and re-infarction among 9p21-3 carriers.

Our study suffers some important limitations. First, we cannot rule out that our findings may be due to chance as multiple testing had been conducted. However, there is no consensus when this problem should be taken into account and which statistical method should be used in meta-analysis [38, 39]. Second, the sample size in most of the outcomes reported in the studies was less than the OIS. Thus, we may not have the power to detect weaker associations. At last, our analyses restricted to association studies as no linkage analyses have identified this allele to be associated with CAD.

Conclusion

Patients of CAD who carry the high risk genotype of the 9p21-3 allele may be more likely to have multi-vessel CAD. However the effect of this allele on CAD progression and disease specific clinical outcomes are not observed possibly due to diminishing genetic risk following dietary modification and therapy.

Abbreviations

CAD:

Coronary artery disease

GWAS:

Genome wide association studies

MI:

Myocardial infarction

PRISMA:

The preferred reporting items for systematic reviews and meta-analyses statement

DPI:

Duke CAD prognostic index

∆ MLD:

Change in minimum lumen diameter

ECG:

Electrocardiography

LR:

Homozygous low risk

IR:

Heterozygous intermediate risk

HR:

Homozygous high risk

WMD:

Weighted mean difference

RR:

Relative risk.

References

  1. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, McKillop JH, Packard CJ: Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med. 1995, 333 (20): 1301-1307.

    Article  CAS  PubMed  Google Scholar 

  2. Otaki Y, Gransar H, Berman DS, Cheng VY, Dey D, Lin FY, Achenbach S, Al-Mallah M, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnaiyan K, Chow BJ, Delago A, Hadamitzky M, Hausleiter J, Kaufmann P, Maffei E, Raff G, Shaw LJ, Villines TC, Dunning A, Min JK: Impact of family history of coronary artery disease in young individuals (from the CONFIRM registry). Am J Cardiol. 2013, 111 (8): 1081-1086.

    Article  PubMed  Google Scholar 

  3. Lee JY, Lee BS, Shin DJ, Woo Park K, Shin YA, Joong Kim K, Heo L, Young Lee J, Kyoung Kim Y, Jin Kim Y, Bum Hong C, Lee SH, Yoon D, Jung Ku H, Oh IY, Kim BJ, Lee J, Park SJ, Kim J, Kawk HK, Lee JE, Park HK, Nam HY, Park HY, Shin C, Yokota M, Asano H, Nakatochi M, Matsubara T, Kitajima H: A genome-wide association study of a coronary artery disease risk variant. J Hum Genet. 2013, 58 (3): 120-126.

    Article  CAS  PubMed  Google Scholar 

  4. Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR, Ingelsson E, Saleheen D, Erdmann J, Goldstein BA, Stirrups K, Konig IR, Cazier JB, Johansson A, Hall AS, Lee JY, Willer CJ, Chambers JC, Esko T, Folkersen L, Goel A, Grundberg E, Havulinna AS, Ho WK, Hopewell JC, Eriksson N, Kleber ME, Kristiansson K, Lundmark P, Lyytikainen LP: Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013, 45 (1): 25-33.

    Article  CAS  PubMed  Google Scholar 

  5. Visel A, Zhu Y, May D, Afzal V, Gong E, Attanasio C, Blow MJ, Cohen JC, Rubin EM, Pennacchio LA: Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature. 2010, 464 (7287): 409-412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, Ren B, Fu XD, Topol EJ, Rosenfeld MG, Frazer KA: 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature. 2011, 470 (7333): 264-268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Murabito JM, White CC, Kavousi M, Sun YV, Feitosa MF, Nambi V, Lamina C, Schillert A, Coassin S, Bis JC, Broer L, Crawford DC, Franceschini N, Frikke-Schmidt R, Haun M, Holewijn S, Huffman JE, Hwang SJ, Kiechl S, Kollerits B, Montasser ME, Nolte IM, Rudock ME, Senft A, Teumer A, van der Harst P, Vitart V, Waite LL, Wood AR, Wassel CL: Association between chromosome 9p21 variants and the ankle-brachial index identified by a meta-analysis of 21 genome-wide association studies. Circ Cardiovasc Genet. 2012, 5 (1): 100-112.

    Article  CAS  PubMed  Google Scholar 

  8. Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, Devereaux PJ, Montori VM, Freyschuss B, Vist G, Jaeschke R, Williams JW, Murad MH, Sinclair D, Falck-Ytter Y, Meerpohl J, Whittington C, Thorlund K, Andrews J, Schunemann HJ: GRADE guidelines 6. Rating the quality of evidence--imprecision. J Clin Epidemiol. 2011, 64 (12): 1283-1293.

    Article  PubMed  Google Scholar 

  9. Neeland IJ, Patel RS, Eshtehardi P, Dhawan S, McDaniel MC, Rab ST, Vaccarino V, Zafari AM, Samady H, Quyyumi AA: Coronary angiographic scoring systems: an evaluation of their equivalence and validity. Am Heart J. 2012, 164 (4): 547-552. e541

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wells G, Shea B, O’connell D, Peterson J, Welch V, Losos M, Tugwell P: The Newcastle-Ottawa Scale (NOS) For Assessing The Quality Of Nonrandomised Studies In Meta-Analyses. Available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm. Accessed May, 2014,

  11. Ioannidis JP, Trikalinos TA: The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ. 2007, 176 (8): 1091-1096.

    Article  PubMed  PubMed Central  Google Scholar 

  12. DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials. 1986, 7 (3): 177-188.

    Article  CAS  PubMed  Google Scholar 

  13. Higgins JP, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency in meta-analyses. BMJ. 2003, 327 (7414): 557-560.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Anderson JL, Horne BD, Kolek MJ, Muhlestein JB, Mower CP, Park JJ, May HT, Camp NJ, Carlquist JF: Genetic variation at the 9p21 locus predicts angiographic coronary artery disease prevalence but not extent and has clinical utility. Am Heart J. 2008, 156 (6): 1155-1162. e1152

    Article  CAS  PubMed  Google Scholar 

  15. Chen Z, Qian Q, Ma GS, Wang JH, Zhang XL, Feng Y, Shen CX, Yao YY: A common variant on chromosome 9p21 affects the risk of early-onset coronary artery disease. Mol Biol Rep. 2009, 36 (5): 889-893.

    Article  CAS  PubMed  Google Scholar 

  16. Chen SN, Ballantyne CM, Gotto AM, Marian AJ: The 9p21 susceptibility locus for coronary artery disease and the severity of coronary atherosclerosis. BMC Cardiovasc Disord. 2009, 9: 3-

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hoppmann P, Erl A, Turk S, Tiroch K, Mehilli J, Schomig A, Kastrati A, Koch W: No association of chromosome 9p21.3 variation with clinical and angiographic outcomes after placement of drug-eluting stents. JACC Cardiovasc Interv. 2009, 2 (11): 1149-1155.

    Article  PubMed  Google Scholar 

  18. Peng WH, Lu L, Zhang Q, Zhang RY, Wang LJ, Yan XX, Chen QJ, Shen WF: Chromosome 9p21 polymorphism is associated with myocardial infarction but not with clinical outcome in Han Chinese. Clin Chem Lab Med. 2009, 47 (8): 917-922.

    Article  CAS  PubMed  Google Scholar 

  19. Newton-Cheh C, Cook NR, Vandenburgh M, Rimm EB, Ridker PM, Albert CM: A common variant at 9p21 is associated with sudden and arrhythmic cardiac death. Circulation. 2009, 120 (21): 2062-2068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ellis KL, Pilbrow AP, Frampton CM, Doughty RN, Whalley GA, Ellis CJ, Palmer BR, Skelton L, Yandle TG, Palmer SC, Troughton RW, Richards AM, Cameron VA: A common variant at chromosome 9p21.3 is associated with age of onset of coronary disease but not subsequent mortality. Circ Cardiovasc Genet. 2010, 3 (3): 286-293.

    Article  CAS  PubMed  Google Scholar 

  21. Buysschaert I, Carruthers KF, Dunbar DR, Peuteman G, Rietzschel E, Belmans A, Hedley A, De Meyer T, Budaj A, Van De Werf F, Lambrechts D, Fox KA: A variant at chromosome 9p21 is associated with recurrent myocardial infarction and cardiac death after acute coronary syndrome: The GRACE genetics study. Eur Heart J. 2010, 31 (9): 1132-1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Patel RS, Su SY, Neeland IJ, Ahuja A, Veledar E, Zhao JY, Helgadottir A, Holm H, Gulcher JR, Stefansson K, Waddy S, Vaccarino V, Zafari AM, Quyyumi AA: The chromosome 9p21 risk locus is associated with angiographic severity and progression of coronary artery disease. Eur Heart J. 2010, 31 (24): 3017-3023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muehlschlegel JD, Liu KY, Perry TE, Fox AA, Collard CD, Shernan SK, Body SC: Chromosome 9p21 variant predicts mortality after coronary artery bypass graft surgery. Circulation. 2010, 122 (11 SUPPL. 1): S60-S65.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dandona S, Stewart AF, Chen L, Williams K, So D, O’Brien E, Glover C, Lemay M, Assogba O, Vo L, Wang YQ, Labinaz M, Wells GA, McPherson R, Roberts R: Gene dosage of the common variant 9p21 predicts severity of coronary artery disease. J Am Coll Cardiol. 2010, 56 (6): 479-486.

    Article  CAS  PubMed  Google Scholar 

  25. Liu KY, Muehlschlegel JD, Perry TE, Fox AA, Collard CD, Body SC, Shernan SK: Common genetic variants on chromosome 9p21 predict perioperative myocardial injury after coronary artery bypass graft surgery. J Thorac Cardiovasc Surg. 2010, 139 (2): 483-488. e482

    Article  CAS  PubMed  Google Scholar 

  26. Wang W, Peng W, Zhang X, Lu L, Zhang R, Zhang Q, Wang L, Chen Q, Shen W: Chromosome 9p21.3 polymorphism in a Chinese Han population is associated with angiographic coronary plaque progression in non-diabetic but not in type 2 diabetic patients. Cardiovasc Diabetol. 2010, 9: 33-

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ardissino D, Berzuini C, Merlini PA, Mannuccio Mannucci P, Surti A, Burtt N, Voight B, Tubaro M, Peyvandi F, Spreafico M, Celli P, Lina D, Notarangelo MF, Ferrario M, Fetiveau R, Casari G, Galli M, Ribichini F, Rossi ML, Bernardi F, Marziliano N, Zonzin P, Mauri F, Piazza A, Foco L, Bernardinelli L, Altshuler D, Kathiresan S, Italian Atherosclerosos, Thrombosis and Vascular Biology Investigators: Influence of 9p21.3 genetic variants on clinical and angiographic outcomes in early-onset myocardial infarction. J Am Coll Cardiol. 2011, 58 (4): 426-434.

    Article  PubMed  Google Scholar 

  28. Wang W, Peng WH, Lu L, Zhang RY, Zhang Q, Wang LJ, Chen QJ, Shen WF: Polymorphism on chromosome 9p21.3 contributes to early-onset and severity of coronary artery disease in non-diabetic and type 2 diabetic patients. Chin Med J (Engl). 2011, 124 (1): 66-71.

    Article  CAS  Google Scholar 

  29. Chan K, Motterle A, Laxton RC, Ye S: Common variant on chromosome 9p21 predicts severity of coronary artery disease. J Am Coll Cardiol. 2011, 57 (13): 1497-1498. author reply 1498–1499

    Article  PubMed  Google Scholar 

  30. Dutta A, Henley W, Lang IA, Murray A, Guralnik J, Wallace RB, Melzer D: The coronary artery disease-associated 9p21 variant and later life 20-year survival to cohort extinction. Circ Cardiovasc Genet. 2011, 4 (5): 542-548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kozieradzka A, Pepinski W, Waszkiewicz E, Olszewska M, Maciorkowska D, Skawronska M, Niemcunowicz-Janica A, Dobrzycki S, Musial W, Kaminski K: The Rs1333049, Rs10757278 And Rs4977574 Polymorphisms Of The Locus 9p21-The Association With 5-Year Prognosis In Patients With St-Elevation Myocardial Infarction. European Heart Journal: 2011. 2011, England: Oxford Univ Press Great Clarendon St, Oxford OX2 6DP, 735-736.

    Google Scholar 

  32. Gioli-Pereira L, Santos PC, Ferreira NE, Hueb WA, Krieger JE, Pereira AC: Higher incidence of death in multi-vessel coronary artery disease patients associated with polymorphisms in chromosome 9p21. BMC Cardiovasc Disord. 2012, 12: 61-

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Virani SS, Brautbar A, Lee VV, MacArthur E, Morrison AC, Grove ML, Nambi V, Frazier L, Wilson JM, Willerson JT, Boerwinkle E, Ballantyne CM: Chromosome 9p21 single nucleotide polymorphisms are not associated with recurrent myocardial infarction in patients with established coronary artery disease. Circ J. 2012, 76 (4): 950-956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lill Z, Horne B, Carlquist J, Anderson J: Snp status at 9P21.3 does not predict post-operative mortality in patients undergoing CABG. J Am Coll Cardiol. 2012, 59 (13s1): E1416-E1416.

    Article  Google Scholar 

  35. Chan K, Patel RS, Newcombe P, Nelson CP, Qasim A, Epstein SE, Burnett S, Vaccarino VL, Zafari AM, Shah SH, Anderson JL, Carlquist JF, Hartiala J, Allayee H, Hinohara K, Lee BS, Erl A, Ellis KL, Goel A, Schaefer AS, El Mokhtari NE, Goldstein BA, Hlatky MA, Go A, Shen GQ, Gong Y, Pepine C, Laxton RC, Whittaker JC, Tang WH: Association between the chromosome 9p21 locus and angiographic coronary artery disease burden: a collaborative meta-analysis. J Am Coll Cardiol. 2013, 61 (9): 957-970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smits LJ, van Kuijk SM, Leffers P, Peeters LL, Prins MH, Sep SJ: Index event bias-a numerical example. J Clin Epidemiol. 2013, 66 (2): 192-196.

    Article  PubMed  Google Scholar 

  37. Ganna A, Rivadeneira F, Hofman A, Uitterlinden AG, Magnusson PK, Pedersen NL, Ingelsson E, Tiemeier H: Genetic determinants of mortality. Can findings from genome-wide association studies explain variation in human mortality?. Hum Genet. 2013, 132 (5): 553-561.

    Article  PubMed  Google Scholar 

  38. JPT CHH, Green S: Cochrane handbook for systematic reviews of interventions version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. 2011, Available at: http://handbook.cochrane.org/. Accessed May, 2014,

    Google Scholar 

  39. Owens D, Lohr KN, Atkins D, Treadwell J, Reston J, Bass E, Chang S, Helfand M: Methods Guide for Effectiveness and Comparative Effectiveness Reviews. 2011, Rockville, MD: Agency for Healthcare Research and Quality, Available at: http://effectivehealthcare.ahrq.gov/ehc/products/60/318/CER-Methods-Guide-140109.pdf. Accessed May, 2014,

    Google Scholar 

Pre-publication history

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MM and ZW contributed equally to this study. MM carried out study design, study screening, data extraction, and drafted the manuscript. ZW carried out study design, quality appraisal, data analysis, and drafted the manuscript. FA participated in quality appraisal and critically revised the manuscript. MS conducted data extraction, drafted and critically revised the manuscript. PE designed the search strategy and revised the manuscript. IK carried out study design, advised on all methodological issues, drafted and critically revised the manuscript. MHM participated in study design, advised on all methodological issues, drafted and critically revised the manuscript. All authors approved the final version of this manuscript and agreed to be accountable for all aspects of the work

Electronic supplementary material

Authors’ original submitted files for images

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver (https://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, M.S., Wang, Z., Alahdab, F. et al. The association of 9p21-3 locus with coronary atherosclerosis: a systematic review and meta-analysis. BMC Med Genet 15, 66 (2014). https://doi.org/10.1186/1471-2350-15-66

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1471-2350-15-66

Keywords